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Abstract: Tachyplesin I, II and III are host defense peptides from horseshoe crab species with
antimicrobial and anticancer activities. They have an amphipathic β-hairpin structure, are highly
positively-charged and differ by only one or two amino acid residues. In this study, we compared
the structure and activity of the three tachyplesin peptides alongside their backbone cyclized
analogues. We assessed the peptide structures using nuclear magnetic resonance (NMR) spectroscopy,
then compared the activity against bacteria (both in the planktonic and biofilm forms) and a panel of
cancerous cells. The importance of peptide-lipid interactions was examined using surface plasmon
resonance and fluorescence spectroscopy methodologies. Our studies showed that tachyplesin
peptides and their cyclic analogues were most potent against Gram-negative bacteria and melanoma
cell lines, and showed a preference for binding to negatively-charged lipid membranes. Backbone
cyclization did not improve potency, but improved peptide stability in human serum and reduced
toxicity toward human red blood cells. Peptide-lipid binding affinity, orientation within the membrane,
and ability to disrupt lipid bilayers differed between the cyclized peptide and the parent counterpart.
We show that tachyplesin peptides and cyclized analogues have similarly potent antimicrobial and
anticancer properties, but that backbone cyclization improves their stability and therapeutic potential.

Keywords: tachyplesin; host defense peptide; anticancer; antimicrobial; antibiofilm; peptide-membrane
interaction; structure-activity; model membranes; nuclear magnetic resonance solution structure

1. Introduction

The host defense peptides (HDPs) tachyplesin I, II and III (TI, TII and TIII) are active against a
broad range of Gram-negative and Gram-positive bacteria and fungi [1–4] and possess anticancer
properties [5–15]. Each analogue was isolated from a different species of horseshoe crab, but they share
high sequence homology (Table 1). TI, TII and TIII possess 17 amino acid residues, two disulfide bonds,
a C-terminal α-amidation, and their structure is organized in a β-hairpin [2,3,16]. Like other HDPs [17],
TI, TII and TIII possess an amphipathic secondary structure (i.e., positively charged and hydrophobic
amino acids segregate into distinct clusters), thought to be essential for their antimicrobial activity.

Cationic amphipathic HDPs selectively target the anionic surfaces of microbes, rather than
the neutral surface of host cells, and kill them by a mechanism that involves binding to and
insertion into cell membranes. The initial binding is mediated by electrostatic attractions between the
positively-charged residues of HDPs and the anionic microbial surface [18], and is followed by the
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insertion of hydrophobic residues into lipid membranes in a process that involves van-der-Waal’s
interactions with the phospholipids [18,19].

Similar to bacterial cells, the surface of cancer cells is negatively-charged due to the
increased expression and exposure of phospholipids containing the anionic phosphatidylserine
(PS) headgroup [20–23]. In contrast, cell membranes of healthy mammalian cells are asymmetric
and phospholipids containing PS-headgroups are found exclusively in the inner leaflet. Variations
in the overall cell surface charge [24] in phospholipids with exposed [25,26] membrane fluidity and
curvature [18,27], have been shown to modulate the selective toxicity of HDPs towards cancer cells.
These differences regulate the affinity of peptides for cell membranes, the effective peptide-to-lipid
ratio and the ability for HDP to kill cancerous cells or pathogens rather than healthy cells [28–30].

Several studies have investigated the activity, structure and mechanism of the action of TI, but few
have examined the activity of TII and TIII. Early studies suggested that TI kills bacterial cells by a
mechanism involving inner membrane permeabilization and the rapid efflux of K+ [31–33]. Later, TI was
shown to translocate across lipid bilayers, cause a phospholipid flip-flop and form toroidal pores [33,34].
In cancerous cells, TI was reported to induce cell disruption and late apoptosis/necrosis [12,35].
Paredes-Gamero et al. proposed that the cancer cell death mechanism was dependent on the peptide
dose: at high concentrations, the peptide-induced direct cell membrane disruption, and at lower
concentrations, it activated intracellular cell death mechanisms [12].

