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Abstract
The accurate prediction of neurological outcomes in patients with cervical spinal cord injury (SCI) is difficult
because of heterogeneity in patient characteristics, treatment strategies, and radiographic findings. Although
machine learning algorithms may increase the accuracy of outcome predictions in various fields, limited infor-
mation is available on their efficacy in the management of SCI. We analyzed data from 165 patients with cervical
SCI, and extracted important factors for predicting prognoses. Extreme gradient boosting (XGBoost) as a machine
learning model was applied to assess the reliability of a machine learning algorithm to predict neurological out-
comes compared with that of conventional methodology, such as a logistic regression or decision tree. We used
regularly obtainable data as predictors, such as demographics, magnetic resonance variables, and treatment
strategies. Predictive tools, including XGBoost, a logistic regression, and a decision tree, were applied to predict
neurological improvements in the functional motor status (ASIA [American Spinal Injury Association] Impairment
Scale [AIS] D and E) 6 months after injury. We evaluated predictive performance, including accuracy and the area
under the receiver operating characteristic curve (AUC).
Regarding predictions of neurological improvements in patients with cervical SCI, XGBoost had the highest ac-
curacy (81.1%), followed by the logistic regression (80.6%) and the decision tree (78.8%). Regarding AUC, the lo-
gistic regression showed 0.877, followed by XGBoost (0.867) and the decision tree (0.753). XGBoost reliably
predicted neurological alterations in patients with cervical SCI. The utilization of predictive machine learning al-
gorithms may enhance personalized management choices through pre-treatment categorization of patients.
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Introduction
Cervical spinal cord injury (SCI) leads to poor
neurological disabilities that are associated with a dete-
riorated quality of life and higher rate of unemploy-
ment.1,2 In the hospital, these patients are assessed

neurologically or radiographically to ascertain their
neurological impairments and select adequate treat-
ment strategies. Accurate predictions of neurological
outcomes are important for effectively maximizing
limited medical resources. Therefore, a dependable
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outcome prediction model is crucial for estimating re-
covery following SCI and assisting family or informal
caregivers in providing personalized care.

Compared with conventional statistical models, such
as a logistic regression analysis, machine learning pre-
diction models detect non-linear interactions among
prognostic factors.3 Previous studies reported that ma-
chine learning models were useful for predicting the out-
comes of various clinical entities, such as traumatic brain
injury,4 congestive heart failure,5 sepsis,6 asthma,7 and
chronic obstructive pulmonary disease,8 or of intensive
care.9 Some prognostic models have been validated to op-
timize management. Also, the requirement for effective
outcome prediction in patients with SCI has increased
numerous research studies evaluating the efficacy of ma-
chine learning algorithms for this cohorts.10–14

Among different machine learning systems, extreme
gradient boosting (XGBoost) is widely used to accomplish
state-of-the-art analyses in diverse fields with good accu-
racy or area under the receiver operating characteristic
curve (AUC).15,16 XGBoost, a decision-tree-based ensem-
ble machine learning algorithm with a gradient boosting
framework, was developed by Chen and Guestrin.17 It has
since been used in traffic census and the field of energy
consumption.18,19 This is the first study to examine the
efficacy of XGBoost for predicting neurological outcomes
in patients with cervical SCI. The study’s purpose was not
to improve prognostic models based on a large number of
predictor variables, but to innovate machine learning
models based on XGBoost using clinical information reg-
ularly obtained from patients with SCI on admission.

Methods
Study design, ethical approval, and setting
We retrospectively identified patients with a principal
diagnosis of SCI (code S14) according to the Interna-
tional Classification of Diseases, 10th Revision, Clinical
Modifications, from diagnosis codes on admission. We
also included patients with SCI who were initially diag-
nosed at a local hospital and then transferred to our
hospital (National Health Organization Sendai Medical
Center) for intensive care. To decrease possible con-
founding factors due to different surgical strategies,
we excluded all patients who underwent surgery in
other hospitals. We also excluded patients with a neu-
rological disease or deficits (e.g., Parkinson’s disease or
stroke) prior to injury. Research procedures were ap-
proved by the Institutional Review Board of Sendai
Medical Center, which exempted us from the need to
obtain consent from individual participants.

