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Abstract: Wearable inertial measurement units (IMUs) are used in gait analysis due to their discrete
wearable attachment and long data recording possibilities within indoor and outdoor environ-
ments. Previously, lower back and shin/shank-based IMU algorithms detecting initial and final
contact events (ICs-FCs) were developed and validated on a limited number of healthy young
adults (YA), reporting that both IMU wear locations are suitable to use during indoor and outdoor
gait analysis. However, the impact of age (e.g., older adults, OA), pathology (e.g., Parkinson′s
Disease, PD) and/or environment (e.g., indoor vs. outdoor) on algorithm accuracy have not been
fully investigated. Here, we examined IMU gait data from 128 participants (72-YA, 20-OA, and
36-PD) to thoroughly investigate the suitability of ICs-FCs detection algorithms (1 × lower back and
1× shin/shank-based) for quantifying temporal gait characteristics depending on IMU wear location
and walking environment. The level of agreement between algorithms was investigated for different
cohorts and walking environments. Although mean temporal characteristics from both algorithms
were significantly correlated for all groups and environments, subtle but characteristically nuanced
differences were observed between cohorts and environments. The lowest absolute agreement level
was observed in PD (ICC2,1 = 0.979, 0.806, 0.730, 0.980) whereas highest in YA (ICC2,1 = 0.987, 0.936,
0.909, 0.989) for mean stride, stance, swing, and step times, respectively. Absolute agreement during
treadmill walking (ICC2,1 = 0.975, 0.914, 0.684, 0.945), indoor walking (ICC2,1 = 0.987, 0.936, 0.909,
0.989) and outdoor walking (ICC2,1 = 0.998, 0.940, 0.856, 0.998) was found for mean stride, stance,
swing, and step times, respectively. Findings of this study suggest that agreements between algo-
rithms are sensitive to the target cohort and environment. Therefore, researchers/clinicians should
be cautious while interpreting temporal parameters that are extracted from inertial sensors-based
algorithms especially for those with a neurological condition.

Keywords: gait analysis; wearable electronic devices; computing methodologies; patient outcome assessment

1. Introduction

Human gait is a complex cyclic pattern that relies on individuals′ kinetic, kinematic
and muscle characteristics. Neurodegenerative disorders (e.g., Parkinson’s disease, PD)
and other factors like age and lifestyle can altering an individual’s gait pattern [1]. Typically,
people with PD walk slowly with short fast shuffling steps [2,3]. Additionally, those with
PD may present with additional conditions due to poor gait such as pain arising poor foot
health and reduced quality of life [4] leading to increased depression scores [5]. Although
most neurological conditions share similar gait deficits such as reduced gait speed and poor
balance, there are also characteristically distinctive patterns (e.g., increased step time) that
help differentiate particular neurological conditions [6]. Therefore, investigating discrete
gait cycles may provide nuanced and even personalized assessments for those with gait
disturbances.
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Wearable inertial measurement units (IMUs) are now commonly used for gait analysis
due to their small form factor and long data recording possibilities, in indoor and outdoor
environments [7,8]. The vertical acceleration of the pelvis and sagittal plane angular
velocity of the shins are commonly used inertial signals to detect initial contact (IC) and
final contact (FC) within the gait cycle [9–11]. In general, methods to quantify ICs and
FCs are dependent upon inertial signal quality as well as IMU location (e.g., lower-back,
shin/shank, foot) and computational methodology (e.g., wavelet transform) [6,9–11].

Research demonstrates that either linear acceleration or angular velocity sensors at-
tached to various body locations/segments can be used to detect ICs-FCs as accurately
as a reference system (e.g., footswitches, instrumented walkway) for both normal and
pathological gait footfalls [12–21]. However, accuracy of IMU algorithm also varies de-
pending on walking terrain (environment) and target population. Previous studies in-
vestigated performance of IMU algorithms that provide accurate and repeatability valid
ICs-FCs. For example, lower-back algorithms that use acceleration signals were compared
in healthy [22,23] and neurological populations during indoor walking [24]. Wrist, waist
and shank accelerometer signal-based algorithms were compared during various walk-
ing settings (e.g., indoor, outdoor) in a healthy young population [25]. Performances
of foot and shank angular velocity with foot acceleration signal-based algorithms were
compared in spinal-cord injured individuals [19]. Other studies investigated optimal IMU
locations (lower-back, shank, foot) and algorithms that provide accurate ICs-FCs moments
for healthy young adults only [9,11]. Each study reported various levels of accuracy, where
inconsistencies could be associated with the fluctuations in performances of IMU algo-
rithms e.g., better detecting ICs than FCs [25] due to the higher variance of generated
signals by each cohort during walking on different terrains [11].

