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We present data derived from an exposure experiment in which
three cell-lines representative of cell types of the respiratory tissue
(epithelial type-I A549, epithelial type-II BEAS-2B, and macro-
phage THP-1) have been exposed to ten different carbon-based
nanomaterials for 48 h.

In particular, we provide: genome-wide mRNA and miRNA
expression, and DNA methylation; gene tables, containing infor-
mation on the aberrations induced in these three genomic data
layers at the gene level; mechanism of action (MOA) maps repre-
senting the comparative functional alteration induced in each cell
line and each exposure.
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Specifications Table
S
M
T
H
D
E

E

D
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ubject area
 Biology

ore specific subject area
 Nanotoxicology

ype of data
 Tables, figures, omics data matrices

ow data was acquired
 Microarray based assays

ata format
 Raw, analyzed

xperimental factors
 Cells were cultured with corresponding media and supplements. THP-1

cells were differentiated with 50 nM PMA for 48 h before treatments.

xperimental features
 Cells were exposed to 10 mg/ml of 10 different carbon nanomaterials for

48 h. DNA, mRNA and miRNA were extracted, purified and quality
checked for arrays.
ata source location
 University of Tampere, Finland

ata accessibility
 Figures and tables are in this article. Raw and processed microarray data

are available through Array Express repository (Accession Numbers
ArrayExpress: E-MTAB-6396, E-MTAB-6406, E-MTAB-6397)
Value of the data

� Omics datasets can be used to integrate and compare molecular alterations consequent to nano-
materials exposure studies.

� Gene (expression) tables can serve as a reference in future studies modelling the cell specific
response of each gene at different molecular layers.

� MOA maps can be used as a starting point to draft adverse outcome pathways (AOP) that take into
account cell type-specific responses.
1. Data

The data presented in this paper includes three sets of microarray data for 33 mRNA, miRNA and
methylation samples available on ArrayExpress platform, 30 gene tables containing multi-omic dif-
ferential information on these three layers for human genes, and 3 maps representing functional
alteration of all exposures at the pathways level.

Microarray data samples summarized in Table 1 are composed of 96 raw and preprocessed data
matrices reporting mRNA expression values for refseq genes in control and exposed cell lines, 91 raw
and preprocessed matrices reporting mirRNA expression values in control and exposed cell lines and
99 raw and preprocessed matrices reporting DNA methylation values at the CpGs level in control and
exposed cell lines.

For each data layer and each exposure, we performed a differential analysis between the control
and the exposed samples with limma linear models and annotated a list of 22,789 human gene
symbols where we summarized DNA methylation change (p-value and log fold-change) in promoter
and body regions; targeting miRNAs expression changes (p-value and log fold-change), symbolically
linked to the gene body region; and mRNA expression changes (p-value and log fold-change). All
these values were used to compute a cumulative score for the gene determining the overall impact of
all molecular aberrations on any given particular gene. Supplementary Table S1 is an excel file
reporting the summary information shown in Table 2 in the first sheet, as well as the above described
annotation for each exposure in the remaining 30 sheets.

The functional alteration map data (Fig. S1–S3) report, for each exposure, the KEGG pathways
significantly enriched from the high scoring genes. Each pathway is annotated with the leading
direction (red for upregulation and green for downregulation) of expression change of its genes for
the corresponding exposure. Pathways are grouped based on KEGG hierarchical structure in six
categories: “Metabolism”, “Genetic Information Processing”, “Environmental Information Processing”,



Table 2
Multi-omic gene annotation data.

Field Explanation

test_annotation.score_data.genes Gene symbol
scores SMITE score
methylation_promoter_effect Combined methylation log fold-change for

promoter region
methylation_body_effect Combined methylation log fold-change for

body region
mirna_body_effect Combined log fold-change of targeting

miRNAs
expression_effect MRNA expression log fold-change
methylation_promoter_pvalue Combined methylation p-value for pro-

moter region
methylation_body_pvalue Combined p-values of targeting miRNAs
mirna_body_pvalue Combined methylation p-value for body

region
expression_pvalue MRNA expression p-value

Table 1
Summary of array data.