Data collection
Basic data were attained from the Sendai Medical Cen-
ter’s Department of Neurosurgery database, and were
cross-referenced with trauma records and searchable
terms in electronic medical records. Patient demo-
graphic data were routinely recorded in our depart-
ment during the study period, and a data dictionary
was utilized to assure consistent data sharing across
sites. After collection, all data were evaluated for com-
pleteness and accuracy, and then anonymized before
investigation. Data were acquired on age, sex, previous
medical history, neurological severity, magnetic reso-
nance imaging (MRI) findings, and surgical proce-
dures. Following an intensive review of all variables
in database files, we selected 44 basic variables and cat-
egorized them into independent categories: demograph-
ics and neurological status (8 features), mechanisms of
injury (l feature), treatment strategies (7 features), radio-
graphic information (14 features), and concomitant de-
generative spine disease (7 features) (Table 1). To reduce
selection bias, the authors responsible for chart reviews
were blinded to neurological outcomes.

All patients were evaluated by our multi-disciplinary
team immediately after being transferred to our hospital;
this team consisted of board-certified neurosurgeons,
emergency physicians, and radiologists. All patients
were evaluated using the ASIA (American Spinal Injury
Association) Impairment Scale (AIS). A complete ra-
diological evaluation, including standard radiographs
and computed tomography, was performed for each
patient to assess the degree of compression and injury
to the spinal cord. Patients also underwent MRI within
24 h of the traumatic event, including T1- and T2-
weighted imaging (WI) of the cervical spine in both
axial and sagittal views. MRI was performed using the
1.5 Tesla system (Magnetom Avanto, Siemens Medical
Solutions, Erlangen, Germany). Previous comorbidities
were recorded based on patient self-reports during hos-
pitalization or medical histories in electronic records,
using the Charlson Comorbidity Index (CCI) as a mea-
sure of clinical importance.20,21

Criteria for surgical decompression
Indications for surgical decompression were the exis-
tence of surgically amenable cervical spinal cord com-
pression due to cervical spondylosis, ossification of the
posterior longitudinal ligament, or cervical disc herni-
ation, which were considered to be responsible for
neurological impairments. The timing of surgical de-
compression depended on the patient’s condition and
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any comorbidities, radiological evaluation, and opti-
mum preparation of surgical suites. The surgical ap-
proach selected was based on the finding of cord
compression and the surgeon’s preference. Further, in
our institution, we do not regard age as an exclusion
criterion for early surgery, and, thus, we often perform
this surgery independent of age. Post-operatively, all
patients underwent early rehabilitation consisting of
physical therapy that was immediately initiated after
cardiopulmonary stabilization.

Statistical analysis
Two attending neurosurgeons performed consensus
MRI ratings for all metrics while blinded to neurolog-
ical outcomes. We applied the following axial scoring
system, known as the Brain and Spinal Injury Center
(BASIC) score22: grade 0, no intramedullary signal ab-
normality; grade 1, T2 hyperintensity confined to the
gray matter; grade 2, intramedullary T2 hyperintensity
extending beyond possible spinal gray matter margins
to include the white matter, but not containing the
whole transverse extent of the spinal cord; grade 3,
intramedullary T2 hyperintensity containing the entire
axial level of the spinal cord; and grade 4, a grade 3 in-
jury plus a distinct T2 hypointense area, consistent
with macroscopic intramedullary hemorrhage.23,24

The longitudinal extent of T2 hyperintensity (in milli-
meters) was evaluated based on the National Institutes
of Health/National Institutes of Neurological Disorders
and Stroke SCI common data elements version
1.0.22,25,26 Sagittal grading was evaluated based on pre-
vious studies22,25: grade 1, no spinal cord abnormal in-
tensity; grade 2, one-level T2 hyperintensity; grade 3,
more than a two-level T2 signal hyperintensity; and
grade 4, T2 signal hyperintensity with lesions of hypo-
intensity indicating hemorrhage.