Performances of lower-back IMU algorithms are typically poorer/lower in neurologi-
cal cohorts compared to healthy cohorts, due to occasional failed detection of acceleration-
based ICs-FCs [24]. This could be attributed to the development of the algorithms within
controlled environments only [9]. Moreover, previous studies reported certain differences
between indoor and outdoor temporal parameters [2,26–28] and this was associated with
the fluctuation in performances of inertial algorithms along with many other factors such
as the white coat effect [29]. Indeed, previous papers investigated and compared IMU
algorithms based on sensor location and target signal used by using a reference system
in healthy populations [9–11], but the margin of error between algorithms (or absolute
agreement) has not been fully investigated in different groups and environment. Further-
more, the population size of validation and comparison studies were generally limited/low.
Consequently, optimal algorithms, IMU locations for a specific cohort and environment to
inform how cautious researchers should be while interpreting temporal parameters remain
unclear.

The aim of this study is to investigate the level of agreement between established lower-
back and shank IMU algorithms in young adults (YA), older adults (OA) and PD cohorts
during different walking protocols in various environments. Our hypothesis is that existing
inertial algorithms may be sensitive to sensor wear location, target cohort and walking
environments limiting the widespread use of wearable IMU algorithms during indoor
and outdoor gait assessment. Discovering the effects of cohort and environment could
help better understanding the difference between indoor and outdoor walking. Unlike
previous studies, this study directly investigates agreement between algorithms rather than
agreement with a reference system in large healthy and PD populations. Accordingly, we
aim to make a judgement about how confidently researchers can use one algorithm over
the other. The results of this study will add to the current knowledge by providing details
about how similar the results of two common IMU algorithms are in various environments.
To the author′s knowledge, this is the first comparative study that investigates the level
of agreement between lower-back and shank sensor-based algorithms on adults and PD
along with a large YA population. The main contributions are to:

(i) Investigate agreement between algorithms across different groups (YA-OA-PD),
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(ii) Investigate impact of walking environment (treadmill-indoor-outdoor) on agreement
between algorithms,

(iii) Provide recommendations when deciding optimal IMU location and gait algorithms.

2. Materials and Methods

A total of 128 participant’s gait data were analyzed from previously created datasets.
Public dataset 1 (DS1 http://gaitanalysis.th-brandenburg.de/ accessed 5 October 2020)
contained 72 healthy young adults (YA) [30]. Additional dataset 2 (DS2) comprises 20 (age
matched) healthy older adults (OA) and 36 PD participants, a sample from a previous
study [31]. See Table 1 for participant information and demographics and associated
references for in-depth details Here, datasets are described briefly.

Table 1. Participant information/experimental protocols.

DS1 DS2

Environment
Cohort-Number

Treadmill
(YA-16)

Indoor
(YA-31)

Outdoor
(YA-25)

Indoor
(OA-20)

Indoor
(PD-36)

Male/Female (n) 10/6 22/9 16/9 10/10 18/18
Age(years) Mean

± SD 32.6 ± 11.9 26.6 ± 11.0 26.28 ± 12.2 69.76 ± 7.82 69.20 ± 6.64

Sampling
Frequency 60 Hz 60 Hz 75–100 Hz 128 Hz 128 Hz

Disease Duration
(years) – – – – 7.82 ± 5.62

UPDRS III – – – – 32.51 ± 4.12
NFOGQ – – – – 7.44 ± 8.62

LEDD – – – – 786.68 ± 416.88
OA: Older Adults, YA: Young Adults, PD: Parkinson’s Disease, UPDRS: Unified Parkinson’s Disease Rating Scale,
NFOGQ: The New Freezing of Gait Questionnaire, LEDD: L-dopa equivalent daily dose.

2.1. Datasets
2.1.1. Datasets-1 (DS1)

Data capture took place in different countries (Austria, Finland, Kenya) and testing
environments (treadmill, indoor and outdoor). All volunteers provided informed consent
about the experiments, data storage and the future use of data before participating. Com-
prehensive information on protocols, data collection, etc., is provided elsewhere [30]. In
short, each subject wore three IMUs (Xsens MTw, Enschede, Netherlands) on right shank
(SR), left shank (SL) and the lower back (fifth lumbar vertebrae, L5), Figure 1a. Each syn-
chronized Xsens IMU was configured for different protocols (acceleration ±16 g, angular
velocity ±2000 deg/s and different sampling rates: 60 Hz, 75 Hz, 100 Hz) prior to data
collection.

