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Abstract

Background: Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron
from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake
systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of
siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may
have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings: Here we provide the first report that pyochelin displays antibiotic activity against some
bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications
that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged
where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate
pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when
biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin
conferred pyochelin resistance to the entEmutant. We observed that pyochelin-induced growth inhibition was independent
of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition
of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin
reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS
increases and their associated toxicity.

Conclusions: We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of
pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress.
These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.
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Introduction

In response to iron starvation, many bacteria synthesize and

secrete siderophores, small molecules with high affinities for iron

[1,2]. While there is a very large number of different siderophores,

they all belong to a few structural classes, including catecholate,

carboxylate, hydroxamate, and mixed ligand siderophores [3].

Once ferrated, all siderophores - regardless of structural class -

must be taken up into the cell, which is accomplished via dedicated

transport systems [4]. Microbial cells are thus able to scavenge

iron, usually present in short supply due to its low solubility.

Interestingly, many microbes produce the transport systems for

siderophores that they themselves do not synthesize, allowing for

‘‘siderophore piracy’’ [5].

The capacity to produce numerous iron uptake systems is

exemplified by the enteric bacterium Escherichia coli, where the

process has been extensively studied. E. coli produces its primary

siderophore enterobactin and takes it up via the fep system [6]. In

addition, E. coli strains may have up to eight other iron uptake

systems including those for ferrichrome (fhu), ferric citrate (fec),

aerobactin (iut), heme (chu), rhodotorulic acid and coprogen (fhuE),

salmochelin (iro), yersiniabactin (ybt), and ferrous iron (feo)

[7,8,9,10,11,12,13,14,15].

Aside from their ability to provide access to iron, siderophores

may have alternative roles. A representative example is the

production of pyochelin by the opportunistic pathogen Pseudomonas

aeruginosa. This bacterium produces two siderophores: pyoverdine,
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with a high affinity for iron, and pyochelin, whose affinity for iron

is much lower [16,17]. Although P. aeruginosa can use pyochelin as

a bona fide siderophore, pyochelin’s role remains unclear. In-

terestingly, pyochelin has been shown to have non-specific toxic

effects on eukaryotic cells due to its ability to generate reactive

oxygen species [18]. Watasemycins, molecules structurally related

to pyochelin (Fig. 1), have been shown to have antibiotic activity as

well [19]. There are previous reports showing antibiotic activity

for other siderophores with varied chemical structures, e.g

oxachelin [20], fusigen [21] and the sideromycins: albomycin

and salmycin [22].

Here we report an interesting interaction between pyochelin

and enterobactin producers that occurs independent of the

availability of iron. While investigating bacterial interspecies

interactions, we discovered that P. aeruginosa kills Xanthomonas citri

subsp citri in vitro. We purified the compound responsible for the

antibiotic activity and showed that it was pyochelin (Fig. 1). This

came as a surprise as there had been no prior reports of

pyochelin’s antibacterial activity. Analysis of the spectrum of the

antibacterial activity of pyochelin revealed that bacteria unable to

produce catecholate siderophores were sensitive to pyochelin while

catecholate siderophore producers were resistant. We also show

that pyochelin toxicity is not a result of iron competition, but due

to the generation of reactive oxygen species (ROS), and that

catechol siderophores confer resistance to pyochelin by reducing

ROS. These results further solidify the observations that pyochelin

is not just a siderophore but can also have toxic effects on diverse

cells, and suggest that catecholate siderophores can play a role as

protectors against oxidative stress.

Results

Pyochelin Inhibits Non Catechol-siderophore-producer
Strains

Our initial interest was to identify bacteria capable of killing

Xanthomonas citri subsp. citri, the causative agent of citrus canker

disease. In a screen for bacteria that had anti-Xanthomonas activity,

we discovered that strains of P. aeruginosa displayed antibiosis

against X. citri. We used HPLC-MS and UV spectral analyses to

characterize the compound responsible for this antibiotic activity

and found it to be pyochelin (Fig. S1). We began to investigate the

properties of pyochelin by exploring the spectrum of its antibiotic

activity. We tested eleven bacterial strains for their resistance or

sensitivity to pyochelin. Table 1 shows the minimal inhibitory

concentrations (MIC) for the strains tested. Several Xanthomonas

species and Staphylococcus aureus were sensitive. In contrast, several

members of the Enterobacteriaceae were resistant. We thus became

interested in determining the molecular basis for the differential

sensitivity to pyochelin among different bacteria.