We also evaluated the Subaxial Injury and Classifica-
tion (SLIC) system, which was scored based on the im-
portance of three factors associated with the treatment
of cervical injuries: morphology, neurological status,
and the integrity of the discoligamentous complex.27

Maximum canal compromise (MCC) and maximum
spinal cord compression (MSCC) were evaluated on
mid-sagittal images by differentiating the anteroposte-
rior diameter of the canal (on sagittal T1WI for MCC)
and that of the spinal cord (on sagittal T2WI for
MSCC) by means of the canal or spinal cord above
and below as reported previously.25,28 The signal inten-
sity ratio (SIR) at the narrowest level of the spinal cord
on sagittal views of T1WI and T2WI was measured,

Table 1. Patient Characteristics

Forty-four predictors

Demographics and neurological status (8)
Age (years), mean (SD) 65.3 (15.4)
Sex (n) 132 males, 33 females
Height, mean (SD) 164.2 (10)
Body weight, mean (SD) 64.1 (14.0)
Body mass index, mean (SD) 24.1 (7.6)
Body surface area, mean (SD) 1.70 (0.24)
American Spinal Injury Association

Impairment Scale (AIS) (n)
AIS A = 15, B = 38,

C = 66, D = 44, E = 3
Charlson Comorbidity Index, median (IQR) 0 (0 - 1)

Mechanism of injury (8)
Slip (n) 78
Fall (n) 36
Loss of consciousness (n) 10
Motor vehicle collision (n) 22
Bicycle (n) 11
Sports (n) 8
Spinal cord injury after alcohol

consumption (n)
37

Spinal cord injury with traumatic
brain injury (n)

137

Therapeutic strategies for spinal cord
injury (7)
Surgical timing, median (days) (IQR) 2 (1 - 7)
Conservative therapy (n) 36
Anterior cervical discectomy

and fusion (n)
43

Posterior fixation (n) 6
Laminoplasty (n) 82
Halo-vest stabilization (n) 3
Methylprednisolone use (n) 39

Radiographic information (14)
Brain and Spinal Cord Injury Center

score (BASIC) (n)
BASIC 0 = 21, 1 = 61,
2 = 46, 3 = 24, 4 = 14

Longest measurements of T2
hyperintensity on the sagittal
plane (mm), mean (SD)

14.4 (13.7)

Sagittal grading, median (IQR) 2 (2 - 2.25)
Subaxial Injury and Classification system,

median (IQR)
6 (5 - 6)

Maximum canal compromise, mean (SD) 75.9 (3.04)
Maximum spinal cord compression,

mean (SD)
79.9 (4.56)

Signal intensity at the narrowest level
on T1-weighted images, mean (SD)

293.0 (69.3)

Signal intensity at the narrowest level
on T2-weighted images, mean (SD)

389.0 (152.2)

Signal intensity at the C7-T1 disc levels
on T1-weighted images, mean (SD)

276.7 (66.8)

Signal intensity at the C7-T1 disc levels
on T2-weighted images, mean (SD)

268.9 (98.1)

Signal intensity ratio on T1-weighted
images, mean (SD)

1.07 (0.15)

Signal intensity ratio on T2-weighted
images, mean (SD)

1.40 (0.37)

Cervical alignment (n) Lordotic (73), reverse
S-shape (37), straight (27),

kyphosis (15),
dislocation (8)

High cervical (n) 36

Concomitant degenerative spine diseases (7)
Cervical spondylosis 144
Ossification of the posterior

longitudinal ligament
52

Cervical disc herniation 64
Osteophyte 115
Ossification of the yellow ligament 2
Ankylosing spondylitis 20
Atlantoaxial dislocation 6

IQR, interquartile range; SD, standard deviation.
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and regions of interest (ROIs) were acquired by 0.05 cm2.
Normal cord SIs at the C7-T1 disc level were acquired,
and ROIs were acquired by 0.3 cm2. SIRs between re-
gions of 0.05 and 0.3 cm2 were calculated. SIRs on
T1WI and T2WI were calculated using the following
equation29:

SIR = SI 0:05cm2
� �� �

= SI of the sagittal normal cordð
between the C7 and T1 disc levels 0:3 cm2

� �
Þ:

Radiographs were also obtained using normal radio-
graphic methods in which the tube was positioned
on the C5 disc. The radiographic film cassette was
150 cm from the tube.30 Study participants were cate-
gorized into four groups based on differences in align-
ment in the upright position: lordotic, straight type,
kyphotic, S-shape curvature, and dislocation.