During treadmill walking, participants were asked to walk between 7–9 min (approx.
700 m). The speed was incremented every minute from 2–8 km/h with a step of 1 km/h.
During repetitive indoor walking, participants walked 10–20 m four times at self-selected
normal, slow, and fast speeds. The outdoor walking experiments consisted of two 40–80 m
walks at a self-selected speed.

http://gaitanalysis.th-brandenburg.de/
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Figure 1. Data processing: (a) Sensor placement, (b) raw acceleration and rotation data of two dif-
ferent location, (c) IC-FC detection with Algorithm S1 (in Supplementary material) process, (d) IC-
FC detection with Algorithm S2 (in Supplementary material), ICs and FCs are represented with red 
and green dots, respectively. 
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Two previously validated algorithms A1 and A2 [23,32] were used for IC-FC detec-

tion. Both use a wavelet approach to process IMU signals but have fundamental differ-
ences such as signal (acceleration vs. angular velocity) and locations (waist vs. shank). 
Each anatomical segment of the human body has a characteristic movement pattern and 
thus produces distinct acceleration and angular velocity signals. Consequently, selection 
of an appropriate mother wavelet is appropriate to best interpret and quantify character-
istics from an IMU signal produced by the movement of a particular body segment. Cus-
tom programs (MATLAB® 2019, MathWorks Inc., Natick, US) analyzed raw (sample level) 
IMU data for ICs-FCs detection and temporal analysis. 

2.2.1. Algorithm S1 (A1): Lower Back 
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Figure 1. Data processing: (a) Sensor placement, (b) raw acceleration and rotation data of two different location, (c) IC-FC
detection with Algorithm S1 (in Supplementary Material) process, (d) IC-FC detection with Algorithm S2 (in Supplementary
Material), ICs and FCs are represented with red and green dots, respectively.

2.1.2. Datasets-2 (DS2)

Each subject wore three synchronized IMUs (Opal, V2 APDM Inc., Portland, OR,
USA) located on the SR, SL and the L5 via a belt strap, Figure 1a. Each recorded tri-
axial acceleration (±2 g or 6 g, 128 Hz) and tri-axial angular velocity (±1500 deg/s).
Gait assessment and instrumentation were carried out by a physiotherapist and trained
researchers, respectively. Ethical consent was granted by the Oregon Health & Science
University institutional review board (REF: 9903). All participants gave informed written
consent before participating. Repetitive indoor/lab gait tasks included: walking back and
forth over 10 m for 2 min at normal/self-selected speed.

2.2. Methodology

Two previously validated Algorithms A1 and A2 [23,32] were used for IC-FC detection.
Both use a wavelet approach to process IMU signals but have fundamental differences
such as signal (acceleration vs. angular velocity) and locations (waist vs. shank). Each
anatomical segment of the human body has a characteristic movement pattern and thus
produces distinct acceleration and angular velocity signals. Consequently, selection of an
appropriate mother wavelet is appropriate to best interpret and quantify characteristics
from an IMU signal produced by the movement of a particular body segment. Custom
programs (MATLAB® 2019, MathWorks Inc., Natick, MA, USA) analyzed raw (sample
level) IMU data for ICs-FCs detection and temporal analysis.

2.2.1. Algorithm S1 (A1): Lower Back

A1 (see Supplementary Material) uses the vertical acceleration signal generated with
the movement of the hip during walking. First, the tri-axial accelerometer signals were
transformed to the horizontal-vertical coordinate system from sensor reference frame
using an approximation algorithm [33] and low-pass filtered (4th order Butterworth, cut-
off frequency 20 Hz). Then, wavelet transform: (i) numerically integrated (cumtrapz)
and then differentiated vertical acceleration using a first order Gaussian (gaus1) contin-
uous wavelet transform at scale 10 were used to detect the IC events (the local minima)
(ii) further differentiated to find the FC events (local maxima), Figure 1c.
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2.2.2. Algorithm S2 (A2): Shanks (Right and Left)

A2 (see Supplementary Material) uses the sagittal plane rotation of shin during walk-
ing. First, wavelet decomposition 5th order Coiflets (coif ) at 10 scales split the angular
velocity signal into low and high frequency components. Then, drift and high-frequency
movement artefacts were removed with an initial approximation. Afterwards, two new
approximations (a1 and a2) were obtained to enhance the detection of IC/FC events. For
each approximation, the time corresponding to the global maximum (tms, mid-swing) was
detected. Finally, IC/FC events (negative peaks) were searched in predetermined intervals
[a1: IC (tms + 0.25 s, tms + 2 s), a2: FC (tms − 2 s, tms − 0.05 s)], Figure 1d.