Our initial hypothesis was that the range of sensitivity to

pyochelin was due to differences among these bacteria in their

ability to acquire iron in the presence of pyochelin. To test this

hypothesis we determined the MIC of pyochelin on the sensitive

strains in the presence of excess of iron (100 mM). Surprisingly,

we observed virtually no change in MIC (at most a one-fold

dilution difference) when iron was added (Table 2). This allowed

us to rule out iron sequestration as a mechanism for pyochelin

toxicity. These results required the formulation of an alternative

hypothesis.

We reasoned that perhaps differences in siderophore production

might underlie pyochelin resistance. A literature survey indicated

that all resistant strains were able to synthesize catecholate

siderophores. Specifically, all resistant strains were able to

synthesize the tri-catecholate siderophore enterobactin. In con-

trast, sensitive strains were not. Instead, they produce other

structural types of siderophores; S. aureus produces the carboxylate

siderophore staphyloferrin A [23] while Xanthomonas spp. produce

a-hydroxycarboxylate-type siderophores [24,25].

These insights from the literature allowed us to refine our

hypothesis that enterobactin was, in some way, responsible for

pyochelin resistance. To test this hypothesis we focused our

attention on the genetically tractable model bacterium E. coli. We

compared the sensitivity to pyochelin using a wild-type E. coli and

a mutant impaired in enterobactin synthesis (E. coli entE).

Consistent with our hypothesis, E. coli unable to synthesize

enterobactin were highly sensitive to pyochelin (Table 3). As was

the case with the naturally sensitive strains, iron supplementation

did not rescue E. coli entE from pyochelin toxicity (Table 3).

Pyochelin Toxicity is Due to Generation of Reactive
Oxygen Species (ROS)

It has been previously reported that pyochelin can catalyse the

Haber-Weiss reaction in vitro and therefore generate reactive

oxygen species (ROS) [26,27]. In addition, it has been shown that

endothelial cells exposed to pyochelin and pyocyanin together

suffered from cellular damage due to the generation of hydroxyl

radicals [18]. Taking into account that the pyochelin-induced

bacterial growth inhibition was not affected by iron concentra-

tions, we hypothesized that pyochelin could be inhibiting bacterial

growth of the sensitive strains by causing oxidative damage.

Quantitation of ROS using DCFA-DA, a fluorescent reporter of

ROS [28], revealed increased ROS levels in E. coli entE after

exposure to pyochelin (Fig. 2). Importantly and as expected,

addition of the reducing agent ascorbic acid resulted in lower ROS

levels (Fig. 2). Consistent with the idea that ROS are the cause of

pyochelin sensitivity, ascorbic acid reduced the senstivity of E. coli

entE to pyochelin (Table 3). In addition, anaerobic culture

conditions rendered E. coli entE less sensitive to pyochelin

(Table 4). These results indicate a correlation between ROS levels

and pyochelin toxicity.

Enterobactin Reduces the Levels of ROS and Sensitivity
to Pyochelin

Given that a mutation in the enterobactin biosynthetic

pathway rendered E. coli sensitive to pyochelin (Table 3), and

that pyochelin toxicity was correlated with ROS levels, we

wondered if enterobactin could reduce them. Because of their

low radical reduction potentials, catechols can act as hydrogen

atom donors and efficiently terminate radical chain reactions

[29]. Fig. 2 shows that 1 mM enterobactin prevented pyochelin-

mediated ROS generation in an entE mutant. Accordingly,

a wild-type E. coli strain showed a small increase in ROS levels

upon pyochelin addition (Fig. 2). As expected, addition of 1 mM

enterobactin rendered E. coli entE resistant to pyochelin (Table 3).