Because of the expression of TI, TII and TIII in distinct species of horseshoe crab, we were
specifically interested in comparing their structure, activity and mode-of-action. As these peptides have
a potential application as anticancer and/or antimicrobial agents, we investigated whether backbone
cyclization would increase the stability and maintain activity. Our studies show that TI, TII and TIII,
and their cyclic analogues cTI, cTII and cTIII, have similar structures and activities against bacteria and
cancerous cells. Backbone cyclization reduced the hemolytic activity and increased peptide stability
while maintaining potent anticancer and antimicrobial activities. cTI and cTIII especially showed
potential to be considered for the development of anticancer peptide-based drugs.

2. Results

2.1. Properties of Tachyplesin I–III and Their Cyclic Analogues

The amino acid sequences of TI, TII and TIII differ in positions 1 or 15, which can be a lysine or an
arginine residue (Table 1). So far, TI is the most studied and the only analogue with reported structure
calculations [36–38]. We were interested in comparing TI, TII and TIII and their backbone-cyclized
analogues (cTI–III) to identify similarities and differences in their three-dimensional structure and
stability; and to determine whether these characteristics affect the membrane interactions and biological
activity of the peptides.

All peptides were synthesized using solid-phase peptide synthesis, oxidized and correctly folded,
as suggested by the observed masses using electrospray ionization mass spectroscopy (ESI-MS;
Supplementary Figure S1 and Table 1) and confirmed through clearly dispersed peaks in the amide
region of their respective One-dimensional (1D) 1H NMR spectra [39]. The peptides were purified to
>95%, as confirmed by analytical reverse-phase high-performance liquid chromatography (RP-HPLC;
see chromatograms of pure peptides in Supplementary Figure S1a).

Despite minor differences, their overall hydrophobicity follows the trend cTI > cTII > cTIII > TI >

TII > TIII (Table 1), as indicated by their retention time (RT) on analytical RP-HPLC (Supplementary
Figure S1). The cyclic analogues appear to be overall more hydrophobic (less polar) than the parent
peptides, which is consistent with the loss of the N-terminal charge and the C-terminal amidation
resulting from cyclization.
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Table 1. The sequence and physicochemical properties of tachyplesin I–III (TI-TIII) and their cyclic
analogues (cTI-cTIII).

Peptide Sequence 1 Mass (Da) 2
RT (min) 3 Charge 4

Calc. Obs.

TI KWCFRVCYRGICYRRCR * 2263.8 2263.5 18.04 +7

TII RWCFRVCYRGICYRKCR * 2263.8 2263.5 17.79 +7
TIII KWCFRVCYRGICYRKCR * 2235.8 2235.6 17.68 +7
cTI KWCFRVCYRGICYRRCRG 2303.8 2303.7 18.69 +6
cTII RWCFRVCYRGICYRKCRG 2303.8 2303.7 18.53 +6
cTIII KWCFRVCYRGICYRKCRG 2275.8 2275.5 18.44 +6

1 Peptide sequences and amino acid residues differing from TI are in bold. * denotes C-terminal amidation. 2 Average
mass calculated (Calc.) from the amino acid sequence and experimentally observed (Obs.) using synthetic peptide
and determined from m/z 3+ in ESI-MS. 3 Retention time (RT) of peptides on an analytical RP-HPLC; chromatograms
shown in Supplementary Figure S1a were obtained with a 2%/min gradient of 0–40% solvent B (90% acetonitrile;
0.05% trifluoroacetic acid (TFA) (v/v)) in solvent A (H2O, 0.05% TFA (v/v)) at a flow rate of 0.3 mL/min. 4 Charge of
the peptides at pH 7.4.