2.2.3. Temporal Parameter and Statistical Calculations

From IC-FC moments, temporal gait characteristics were calculated. Among all
temporal characteristics, only step time calculation requires both right and left foot ICs-FCs
moments. Therefore, right, and left foot’s step times were calculated using time stamp
information. Temporal calculation formulas are presented in Supplementary Materials
(Table S1) for the left side only as the same approach is used for the right side. Temporal
characteristics of both sides are then used to calculate mean, variability, and asymmetry
results.

Agreements between two algorithms on the temporal parameters were evaluated
using Pearson’s (r), Spearman’s (rho) and interclass correlation coefficients (ICC2,1) with
upper and lower bounds and calculated using a two-factor mixed model to assess the level
of absolute agreement (between A1 and A2) [34]. A coefficient value of ≤0.30 indicates
no agreement, 0.31 to 0.50 reflects fair, 0.51 to 0.70 moderate, 0.71 to 0.90 substantial,
and ≥0.91 indicates very good agreement [35,36]. Graphical analysis was performed using
Bland and Altman plots [37]. Absolute differences were calculated as AD = (|A1−A2|).
All statistical analyses were performed using IBM® SPSS® Statistics 26.

3. Results

Generally, algorithms provided similar results for mean temporal characteristics
but with small AD. Higher agreement was found on mean compared to variability and
asymmetry characteristics in all cohorts and environments.

3.1. A1 vs. A2: Treadmill

Agreement was substantial to very good for mean: stride time, step time and stance
time, shown in Table 2. Agreement was moderate for mean swing time. Agreement for
stride and step times variability was substantial to very good but fair to moderate for
stance time variability and poor for swing time variability. Asymmetry parameters did
not show any significant correlation except for stride time (r-rho > 0.40, ICC2,1 > 0.50),
shown in Table 1. There were small ADs for mean stride time (0.004 s), stance time (0.001 s),
swing time (0.003 s) and step time (0.004 s). Comparing overall AD and correlation
coefficients between stride-step parameters and stance-swing parameters revealed that
latter parameters experience larger AD and lower correlation coefficients. The AD of
standard deviation in mean temporal parameters did not show any significant values.

3.2. A1 vs. A2: Indoor

Absolute agreements between temporal characteristics extracted using A1 and A2
during indoor walking varied for YA, OA and PD, shown in Table 3. Agreement was very
good for YA, OA and PD mean stride and step times. There was substantial to very good
(YA), moderate to substantial (OA and PD) agreements for mean stance and swing times.

Agreements between A1 and A2 for variability and asymmetry temporal parameters
were poor. There were small ADs in mean stride, stance, swing, and step times for YA (0.017
s, 0.029 s, 0.014 s, 0.010 s), OA (0.002 s, 0.009 s, 0.003 s, 0.009 s) and PD (0.015 s, 0.022 s, 0.004
s, 0.010 s), respectively. Absolute agreement for temporal characteristics during indoor
walking were highest in YA and lowest in PD. Comparing overall AD and correlation
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coefficients between stride-step parameters and stance-swing parameters revealed larger
differences and lower correlation coefficients in the latter.

Table 2. Extracted temporal parameters and agreements for treadmill walking.

(YA)
Treadmill

DS1
n= 16

A1-Lower
Back A2-Shank Pearson’s

R
Spearman’s
Rho 95% CI Bounds

Mean Time (s) Average SD Average SD ICC2,1 Lower Upper p

Stride 1.156 0.065 1.152 0.054 0.965 ** 0.988 ** 0.975 0.929 0.991 0.000

Stance 0.733 0.042 0.732 0.042 0.832 ** 0.753 ** 0.914 0.750 0.970 0.000

Swing 0.423 0.023 0.420 0.033 0.537 * 0.547 * 0.684 0.073 0.890 0.019

Step 0.578 0.033 0.578 0.027 0.907 ** 0.865 ** 0.945 0.841 0.981 0.000

Variability Time (s)