In contrast, addition of the carboxylate-type siderophore, citrate

(50 mM) (Fig. 1), had no effect on the pyochelin sensitivity of

the E. coli entE strain (Table 3). Moreover, citrate addition

(50 mM) did not reduce pyochelin-induced ROS (Fig. 2). In

addition, comparison of ROS levels in wild-type E. coli and E.

coli entE in the absence of pyochelin showed increased ROS

levels in the strain impaired in enterobactin synthesis (Fig. 2).

Finally, supplementing E. coli entE with 1 mM enterobactin

lowered ROS to the levels observed in the wild type (Fig. 2).

Given that enterobactin contains three catechol groups (Fig. 1)

and lowers ROS levels, we suggest a role for enterobactin as

a protector from the damaging effects of ROS.

Alternative Roles for Siderophores
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Figure 1. Chemical structures of the siderophores pyochelin, watasemycin A, yersiniabactin, enterobactin and citrate.
doi:10.1371/journal.pone.0046754.g001

Alternative Roles for Siderophores
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Discussion

The results presented in this work suggest two new activities for

two old, known siderophores: First, that pyochelin acts as an

antibacterial agent due to its capacity to generate ROS, and

second, that enterobactin can protect against ROS. Bacterial

species that produce catecholate siderophores such as enterobac-

tin, are resistant to pyochelin while those that synthesize

carboxylate-type siderophores are sensitive to it. Therefore, despite

their ability to chelate and facillitate iron uptake, carboxylate

siderophores do not have the capacity to protect cells from the

toxic effects of pyochelin. Importantly, impairment of enterobactin

synthesis by mutation rendered E. coli sensitive to pyochelin. The

fact that sensitivity to pyochelin did not change by iron

supplementation or by citrate addition further supports the

protective role proposed for catechols. Given that both enter-

obactin and citrate facilitate iron uptake, we ruled out an

enterobactin protection mechanism connected with simple iron

acquisition. Then, we observed that pyochelin increased ROS

levels in an E. coli entE culture and that addition of the reducing

agent ascorbic acid or enterobactin counteracted this effect. In

contrast, citrate did not reduce pyochelin-induced ROS. Based on

iron affinity constants of enterobactin (1049 M21) [4] and citrate

(1024 M21) [30], we reasoned that both siderophores would be

able to displace iron from any pyochelin-iron complex (pyochelin

Ka = 105 M21) [31]. However, since only enterobactin protects

against pyochelin toxicity, we can assume that the enterobactin

protection mechanism would not imply lessening the generation of

pyochelin-induced ROS by sequestering iron. Therefore, we

suggest that enterobactin protects against pyochelin-induced

oxidative stress by a mechanism involving radical scavenging, as

is reported for polyphenols [32]. The reduced toxicity of pyochelin

in anaerobic culture conditions strenghthens our hypothesis. In

toto, our results provide additional evidence suggesting that

molecules with siderophore activity can play other roles in

microbial physiology.

Several features of pyochelin’s chemistry and biology are

indicative that its major role may not be that of an iron chelator.

Pyochelin’s affinity for iron is low and it binds other metals, e.g.

copper, with similar affinities [31]. Pyochelin also lacks six

chelating groups to participate in iron complexation, a feature

typical of many bona fide siderophores [16]. At the same time,

pyochelin’s ability to generate ROS and its antibacterial activity

point to its potential to act as a toxin. Along these lines, it was

previously shown that pyochelin along with pyoverdine were in

part responsible for the P. aeruginosa-mediated suppression of

Pythium-induced damping-off of tomato [33]. In addition, watase-

mycins, compounds structurally close to pyochelin (Fig. 1), have

been reported to have antibiotic activity against S. aureus but not

against E. coli [19]. On the other hand, yersiniabactin, a side-

rophore produced by Yersinia species [34], Pseudomonas syringae [35],

and some uropathogenic E. coli strains [36], even though it is

structurally close to pyochelin (Fig. 1), did not inhibit E. coli entE, X.

citri subsp. citri or S. aureus at concentrations up to 2 mM (Data not

shown). This indicates that structural differences between

pyochelin, watasemycins and yersiniabactin are relevant in terms

of the role each siderophore may play, perhaps by affecting their

ability to reach their celullar targets and/or by affecting ROS

generation. Like pyochelin, the redox-active phenazines, also

produced by P. aeruginosa, have been shown to have antimicrobial

activity through ROS generation and they also facilitate iron

uptake [37,38]. The primary role of phenazines may be to

participate in intercelullar signalling that leads to extracelullar

matrix synthesis and the consequent development of complex

colony architecture [39]. The possibility of pyochelin taking part

in similar developmental processes should not be overlooked. It

will thus be important to further examine other physiological roles

of pyochelin and the benefits that it confers to producer strains.