Machine learning
By using machine learning algorithms, we built predic-
tion models for neurological improvements evaluated 6
months after injury based on the AIS. We dichoto-
mized the scale as follows: AIS D or E as 1 and AIS
A, B, or C as 0.

As predictors for prediction models, we included
routinely obtained clinical data on admission, such as
age, sex, severity of neurological impairments based
on the AIS, and several MRI findings. All predictors
are shown in Table 1.

We built multiple prediction models using XGBoost
and logistic regressions and evaluated them by 8-fold
cross validation. XGBoost is an ensemble learning algo-
rithm and applies decision trees as base learners.17–19 A
logistic regression analysis is a well-known method for
building clinical prediction models.31,32 It is a type of
generalized linear model and features are additively
and linearly built into the model.

Evaluation and variable importance
To evaluate prediction models, we drew a receiver op-
erating characteristic curve (ROC curve) and calculated
the area under the ROC curve (AUC). We made a con-
fusion matrix and calculated accuracy, the true-positive
rate, and the false-positive rate, as follows:

Confusion Matrix

Actual: Positive
(AIS D/E)

Actual: Negative
(AIS A/B/C)

Prediction: Positive TP (true-positive rate) FP (false-positive rate)
Prediction: Negative FN (false-negative rate) TN (true-negative rate)

Accuracy %ð Þ =
TPþ TN

TPþ TNþFPþFN

We acquired the variable importance of each predic-
tor from the XGBoost model. Variable importance indi-
cates the usefulness of each predictor for the prediction
model and was calculated for a single decision tree based
on the amount that each attribute split-point improved
the performance measure, weighted by the number of
observations for which the node was responsible.3

Results
Baseline characteristics of participants
During the study period, 165 patients (132 men and 33
women) aged 16 to 93 years (median, 68 years) and
diagnosed with cervical SCI were examined. Key demo-
graphic, clinical, and outcome parameters in the pres-
ent study are summarized in Table 1.

Comparison with other prediction models
We performed three algorithms utilizing the training set
to obtain better predictors by restoring the parameters of
each algorithm and adjusted the predictors based on the
validation set. Table 2 shows the prediction capability
(accuracy and AUC) of each algorithm using the opti-
mal features subset. As shown in Figure 1, XGBoost
and the logistic regression predicted neurological recov-
ery with an AUC greater than 0.800, and XGBoost
showed the best performance for outcome predictions.
It had the highest accuracy, 81.1%, followed by the logis-
tic regression (80.6%) and decision tree (78.8%). Regard-
ing AUC, the logistic regression showed 0.877, followed
by XGBoost (0.867) and the decision tree (0.753).

Variable importance
XGBoost calculates feature importance via the Gini index.
To clarify the importance of each predictor, Figure 2 reca-
pitulates the final 15 most significant variables of XGBoost
after the exclusion of 30 unimportant predictors. The
top 15 predictors, as scored by XGBoost, are as follows:

1. Demographics and neurological status (4): age,
AIS B, C, and D

2. Mechanisms of injury (0)
3. Treatment strategies (0)
4. Radiographic information (11): BASIC 1, 3, and 4,

longest measurements of T2 hyperintensity on the
sagittal plane; MCC, MSCC, SIR at the narrowest
level on T1WI and T2WI; SI at C7-T1 on T1WI
and T2WI; and the reverse S-shape alignment

5. Concomitant degenerative spine disease (0)
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FIG. 1. Receiver operating characteristic curves for models with all algorithms as inputs.