Stride 0.068 0.029 0.075 0.028 0.918 ** 0.956 ** 0.946 0.814 0.982 0.000

Stance 0.045 0.018 0.084 0.021 0.630 ** 0.632 ** 0.441 −0,228 0.804 0.005

Swing 0.026 0.010 0.027 0.006 0.116 −0.300 0.132 −1.666 0.704 0.398

Step 0.036 0.014 0.040 0.017 0.885 ** 0.886 ** 0.915 0.735 0.971 0.000

Asymmetry Time (s)

Stride 0.000 0.000 0.003 0.010 0.436 0.455 0.564 −0.150 0.847 0.049

Stance 0.004 0.004 0.016 0.013 0.019 0.176 0.019 −0.633 0.552 0.476

Swing 0.004 0.004 0.013 0.008 −0.050 0.037 −0.050 −0.698 0.408 0.563

Step 0.005 0.005 0.019 0.009 −0.085 0.046 −0.069 −0.509 0.428 0.612

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

Table 3. Extracted temporal parameters and agreements for indoor walking.

(YA)
Indoor

DS1
n= 31

A1-Lower
Back A2-Shank Pearson’s

R
Spearman’s

Rho 95% CI Bounds

Mean Time (s) Average SD Average SD ICC2,1 Lower Upper p

Stride 1.096 0.138 1.079 0.138 0.982 ** 0.974 ** 0.987 0.965 0.994 0.000

Stance 0.692 0.084 0.663 0.092 0.931 ** 0.892 ** 0.936 0.716 0.974 0.000

Swing 0.402 0.052 0.416 0.058 0.863 ** 0.797 ** 0.909 0.842 0.942 0.000

Step 0.548 0.069 0.537 0.070 0.989 ** 0.984 ** 0.989 0.916 0.996 0.000

Variability Time (s)

Stride 0.040 0.037 0.032 0.018 0.040 0.221 ** 0.600 −0.176 0.251 0.294

Stance 0.026 0.020 0.024 0.015 0.025 0.122 * 0.047 −0.204 0.246 0.343

Swing 0.019 0.020 0.032 0.011 0.054 0.301 ** 0.070 −0.116 0.231 0.217

Step 0.024 0.021 0.023 0.016 −0.025 −0.016 −0.049 −0.325 0.169 0.656

Asymmetry Time (s)

Stride 0.005 0.006 0.007 0.010 −0.034 0.000 −0.060 −0.338 0.159 0.690

Stance 0.009 0.008 0.016 0.019 0.013 0.800 0.017 −0.214 0.207 0.437

Swing 0.009 0.009 0.017 0.015 0.130 * 0.155 ** 0.184 −0.011 0.344 0.025

Step 0.011 0.010 0.032 0.036 0.081 0.097 0.062 −0.122 0.223 0.241
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Table 3. Cont.

A1-Lower
Back A2-Shank Pearson’s

R
Spearman’s

Rho 95% CI Bounds

Mean Time (s) Average SD Average SD ICC2,1 Lower Upper p

(OA)
Indoor

DS2
n= 20

Stride 1.162 0.077 1.164 0.0866 0.962 ** 0.974 ** 0.979 0.947 0.992 0.000

Stance 0.707 0.0404 0.716 0.0630 0.816 ** 0.811 ** 0.851 0.631 0.941 0.000

Swing 0.447 0.05 0.444 0.0442 0.699 ** 0.657 ** 0.824 0.551 0.930 0.000

Step 0.579 0.043 0.570 0.0452 0.989 ** 0.991 ** 0.985 0.766 0.996 0.000

Variability Time (s)

Stride 0.086 0.034 0.162 0.106 0.130 0.316 0.124 −0.639 0.603 0.356

Stance 0.041 0.008 0.151 0.108 −0.153 −0.041 −0.025 −0.494 0.428 0.542

Swing 0.046 0.012 0.043 0.004 −0.109 −0.039 −0.155 −1.991 0.547 0.621

Step 0.042 0.010 0.033 0.009 0.061 0.108 0.083 −0.609 0.561 0.396

Asymmetry Time (s)

Stride 0.001 0.002 0.016 0.012 0.147 0.278 0.042 −0.319 0.441 0.418

Stance 0.000 0.000 0.020 0.016 0.226 0.199 0.013 −0.338 0.406 0.475

Swing 0.001 0.002 0.012 0.011 −0.028 −0.017 −0.011 −0.549 0.462 0.516

Step 0.000 0.000 0.016 0.011 0.050 0.068 0.004 −0.177 0.308 0.488

(PD)
Indoor

DS2
n= 36

Mean Time (s)