Siderophore biosynthesis is primarily regulated by iron avail-

ability but there is evidence that their production can be

influenced by other stimuli, particularly agents that mediate

oxidative damage. Catecholate siderophore biosynthesis in Azoto-

Table 1. MIC of pyochelin against selected bacterial strains.

Strain MICa

Xanthomonas citri subsp. Citri 48

Xanthomonas campestris pv campestris 24

Xanthomonas campestris pv vesicatoria 48

Xanthomonas albilineans 48

Staphylococcus aureus ATCC 25923 3

Escherichia coli ME9062 BW 25113 R

Salmonella enterica serovar Typhimurium 14028 R

Klebsiella pneumoniae R

Citrobacter freundii R

Enterobacter cloacae R

Serratia marcescens R

aMIC determination in M9 medium expressed in mM.
R= Resistant.
doi:10.1371/journal.pone.0046754.t001

Table 2. Influence of iron on the MIC of pyochelin.

Strain MICa MIC + FeCl3
b

Xanthomonas citri subsp. citri 48 96

Xanthomonas campestris pv campestris 24 48

Xanthomonas campestris pv vesicatoria 48 96

Xanthomonas albilineans 48 96

Staphylococcus aureus ATCC 25923 3 3

MIC values are expressed in mM.
aMIC determination in M9 medium.
bMIC determination in M9 medium supplemented with 100 mM FeCl3.
doi:10.1371/journal.pone.0046754.t002

Table 3. MIC of pyochelin in the presence of selected
additives.

MIC

Strain M9a ASCb FeCl3
c ENTd Citratee

Escherichia coli BW 25113 R ND ND ND ND

Escherichia coli JW0586-1 (entE) 12 192 24 R 12

MIC values are expressed in mM.
ND=Not Determined.
R = Resistant (no inhibition observed) to pyochelin at a concentration of 3 mM.
aM9 medium.
bM9 medium supplemented with 1 mM ascorbic acid.
cM9 medium supplemented with 100 mM FeCl3.
dM9 medium supplemented with 1 mM enterobactin.
eM9 medium supplemented with 50 mM citrate.
doi:10.1371/journal.pone.0046754.t003

Alternative Roles for Siderophores
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bacter vinelandii has been shown to be under SoxS control and

responsive to oxidative stress [40,41]. When treated with paraquat,

Bacillus anthracis accumulates the two catecholate siderophores

bacillibactin and petrobactin [42]. Interestingly, iron-mediated

repression of petrobactin synthesis is delayed under highly aerated

culture conditions [42]. These results emphasize the existence of

factors involved in the regulation of siderophore biosynthesis in

addition to the lack of iron availability. Since enterobactin protects

against the ROS-mediated toxic effects of pyochelin and

impairment of enterobactin biosynthesis increases ROS levels,

we suggest that catechols may be employed as protectants against

oxidative stress. Thus, enterobactin should be added to the long

list of defences that E. coli has evolved to cope with conditions of

oxidative stress.

Materials and Methods

Bacterial Strains and Growth Conditions
Strains used in this work are listed in Table 5. Strains were

grown in M9 medium supplemented with 0.2% Casamino acids,

0.2% glucose, 1 mM MgSO4 and 1 mg/mL vitamin B1. Solid

media contained 1.5% agar. Kanamycin 50 mg/mL, was added

when required. Standing cultures were performed in 2 mL tubes

containing 1.5 mL of culture medium. 300 mL of mineral oil was

added for anaerobic cultures.

