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ABSTRACT Bats host diverse coronaviruses, including taxa capable of pandemic
spread in humans. We report the genome of an alphacoronavirus from a neotropical
bat species (Desmodus rotundus) in Peru, which contributes to our understanding of
bat coronaviruses in nature.

Coronaviruses (CoVs) (family Coronaviridae) are positive-sense, single-stranded RNA
viruses that naturally circulate in many vertebrates. CoVs are relatively common and

genetically diverse in bats and include zoonotic species that cause severe acute respiratory
syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV), and CoV disease 2019
(SARS-CoV-2) (1–5). Due to the geographic origin of the most prominent zoonotic CoVs,
most knowledge of bat CoVs is derived from Old World species. Nonetheless, comparatively
limited sampling has revealed diverse CoVs among bats in North and South America (6–9).
Additional knowledge of the diversity and distribution of CoVs in these species will aid
efforts to understand virus ecology within bat reservoirs, anticipate zoonotic risk, and
accelerate identification of reservoir hosts following emergence.

We report the genome of an alphacoronavirus from common vampire bats (Desmodus
rotundus, family Phyllostomidae), termed DesRot/Peru/Amazonas/CoV (isolate AMA_L_F).
The genome was derived from shotgun sequencing of 10 pooled samples collected with
noninvasive rectal swabs from D. rotundus bats from two colonies in Rio Escondido,
Amazonas, Peru (ENA accession number ERR2756788) (10). Briefly, total nucleic acid was
extracted using a BioSprint One-for-All veterinary kit (Qiagen) and a Kingfisher 96 Flex
system. Following DNase I (Ambion) treatment, rRNA depletion (Ribo-Zero; Illumina),
and cDNA synthesis (Maxima H Minus first-strand cDNA synthesis kit; Thermo Fisher
Scientific), sequencing libraries were prepared using the KAPA DNA library preparation
kit for Illumina (Kapa Biosystems). Sequencing was performed on an Illumina NextSeq
500 system (read length, 150 bp). A total of 17,760,709 raw reads were processed through
an in-house pipeline, including quality filtering with Trim Galore v.0.4.0 and prinseq-lite v.0.20.4
(11, 12), assembly with SPAdes v.3.10.1 (13), and classification with DIAMOND blastx v.0.8.20 (14),
leading to a genome of 29,097 bp with a mean coverage of 226.7 reads. BLASTn analysis against
GenBank showed that the most similar full genome was that of an alphacoronavirus from a
microbat (GenBank accession number MK472070.1) (70.7% nucleotide similarity); that virus
was used to determine genome termini. The two genomes were of similar initial size
(MK472070.1, 28,009 bp; DesRot/Peru/Amazonas/CoV, 29,140 bp), and the new genome
aligned over the length of the reference with relatively few gaps (final untrimmed
alignment, 29,887 bp). DesRot/Peru/Amazonas/CoV had a GC content (42.9%) and
genomic organization of major open reading frames (ORFs) (5=-ORF1a/ORF1ab-S-ORF3-
E-M-N-3=) similar to those of other alphacoronaviruses.

A 272-amino-acid section of the RdRp gene (5) was aligned with other repre-
sentative CoVs using MAFFT v.7.017 (15). Maximum likelihood phylogenetic analysis
performed in RAxML v.8.2.8 (16), using the LG�I�G substitution model identified
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by ProtTest 3 (17), showed that the vampire bat sequence was more closely related
to other neotropical bat CoVs (96.2% nucleotide similarity, over 816 bp, to the most
similar sequence [GenBank accession number JQ731782]) and fell within a clade of
alphacoronaviruses from other Phyllostomidae bats (Fig. 1). Two Brazilian vampire bat
sequences, which were within ORF1b but did not overlap completely with the RdRp
section used for phylogenetic analysis, were compared to DesRot/Peru/Amazonas/CoV
separately, displaying pairwise nucleotide identities of 69.2% over 52 bp (EU236685.1)
and 98.1% over 572 bp (KU552072.1). In summary, DesRot/Peru/Amazonas/CoV is a
genomic representative of neotropical bat alphacoronaviruses, providing a new re-
source for understanding the global diversity of CoVs.

Data availability. The complete genome sequence for DesRot/Peru/Amazonas/CoV
has been deposited in GenBank under accession number MT663548. Raw data were
deposited in the ENA under run accession number ERR2756788, experiment accession
number ERX2769781, and study accession number PRJEB28138.
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