Stride 1.168 0.096 1.183 0.106 0.973 ** 0.960 ** 0.979 0.940 0.991 0.000

Stance 0.704 0.051 0.727 0.087 0.804 ** 0.750 ** 0.806 0.608 0.903 0.000

Swing 0.458 0.052 0.454 0.052 0.570 ** 0.545 ** 0.730 0.469 0.863 0.000

Step 0.584 0.049 0.574 0.049 0.979 ** 0.949 ** 0.980 0.849 0.993 0.000

Variability Time (s)

Stride 0.083 0.044 0.237 0.161 0.033 0.082 0.018 −0.350 0.360 0.461

Stance 0.058 0.038 0.231 0.163 0.057 0.315 0.025 −0.295 0.343 0.441

Swing 0.054 0.023 0.045 0.007 0.316 0.361 * 0.284 −0.299 0.620 0.140

Step 0.059 0.038 0.038 0.023 0.069 0.525 ** 0.097 0.528 0.499 0.359

Asymmetry Time (s)

Stride 0.002 0.006 0.023 0.021 −0.161 0.136 −0.158 −0.699 0.777 0.760

Stance 0.001 0.005 0.032 0.024 −0.165 −0.075 −0.062 −0.354 0.256 0.664

Swing 0.002 0.003 0.026 0.018 −0.309 −0.211 −0.076 −0.343 0.236 0.723

Step 0.002 0.005 0.033 0.026 −0.200 −0.021 −0.073 −0.391 0.262 0.682

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

3.3. A1 vs. A2: Outdoor

Agreement was very good for mean stride, stance, and step times and substantial
for mean swing time. Agreement between A1 and A2 for variability of stride times was
moderate and fair for stance times. Remaining variability and asymmetry characteristics
did not show any significant correlation. AD found 0.004 s, 0.001 s, 0.003 s, 0.004 s for mean
stride, stance, swing, and step times, respectively. Differences are larger and correlation
coefficients are lower in mean stance-swing times compared to mean stride-step times
during outdoor walking. The data was showed in Table 4.
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Table 4. Extracted temporal parameters and agreements for outdoor walking.

(YA)
Outdoor

DS1
n= 25

A1-Lower
Back A2-Shank Pearson’s

R
Spearman’s

Rho
95% CI

Bounds

Mean Time (s) Average SD Average SD ICC2,1 Lower Upper p

Stride 1.084 0.152 1.084 0.153 0.996 ** 0.997 ** 0.998 0.997 0.998 0.000

Stance 0.680 0.085 0.668 0.111 0.924 ** 0.936 ** 0.940 0.913 0.958 0.000

Swing 0.403 0.068 0.416 0.055 0.779 ** 0.835 ** 0.856 0.790 0.900 0.000

Step 0.541 0.076 0.539 0.076 0.996 ** 0.993 ** 0.998 0.997 0.999 0.000

Variability Time (s)

Stride 0.025 0.018 0.040 0.030 0.563 ** 0.434 ** 0.605 0.314 0.757 0.000

Stance 0.018 0.011 0.033 0.026 0.445 ** 0.346 ** 0.413 0.102 0.607 0.000

Swing 0.016 0.014 0.035 0.011 0.226 ** 0.257 ** 0.195 −0.123 0.436 0.004

Step 0.017 0.011 0.025 0.018 0.044 0.025 0.068 −0.234 0.305 0.314

Asymmetry Time (s)

Stride 0.003 0.003 0.006 0.010 0.104 0.202 * 0.109 −0.20130.350 0.234

Stance 0.014 0.014 0.022 0.028 0.079 0.066 0.113 −0.210 0.353 0.226

Swing 0.014 0.014 0.023 0.024 0.008 −0.026 0.013 −0.337 0.277 0.466

Step 0.014 0.014 0.040 0.054 0.030 −0.013 0.025 −0.271 0.264 0.429

**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).

4. Discussion

To the author’s best knowledge, this is the first study to comprehensively investigate
agreement levels between lower back and shank IMU algorithms. This study aimed to
reveal the suitability of lower back and shank inertial algorithms on various experimental
walking protocols, with different cohorts and walking environments. The alterations in the
performances of lower back and shank inertial algorithms in various cohorts, especially
PD, has not been previously investigated. Moreover, the impacts of treadmill, indoor and
outdoor walking on the agreement of both algorithms have not been revealed. Therefore,
the implications of this study will contribute to the current knowledge by providing
information about the similarity of lower back and shank inertial algorithm under different
conditions. The statistical results presented in this study will also shed light on future
studies regarding how cautious researchers should be while interpreting results belonging
to a particular environment (e.g., indoor-outdoor), cohort (e.g., PD) or temporal parameter
(e.g., stance time).