Accession Type # samples Platform RAW data Preprocessed
data

E-MTAB-6396 mRNA 96 Agilent SurePrint
G3Human GE 8�60K

Yes Yes

E-MTAB-6406 miRNA 91 Agilent SurePrint G3 Unrestricted
Human miRNA_V21 8�60K

Yes Yes

E-MTAB-6397 DNA
methylation

99 Illumina HumanMethylation450
BeadChip

Yes Yes
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“Cellular Processes”, “Organismal Systems” and “Human Diseases”. Fig. S1 reports the pathways
enriched from all altered genes. Fig. S2 and Fig. S3 report pathways enriched in the two partitions of
genes (concordant and discordant), based the adherence with a set of general rules of interaction
linking the induced changes in DNA methylation levels and miRNA expression levels with observed
changes in gene expression levels. In particular, we defined a gene alteration to be “concordant” if its
expression upregulation was coupled with hypomethylation in the promoter region, hypermethyla-
tion in the gene body region, or with downregulation of a microRNA specifically predicted to
potentially target that gene. Likewise, we defined a gene alteration to be “concordant” if its expression
downregulation was coupled with hypermethylation in the promoter region, or with upregulation of
a microRNA specifically predicted to potentially target that gene, regardless of the methylation status
of the gene body. The genes not following these rules were classified to be “discordant”, and their
alteration was hypothesized to be not under the control of DNA methylation or microRNA expression,
but other unknown regulatory factors, such as histone modifications.
2. Experimental design, materials and methods

2.1. Cell cultivation

THP-1 cells (ATCC TIB-202) were cultivated in complete RPMI 1640 media (Gibco, Thermo Fisher
Scientific, Life Technologies, USA) supplemented with 10% FBS (Gibco, USA) and 1% Ultraglutamine
(Gibco, USA) and differentiated with 50 nM PMA (phorbol-12-myristate-13-acetate) for 48 h before
exposures. BEAS-2B (American Type Culture Collection through LGC Promochem AB (Borås, Sweden))
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were cultured in LHC-9 media (Gibco, USA) and A549 cells (ATCC CCL-185) were grown in DMEM
media (including L-glutamine, Gibco, USA) supplemented with 10% FBS (Gibco, USA).

2.2. Exposure settings

Exposures were performed on 12-well plates, with 10 mg/ml nanomaterial concentration for 48 h.
THP-1: 800,000 cells per well for RNA and DNA and 900,000 cells/well to miRNA extractions;

BEAS-2B: 100,000 cells/well to RNA, DNA and miRNA extractions; A549: 50,000 cells/well to RNA,
DNA and miRNA extractions.

2.3. RNA and DNA extraction protocols

After 48 h exposure, cells were washed with PBS, and lysed (Qiagen lysing buffer). DNA, RNA and
miRNA were extracted using Qiagen extraction kits: Qiagen AllPrep 96 DNA/RNA extraction kit for
mRNA and DNA and Qiagen miRNeasy 96 extraction kit for miRNA (Qiagen, Germany). Quality of the
RNA was confirmed by NanoDrop (ND-1000, Thermo Fisher Scientific Inc., Wilmington, NC, USA) and
Bioanalyzer (Agilent Technologies, USA). RNA samples with high RNA integrity values (4 9) were
used in microarray analyses.

2.4. Experimental settings

Low Input Quick Amp, two-color microarray-based gene expression protocol: 100 ng of total RNA
labeled with Cy3 or Cy5 dyes were hybridized to Agilent SurePrint G3Human GE 8�60K DNA
microarrays (Agilent, USA).

miRNA Microarray System with miRNA Complete Labeling and Hyb Kit protocol: 100 ng of miRNA
labeled with Cyanine 3-pCp dye and hybridized to Agilent SurePrint G3 Unrestricted Human miR-
NA_V21 8�60K microarrays (Agilent, USA).