Pyochelin Purification
Pyochelin was obtained from Pseudomonas aeruginosa PA01

cultures grown for 20 h at 30uC in M9 medium supplemented

with 0.2% Casamino acids, 0.2% glucose, 1 mM MgSO4 and

1 mg/mL vitamin B1. The cell free supernatant was loaded into

a 1 g C18 cartridge (Phenomenex) which had been equilibrated in

20% MeOH in water, and eluted stepwise with 40%, 60%, 80%

Figure 2. Levels of reactive oxygen species in E. coli wild type and entE mutant. Quantitation of ROS levels using the DCFA-DA probe.
Fluorescence intensities are relative to that of the control. Control: wt grown in 2 mL M9 medium; PCH indicates cells grown in the presence of 15 mM
pyochelin; ASC indicates supplementation with 1 mM ascorbic acid; ENT designates addition of 1 mM of pure enterobactin; CIT indicates
supplementation with 50 mM citrate. Error bars = SEM, n = 3.
doi:10.1371/journal.pone.0046754.g002

Table 4. Growth inhibition by pyochelin under aerobic and
anaerobic culture conditions.

Aerobic Anaerobic

Strain control pyochelin control pyochelin

Escherichia coli JW0586-1
(entE)

10065% 2263% 10068% 6963%

Growth was determined by OD measurement after 20 hours of standing
culture.
Values are relative to OD values for aerobic and anaerobic controls (no
pyochelin addition).
SEM calculated from 3 different experiments.
doi:10.1371/journal.pone.0046754.t004

Table 5. List of strains used in this work.

Strain
Relevant
genotype Source

Pseudomonas aeruginosa PAO1 wild type PAMLa

Xanthomonas citri subsp. citri wild type EEAOCb

Xanthomonas campestris pv. campestris wild type EEAOCb

Xanthomonas campestris pv vesicatoria wild type EEAOCb

Xanthomonas albilineans wild type EEAOCb

Staphylococcus aureus ATCC 25923 wild type ATCCc

Escherichia coli ME9062 BW 25113 wild type CGSCd

Escherichia coli JW 0586-1 BW25113
DentE::kan

CGSCd

Salmonella enterica serovar Typhimurium
14028

wild type UNTe

Klebsiella pneumoniae wild type UNTe

Citrobacter freundii wild type UNTe

Enterobacter cloacae wild type UNTe

Serratia marcescens wild type UNTe

aPAML, Pseudomonas aeruginosa Mutant Library;
bEEAOC, Estación Experimental Agroindustrial Obispo Colombres;
cATCC, American Type Culture Collection;
dCGSC, E. coli Genetic Stock Center;
eUNT, Universidad Nacional de Tucumán- Cátedra de Bacteriologı́a.
doi:10.1371/journal.pone.0046754.t005

Alternative Roles for Siderophores
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and 100% methanol (in water). The 40% fraction was concen-

trated in vacuo and further purified by HPLC using a C18

Phenomenex Luna column (4.6610 mm, 5 micron) and a gradient

of 10 to 85% acetonitrile in water containing 0.1% trifluoracetic

acid at a flow rate of 1 mL/min. Pyochelin I and II eluted at 42

and 46% MeCN, respectively. The structure of pyochelin was

confirmed by HPLC-MS ([M+H]+exp 325.1, obs. 325.1 for both

diastereomers) and UV spectral analyses (Fig. S1).

Antibacterial Activity
Minimal inhibitory concentrations (MIC) were determined in

M9 medium supplemented with 0.2% Casamino acids, 0.2%

glucose, 1 mM MgSO4 and 1 mg/mL vitamin B1. 10 mL of

double dilutions from a 1 mg/mL pyochelin solution were spotted

on M9 agar plates and a lawn of the corresponding strain was

overlaid. The maximum dilution that showed a zone of clearing

was recorded as the MIC. FeCl3, ascorbic acid, citrate,

enterobactin, were used at concentrations of 100 mM,1 mM,

50 mM, and 1 mM, respectively. Antibacterial activity of yersinia-

bacin (EMC Microcollections) was evaluated following the same

procedure as for pyochelin.

Purification of Enterobactin
Pure enterobactin was obtained from a ME9062 BW25113

culture supernatant following the protocol described by Winkel-

mann et al, 1994 [43]. Briefly, cells were grown for 20 hours at

37uC in M9 supplemented with 0.2% Casamino acids, 0.2%

glucose, 1 mM MgSO4 and 1 mg/mL vitamin B1. The cell free

supernatant was acidified to pH 2 using HCl, and enterobactin

was extracted once with an equal volume of ethyl acetate. The

extract was dried in vacuo and resuspended in methanol.