Overall, location and algorithm pairs provided highly correlated mean temporal
results for all cohorts during treadmill, indoor and outdoor walking. However, this is not
true for variability and asymmetry characteristics. These findings attest to the common
knowledge that variability and asymmetry values extracted from inertial algorithms differ
across wear location [38]. This could be associated with the fact that errors or systematic
delays in ICs-FCs detection affect variability measures more than mean values [39]. Our
findings also suggest that agreement between location/algorithm are sensitive to age,
neurological condition, and walking environment. Our results are deemed suitable for
exploratory investigation as they are derived from previously validated algorithms.

4.1. Impact of Pathology and Age

Lowest agreement with largest AD between algorithms was in PD compared to YA
and OA during indoor walking for mean, variability, and asymmetry. A previous study
reported global performances of lower back IMU algorithms decreases when applied to a
neurological group [24], which supports our similar findings for lower agreement. Among
underlying reasons for this limitation, missing or detecting extra ICs-FCs is the most likely
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cause [24]. Given gait abnormalities affect the movement patterns of hip and shank seg-
ments to cause disrupted inertial waveforms [6,24], decreases in performance/agreement
levels are likely. Furthermore, existing IC-FC algorithms were developed and validated
for healthy populations only [9,23,32]. Disagreement was at its highest level for stance-
swing time characteristics that rely on both ICs-FCs moments, aligning with previous
findings [24] where A1 [23] returns greater (extra) FCs moments, thereby reducing accuracy
and repeatability.

Age also affects algorithm accuracy for ICs-FCs. A study investigated age on mean,
asymmetry and variability gait characteristics using chest and lower back algorithm and
reported more accurate results for YA compared to OA [38]. Similarly, comparing mean
temporal parameters of YA and OA during indoor walking in this study revealed agreement
between algorithms are higher on YA than OA, shown in Table 3.

The above was further investigated with regression analysis, Supplementary Materials,
Figure 2. For example, more ordinated regression lines were present in OA than PD. Higher
agreement was observed in Bland-Altman plots where the difference axis experienced
significantly lower values for OA than PD. Similarly, more ordinated regression lines were
present in YA than OA. Higher agreement was observed in Bland-Altman plots where the
difference axis experienced lower values for YA than OA, Figures 2 and 3.
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4.2. Impact of Environment

Various agreement levels were observed in mean, variability and asymmetry char-
acteristics during treadmill, indoor and outdoor walking. Agreement in stride and step
times is slightly higher during outdoor whereas agreement in stance and swing times is
slightly higher during indoor walking. Studies have shown differences in characteristics
between indoor and outdoor using IMU sensors [40,41].There are several factors that could
explain the differences between extracted temporal parameters during treadmill, indoor
and outdoor walking. Primarily, treadmills are classed as an external cue; forcing the
person to walk to the set speed of the device, rather than having the freedom to select their
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own walking pattern/style. Therefore, walking on a treadmill requires additional balance
skills with respect to overground walking, and harnesses or treadmill bars have an impact
on patients perception and pro-prioception during walking [42]. Daily life and laboratory
gait are also different, and this is associated with participants being more conscious of
measurements being taken during a laboratory walking compared to free-living, which
reflects more about real-life e.g., with natural dual-tasking [40]. Another factor that could
explain the difference between indoor and outdoor walking is the walking terrain used (e.g.,
carpet, cobble) [6]. This was further studied and reported that gait adaptations strategies
to maintain stability are sensitive to different walking surfaces, meaning different gait
patterns are employed while walking on soft and hard terrains [43]. Given the fact that
there are characteristic differences between the treadmill, indoor and outdoor walking, a
previous study hypothesized that the environment plays an important role in generating
different walking signals, influencing the accuracy of ICs-FCs detection [11].
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Based on the findings, we suggest that the instability of IMU algorithm performances
could also be a prominent reason that accounts for differences between indoor and out-
door mean characteristics. Furthermore, agreement between algorithms for variability of
temporal parameters during treadmill walking is higher than indoor/outdoor walking. A
higher agreement between algorithms could be associated with the fact that the treadmill
as an external cue reduces variability by means of controlling walking belt speed. These
results are valid for different walking speeds since treadmill walking and indoor walking
experiments performed at various walking speeds. Regression and Bland-Altman plots
belonging to various walking environments suggests that the difference between mean
temporal parameters is lower during treadmill walking than indoor-outdoor walking,
Supplementary Material, Figure 3.