FIG. 2. Feature importance of factors predicting neurological improvements in XGBoost. The top 14
features of importance are shown from high to low.
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In this model, the most important predictive variable
was a BASIC score of 4, followed by AIS B, SIR on
T2WI, and a BASIC score of 3 as the most significant
characteristics for neurological improvements. In com-
parison with the two other traditional machine learn-
ing models, the accuracy rate of XGBoost was
satisfactory, and the XGBoost model showed good out-
comes on the ROC curve. SIR on T1WI is the most im-
portant feature of a logistic regression model, but it
contributed only slightly to XGBoost. Figure 3 shows
the relationship between accuracy and the number of
evaluators in XGBoost. With increases in the number
of predictors, computational precision is beyond
0.800 and stable at approximately 0.864, which indi-
cates that the XGBoost algorithm accomplished sus-
tainable predictions. When the estimates surpass
0.875, the calculation exactness of XGBoost declines,
suggesting a small number of estimators.

The confusion matrix that resulted from the predic-
tion of neurological improvements based on XGBoost,
the logistic regression, and the decision tree corre-
sponded to true-positive rates of 0.833, 0.909, and

0.866, respectively, and false-positive rates of 0.560,
0.243, and 0.415, respectively (Table 2).

Discussion
Results of the present study
Recovery from cervical SCI involves important tasks and
significant choices to effectively utilize limited medical
resources. The application of clinical information may
enhance the accuracy of outcome predictions in patients
with SCI. In the present study in 165 patients with cervi-
cal SCI, we applied XGBoost to regularly obtained clini-
cal data and achieved greater prediction accuracy than
that using two other models: an ordinal logistic regres-
sion analysis and a decision tree. Predictive variables
analyzed according to statistical calculations for uncom-
plicatedness utilize simple limited fundamental variables,
with measurements being approximately smoothed.
Based on this algorithm, clinicians may individualize
the management of patients with SCI based on their
neurological alterations, which may efficiently reduce
medical expenses and establish predictions for personal-
ized neurotherapeutics for these patients.

FIG. 3. Relationship between accuracy and the number of evaluators in XGBoost.

Table 2. Confusion Matrix for XGBoost, a Logistic Regression, and a Decision Tree

XGBoost Logistic regression Decision tree

Actual positive
(AIS D/E)

Actual negative
(AIS A/B/C) Total

Actual positive
(AIS D/E)

Actual negative
(AISA/B/C) Total

Actual positive
(AIS D/E)

Actual negative
(AIS A/B/C) Total

Prediction: positive 115 (TP) 23 (FP) 138 101 (TP) 10 (FP) 111 110 (TP) 17 (FP) 127
Prediction: negative 9 (FN) 18 (TN) 27 23 (FN) 31 (TN) 54 14 (FN) 24 (TN) 38
Total 124 41 165 124 41 165 124 41 165

AIS, American Spinal Injury Association Impairment Scale; FN, false-negative; FP, false-positive; TN, true-negative; TP, true-positive.
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The results of statistical analyses indicate that the ma-
jority of the selected features were instructive for predict-
ing neurological improvements. Based on the XGBoost
model, severe axial damage with a BASIC score of 4,
AIS B, SIR on the T2WI scale, and BASIC grade 3
were strong predictors, in this order of importance. Pre-
vious studies reported that the assessment of intrame-
dullary T2 signal abnormalities in the axial plane
according to BASIC scores22 or longitudinal lesion
lengths33 may provide important information for pre-
dicting neurological outcomes in patients with SCI. In
the present study, we demonstrated that among various
features, a BASIC score of 4 was the most predictive of
the outcome. Talbott and colleagues reported that all pa-
tients with a BASIC score of 4 were discharged with an
unchanged AIS A.22 In our series, 14 patients received a
BASIC score of 4: 9 were AIS A and 5 were ASIA B, and
none reached AIS D or E. On the other hand, among 23
patients with a BASIC score of 3, 10 (43.5 %) reached
AIS D or E. XGBoost may successfully provide surgeons
with selection strategies based on the potential for neu-
rological improvements in patients with SCI.