Enterobactin was further purified by HPLC using a C18

Phenomenex Luna column (4.6610 mm, 5 micron) and a gradient

of 10 to 50% acetonitrile in water containing 0.1% trifluoracetic

acid at a flow rate of 1 mL/min. The chromatographic profile

obtained was similar to that reported by Winkelmann et al [43]

(Fig. S2). The peak corresponding to enterobactin was corrobo-

rated using an enterobactin standard (EMC Microcollections).

Enterobactin concentration was determined using the molar

extinction coefficient (e319 nm:11,200) [44].

Pure enterobactin was used in pyochelin MIC determinations

by supplementing M9 plates with 1 mM enterobactin. Enterobac-

tin was also used in ROS determinations at a concentration of

1 mM.

Measurement of Reactive Oxygen Species
To determine the level of reactive oxygen species (ROS),

exponentially growing cells in M9 minimal medium, were washed

and resuspended in 50 mM sodium phosphate buffer, pH 7 at

a final OD600nm = 0.5. Then 2,7-dichlorofluorescein diacetate

(H2DCFDA, the oxidation-sensitive probe dissolved in dimethyl

sulfoxide) was added at a final concentration of 10 mM and

incubated for 30 min [28]. After incubation, the cells were

washed, resuspended and sonicated in the same buffer. Fluores-

cence intensity was measured using a Perkin Elmer LS55

spectrofluorometer (excitation l, 490 nm; emission l, 519 nm).

Results are expressed as relative fluorescence to that of the control.

Supporting Information

Figure S1 Identification of pyochelin as the antibiotic
compound produced by P. aeruginosa. (A) HPLC-MS

analysis of authentic pyochelin (black trace), the active antibiotic

fraction from P. aeruginosa (red trace), and the pchA mutant of

P. aeruginosa (blue trace), which does not display antibiotic activity.

Note that pyochelin is isolated as two diastereomers, which

correspond to the major peaks (black and red traces) observed with

retention times of 12.8 and 13.8 min. (B) UV-visible spectra of the

two diastereomeric peaks in authentic pyochelin (black and gray

traces) and in the active antibiotic fraction isolated from

P. aeruginosa (red and orange traces). The black and gray spectra

are obtained for the peaks at 12.8 and 13.8 min, respectively, from

authentic pyochelin. The red and orange spectra are obtained for

the peaks at 12.8 and 13.8 min, respectively, from the active

P. aeruginosa fraction. (C–F) Positive-ion mode mass spectra of the

two diastereomeric peaks in authentic pyochelin (C, D) and in the

antibiotic fraction isolated from P. aeruginosa (E, F). The mass

spectra for the peaks at 12.8 and 13.8 min in authentic pyochelin

are shown in panels (C) and (D), respectively. The mass spectra for

the peaks at 12.8 and 13.8 min in the active P. aeruginosa fraction

are shown in panels (E) and (F), respectively. In each case, the inset

corresponds to a magnified view of the major mass ion. In all four

cases [M+H]+observed = 325.1. For pyochelin, [M+H]+calcu-

lated = 325.1. Together, the identical retention times, UV-visible

spectra, and mass spectra show that the active antibiotic fraction

from P. aeruginosa is pyochelin.

(TIF)

Figure S2 Enterobactin purification. HPLC analysis of

ethyl acetate extracts from wild type (red trace) and E. coli entE

(blue trace) culture supernatants. The chromatogram obtained for

the wild type strain, shows the two characteristic major peaks

described by Winkelmann et al [43] (inset), corresponding to

enterobactin (E) and the monomer involved in enterobactin

synthesis, dihydroxybenzoyl serine (M). The peak corresponding

to enterobactin displayed the same retention time as the

enterobactin standard (black trace) and both enterobactin

solutions showed a protective activity against pyochelin toxicity.

The two major peaks (E and M) are absent in the chromatogram

profile for the entE mutant strain (blue trace) and no collected

fraction showed protective activity as it was expected.

(TIF)
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