4.3. Considerations: Sensor Location and Algorithms

Systematic delays, errors and inconsistencies in IC′s-FC′s detection are present even
between two reference systems such as treadmill and motion analysis [10]. Therefore, it is
crucial to investigate the level of error (agreement) between two or more IMU algorithms
and minimize inconsistencies to achieve a reliable and robust methodology.

Using different IMU systems and processing methods are possible factors accounting
for inconsistencies [11]. Previous studies investigated the listed factors and their impacts
on the accuracy of the results on healthy subjects [9–11]. Here, we studied these factors in
YA, OA and PD and merged with previous findings to provide a guide for future studies.

• The first factor needing consideration for IMU gait algorithms is the preferred pre-
processing and post-processing methodologies as it has an impact on the extracted
mean, variability, and asymmetry of temporal characteristics. For example, using
algorithms like A1 [23] requires strict filtering and may affect variability of extracted
characteristics as the signal is much smoother compared to less strict filters (e.g., A2).

• Sensor location and sensor signal are other important factors affecting accuracy. Re-
search suggests the shank angular velocity signals provide more accurate and re-
peatable results for IC-FC detection compared to algorithms that use waist accelera-
tion [9,10]. However, this has not been fully investigated in neurological cohorts. Here
we also found that correlation/agreement of lower back and shank algorithms change
when applied in various walking environments and decrease when applied to those
with PD.

• Although findings show that the threshold/rule-based inertial algorithms for ICs-
FCs detection provide highly correlated mean results, the fact that performances are
sensitive to target cohort and environment limits widespread use.

4.4. Limitations and Future Works

Despite the algorithms being previously validated against reference standards (e.g.,
instrumented walkways), it remains a limitation that we did not collect and compare
reference data in this study. However, study results are deemed suitable as validated
algorithms and high-grade wearable IMUs were used, showing good agreement with
previous studies [7,8,44–46], and the purpose here is to compare between algorithms.
However, systematic errors (e.g., delays) exist in the algorithms, 0.006 s and −0.029 s were
reported for ICs and FCs, respectively in the lower back algorithm whereas 0.01 s in IC
detection was reported for the shank-based algorithm [23,32]. Systematic delays in ICs-FCs
detection may increases in OA and PD populations due to the change of the acceleration and
angular velocity of the hip and lower limb [11,24]. Given the importance of accurate ICs-FCs
detection in gait analysis, more reliable and robust algorithms are needed, especially for gait
assessment of neurological conditions. Moreover, wearable sensor-based gait assessment
is shifting from supervised environments (e.g., lab) to unsupervised environments (e.g.,
free-living) because the latter enable habitual data capture [47]. Therefore, there is a need
for validated inertial algorithms to be used in unsupervised environments, however, the
absence of gold/reference standard systems to validate inertial algorithms in unsupervised
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environments bring new challenges as the field matures [29]. Severity of gait impairment
has an impact on the waveform of acceleration and angular velocity signals [6]. Therefore,
more advanced approaches (e.g., machine learning, deep learning) which already have
shown promising results [48–50] should be adopted in neurological gait studies as they
work independently from signal shape and thresholds. Furthermore, use of a particular
target signal e.g., vertical acceleration of the hip or sagittal plane angular velocity of the
shin makes the orientation of the sensor crucial. In case of inaccurate sensor placement, the
algorithms provide inaccurate results. Therefore, future studies also should aim to develop
algorithms that work independently from sensor orientation.

5. Conclusions

Investigation of the optimal IMU algorithm for detecting ICs-FCs is a trending topic
and plays a crucial role in rehabilitation studies. Overall, algorithms provided significantly
correlated results for mean characteristics only on YA-OA-PD during treadmill, indoor
and outdoor walking. However, findings show that the level of agreement varies in
different cohorts and environments. Researchers/clinicians should interpret temporal
characteristics, especially stance and swing, that are extracted from inertial algorithms
with caution because algorithm performances and the agreement between algorithms
varies/decreases. Furthermore, the levels of agreement in inertial algorithms were lower
in PD cohorts compared to healthy cohorts, suggesting researchers should be more careful
while interpreting PD results. Given differences in absolute agreement between algorithms,
more efficient and consistent lower-back and shank based IMU algorithms that provide
identical results regardless of cohort and environment are needed to use as a powerful tool
in clinics, which could be achieved through deep learning approaches.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/s21196476/s1, Table S1: Formulas used to calculate temporal parameters along with statistical
results.
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