Methylation protocol: 500 ng of DNA was bisulfite converted with the EZ-96 Methylation Kit
Bisulfite-treated DNA was amplified, fragmented and hybridized to the HumanMethylation450
BeadChip (Illumina, USA).
3. Microarray data

Microarray data (Fig. 1, panel A), has been imported, preprocessed and analyzed using R as follows.
mRNA raw data has been imported using limma read.maimages, quality filtered based on negative

probes distribution values, quantile normalized, log2 transformed and median aggregated at RefSeq
gene level using the corresponding Agilent annotation file. Batch effect removal of known technical
batch effects been performed by using Combat method from the SVA package [1].

miRNA raw data has been quality filtered based on negative probes distribution values, quantile
normalized, log2 transformed and median aggregated at miRbase miRNA ids level. Batch effect
removal of known technical batch effects been performed by using Combat method from the SVA
package. [1] Differential expression analysis between each exposure and the corresponding controls
has finally been performed using a limma model from limma package.

Methylation data has been preprocessed with minfi package. [2] Briefly, raw data has been
imported from idat files, probes were filtered by keeping those having a detection p-value less than
0.01 in all samples. Data was then normalized using SWAN method [3], converted to M values and
filtered for probes having a SNP in the interrogation or the extension site and probes known to be
prone to as cross-hybridization problems [4].

Batch effect removal was performed by using sva function from SVA package [1] to detect the
presence of surrogate variables, the obtained surrogate variables value has then been discretized into
n_sampleŝ(1/3) bins by using the discretize function from infotheo package [5] and finally corrected
using ComBat method from the SVA package [1].



Fig. 1. Data generation scheme. Workflow of data generation: microarray preprocessing and analysis of single layers is
reported in panel A; data integration and generation of scored gene tables is reported in panel B; gene module detection and
functional profiling of each exposure is reported in panel C.
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Fig. 1. (continued)
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Fig. 1. (continued)
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Fig. 1. (continued)
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Fig. 1. (continued)
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Fig. 1. (continued)
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4. Multi-omic gene annotation data

For each of the three analyzed layers, differential expression (DNA methylation) analysis between
each exposure and the corresponding controls has been performed using a limma model from limma
package. [4].

Data in Supplementary Table S1 (Fig. 1, panel B) has been obtained by integrating differential
expression and methylation results using custom scripts and SMITE package. [6] In particular, dif-
ferential expression and methylation data (in the form of p-values and log fold changes) has been
annotated to each UCSC gene transcription start site [ TSS � 1 kb, TSS þ 1 kb] and gene body region
[TSS þ 1 kb, TES] as follows.

CpG methylation has been associated in SMITE to TSS and body regions of genes by using their
genomic location, while miRNAs have been symbolically associated with the gene bodies of their top
10% target genes using t-scores form TargetScan database [7].

A score has finally been assigned to each gene by integrating the expression p-value and fold-
change with the same values from the two modification layers using in SMITE the weights shown in
Table 3.
5. MOA maps data

Data presented in Figs. S1–S3 (Fig. 1, panel C) has been obtained by using scored gene lists from
Supplementary Table S1. In particular given a scored list of gene for a particular exposure comparison,
we used SMITE to detect modules of high scoring genes using a SpinGlass algorithm with 1000
randomizations on the Reactome52 interaction network [8]. We then derived, for each exposure, the
KEGG pathways enriched for the all the genes detected from the obtained set of modules. Given an
exposure, each enriched pathway was classified as up- or down-regulated if the sign of the median
mRNA expression change of the genes in the pathway was respectively positive or negative.

Fig. S1 report the map of all enriched pathways, divided by exposure and cell line, obtained by
taking in consideration the whole set of genes from the corresponding table when computing the
modules.

Figs. S2 and S3 were generated by only using the modules computed from a subset of the genes
from each exposure, respectively the concordant and the discordant genes.

Given an exposure and its associated table in Supplementary Table S1, concordant genes were
defined as up-regulated genes with hypo-methylated promoter or targeted by down-regulated
miRNAs or down-regulated genes with hyper-methylated promoter or up-regulated targeting miR-
NAs. Discordant genes are defined as the complement of the concordant gene set with respect to the
starting table.

All the data and associated statistics presented in this manuscript has been produced using R software
environment. [9] The R code used to generate these datasets is provided in Supplementary file S2.
Table 3
SMITE weights.

Feature/relationship mRNA
Expression

Gene promoter
methylation

Gene body
methylation

Targeting miRNA
expression

Relationship with mRNA
level

Direct
correlation

Inverse correlation Direct correlation Inverse correlation

Weight 0.70 0.15 0.05 0.10
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