Various factors contributed to the advancement of
XGBoost in prediction modeling. State-of-art machine
learning algorithms, such as XGBoost, have the capac-
ity to analyze complex non-linear relationships among
various clinical factors.34,35 Further, XGBoost may
subjectively evaluate a number of clinical prognostic
factors that were previously investigated.22,36–38 In
addition, although overfitting is a common limitation
in refined non-linear machine learning algorithms,
XGBoost supervises machine learning problems by
parallel computing, regularization, cross validation,
flexibility, or availability.16,39,40

Comparison with previous research
DeVries and associates previously reported that no clini-
cally significant differences were observed between the
use of unsupervised machine learning with complete
admission neurological information and established stan-
dards.10 They showed the inherent weakness of applying
AUC to imbalanced data sets and outlined a new strategy
to evaluate performance.10 Tay and co-workers proposed
a machine learning technique for the diagnosis of SCI
using diffusion tensor imaging.11 They developed a clas-
sification scheme for identifying healthy individuals and
patients, and reported normal case specificity of 0.912
and abnormal case sensitivity of 0.952.11 Khan and col-
leagues speculated that machine learning-based predic-
tions will become a crucial algorithm in treatment

modalities employed by spinal surgeons.12 Machine
learning has potential and future applicability in multi-
ple clinically significant domains due to its novelty and
computational power in the area of SCI.12 Schwartz
and associates reported that machine learning may effec-
tively harness the value of electronic medical records in
spine surgery because of developments in algorithms in
reading images and in the ability to predict clinical out-
comes of patients.13 McCoy and co-workers stated that
targeted convolutional neural network training in SCI
improves algorithm performance for this cohort and
provides clinically relevant metrics of cord injury.41

In future studies, we aim to address the following.
First, because XGBoost is a method for optimization,
an efficient approach needs to be developed to achieve
superior prognostic validity. In addition, we need to
confirm whether other developed categorical proce-
dures have a superior prognostic ability to provide cli-
nicians with further state-of-the-art decision-making
modalities. More patient information needs to be col-
lected from medical record resources for analyses of
the generalization capability of the present algorithm.
Significant and precise outcome predictions may be
performed when various machine learning systems, in-
cluding XGBoost, are utilized in diverse clinical areas.

The present study may have been limited by the gen-
eral validation of prognostic models for other data sets.
Our prognostic model was produced using data from a
single institution, and this needs to be considered if the
model is employed in other hospitals with different
treatment procedures or patient backgrounds, because
it may lead to invalid prognostic importance. Further,
we omitted patients with missing data, therefore logistic
regression might be better than XGBoost with respect to
AUC. Nusinovici and colleagues have stated that low di-
mensional settings include low number of events and
predictors, so in such settings, logistic regression yields
performance as good as machine learning models.42

To overcome this situation, we need to perform multi-
center trials to obtain more data sets. Although further ex-
aminations on novel acute neurochemical biomarkers,
such as S100ß, neurofilaments, and glial fibrillary acidic
protein, may increase accuracy, 43 this method may not
be practical in selection strategies for neurointensive
treatments because of low specificity or potential cross
contamination by hemolysis. However, analyzed and
non-analyzed populations generally have similar back-
grounds, clinical findings, or neurological outcomes. In
addition, treatment strategies for patients with SCI fre-
quently rely on a surgeon’s preference. The present
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results showed that surgical timing did not play a major
role in predicting neurological alterations assessed by
AIS. However, because the importance of surgical inter-
vention has been widely reported in many cases,44–49

this result may have been due to the retrospective nature
of the present study affecting surgical timing, which was a
possible bias. The present study was also restricted by its
dependence on neurological outcomes based on AIS;
this was due to the effect of selection bias that reduced
the statistical power. Further studies that include other
outcome measures, such as functional, psychosocial,
sexual health, autonomic, bowel and bladder, and
pain tools, are needed.10,50

In conclusion, the present study results revealed the
potential of XGBoost to predict neurological alterations
prior to treatments. By considering neurological recovery
in patients with SCI before surgery, we may provide ap-
propriate individualized management strategies for these
patients. The present results are promising and represent
the primary step for improving prognostic models that
may be applied to the management of SCI in patients
with a strong possibility of neurological recovery.33
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