2.2. Structure of Tachyplesins and Backbone-Cyclised Analogues

The three-dimensional (3D) structures of TII and TIII, and of the backbone-cyclized analogues
cTI–cTIII were determined with solution NMR spectroscopy. All backbone resonances were fully
assigned apart from the N-terminal amides of the two linear peptides, and the R1/G18 amides of cTII,
reflective of some degree of flexibility in these regions. The secondary αH chemical shifts of the native
peptides and the cyclic analogues were highly similar, indicating a negligible change in the backbone
structure and the β-strands (W2-Y8; I11-R17) (Figure 1a,b).

The 3D solution structures of each peptide were calculated from distance restraints, ranging from
154 for the linear peptides, to 172–284 for the cyclic analogues, along with dihedral angle restraints
totaling 34 to 36. The final family of structures for each of the peptides has good structural and energy
statistics, as indicated by an overall MolProbity score of less than 1.6, shown in Table S1. Analysis
of the structures by PROMOTIF [40] defines antiparallel β-strands being formed by residues W2-Y8
and I11-R17 in all but one of the peptides. The exception is TIII which has slightly shorter strands
formed between residues C3-Y8 and I11-C16. All disulfide bonds are defined by PROMOTIF as
adopting the short right-hand hook configuration. Structures of the tachyplesin peptides and the
cyclized analogues differed primarily in the flexibility of the N- and C-termini of the parent peptides
(Figure 1b–d). The reduction of the amino acid side-chain flexibility in the terminal regions due to
backbone cyclization is emphasized in Figure 1d with the side chain of the residues K/R1 and K/R15,
which differ between TI/cTI, TII/cTII and TIII/cTIII; the side chain of W2 is also shown, as this residue is
used to monitor the peptide partitioning into lipid bilayers (see Section 2.5.2). No significant cation-π
interactions between the R/K1 and W2 were noted for any of the tachyplesin peptides. Such an
interaction might be revealed by NMR in the form of substantial deviations of the chemical shifts of
arginine/lysine residues but none were observed (see Figure 1a). The lack of cation-π interactions is
also supported by the NMR solution structures that reveal a high degree of flexibility in the termini of
the linear peptides, and by the different orientations that these residues acquire in the cyclic peptides,
as shown in Figure 1d.

The peptide structures were deposited with the Protein Data Bank (PDB) and the Biological
Magnetic Resonance Data Bank (BMRB): TII—PDB ID: 6PI2, BMRB ID: 30617; TIII—PDB ID: 6PI3, BMRB
ID: 30618; cTI—PDB ID: 6PIN; BMRB ID: 30619; cTII—PDB ID: 6PIO, BMRB ID: 30620; cTIII—PDB ID:
6PIP, BMRB ID: 30621.
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Figure 1. The NMR structures of TI and cTI (red), TII and cTII (cyan), TIII and cTIII (magenta). (a) 
Secondary αH chemical shift at 298 K determined from 1H NMR spectra. Shifts were calculated by 
subtraction of random coil 1H NMR shifts [41] from the experimental values. For tachyplesin I (TI), 
the shifts of the peptide synthesized in our lab were compared to shifts obtained from data banks: 
TI—PDB ID 2RTV [37], and TI—BMRB ID 1135 [38]. Positive shifts greater than 0.1 ppm suggest β-
strands, indicated by grey arrows. (b) Overlay of the cyclic analogues (colored backbone) with their 
respective parent peptide (grey backbone). Hydrogen bonds between β-strands are indicated in blue. 
The structure of TI was obtained from the PDB (ID 1WO0). (c) Overlay of TI–TIII and cTI–cTIII. (d) 
Mobility of the residues (K or R) at position 1 and 15, which differ between the peptides, and of W2 
of the native sequences and cyclic analogues, respectively. 

2.3. Improved Stability and Reduced Hemolytic Activity of Cyclized Tachyplesin Peptides 

Cyclization has been shown to increase stability [42,43] and reduce the hemolytic activity of 
some peptides [44,45]. Comparison of resistance to human proteases showed that the cTI analogue 
did not degrade after treatment for 24 h in 25% (v/v) human serum, whereas only 25% of TI remained 
in the solution (see analytical RP-HPLC chromatograms in supplementary Figure S2). A peptide 
(linear and without disulfide bonds) used as a control was fully degraded under the same conditions 

Figure 1. The NMR structures of TI and cTI (red), TII and cTII (cyan), TIII and cTIII (magenta).
(a) Secondary αH chemical shift at 298 K determined from 1H NMR spectra. Shifts were calculated by
subtraction of random coil 1H NMR shifts [41] from the experimental values. For tachyplesin I (TI),
the shifts of the peptide synthesized in our lab were compared to shifts obtained from data banks:
TI—PDB ID 2RTV [37], and TI—BMRB ID 1135 [38]. Positive shifts greater than 0.1 ppm suggest
β-strands, indicated by grey arrows. (b) Overlay of the cyclic analogues (colored backbone) with
their respective parent peptide (grey backbone). Hydrogen bonds between β-strands are indicated in
blue. The structure of TI was obtained from the PDB (ID 1WO0). (c) Overlay of TI–TIII and cTI–cTIII.
(d) Mobility of the residues (K or R) at position 1 and 15, which differ between the peptides, and of W2
of the native sequences and cyclic analogues, respectively.

2.3. Improved Stability and Reduced Hemolytic Activity of Cyclized Tachyplesin Peptides

Cyclization has been shown to increase stability [42,43] and reduce the hemolytic activity of some
peptides [44,45]. Comparison of resistance to human proteases showed that the cTI analogue did not
degrade after treatment for 24 h in 25% (v/v) human serum, whereas only 25% of TI remained in the
solution (see analytical RP-HPLC chromatograms in Supplementary Figure S2). A peptide (linear and
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without disulfide bonds) used as a control was fully degraded under the same conditions (Figure 2a).
TI has previously been shown to be completely stable for 2 h in mouse or human serum [46].

The percentage of hemolysis of human red blood cells (RBCs) followed the trend TI > TII >

TIII > cTII > cTI > cTIII when compared at 128 µM, the highest concentration of peptide tested.
TI was the most hemolytic of the native sequences. Backbone cyclization reduced the hemolytic
activity of the cTI and cTIII compared to their parent counterparts, but led to no clear improvement
for cTII. The C-amidated peptides TI–TIII lysed 66%, 56% and 41% of RBCs at 64 µM respectively
(Figure 2b and Table 2). A similar trend but lower hemolytic activity had been reported for TI, TII,
and TIII lacking C-terminal amidation at higher peptide concentrations [47], which is known to impact
peptide activity [48,49].

The positive control melittin, a hemolytic peptide from honeybee venom, induces 100% hemolysis
in human RBCs at concentrations above 2 µM. By comparison, at this concentration, all tachyplesin
peptides have a low hemolytic activity of around 10%.
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Figure 2. The peptide stability in human serum and activity against human red blood cells (RBCs).
(a) Stability of TI and cyclic analogue cTI in 25% (v/v) human serum for 24 h. The samples were analyzed
by analytical RP-HPLC and the percentage of peptide remaining was determined from the area under
the peptide peak in the chromatogram in comparison to peak area at time zero. A linear 18 amino acid
peptide (KGGGGSGQLIDSMANSFV) was included as the positive control. (b) Hemolytic activity of
tachyplesins and their cyclic analogues were tested up to 128 µM against human RBCs (0.25% (v/v), 1 h
incubation at 37 ◦C). Melittin, a highly hemolytic peptide, was included as the positive control.

Table 2. Concentration of tachyplesin I–III (TI-TIII) and of their cyclic analogues (cTI-cTIII) required to
induce 50% lysis in RBCs (HC50). a.

Peptide HC50 (µM)

TI 34.9 ± 2.8
TII 55.4 ± 6.6
TIII 86.4 ± 12.2
cTI 106.9 ± 21.0
cTII 64.1 ± 9.4
cTIII >128

a Values were determined from a minimum of three independent replicates and depicted as mean ± SEM.

2.4. Biological Activity of Tachyplesin I–III and of Their Cyclic Analogues

2.4.1. Activity against Bacteria

The Gram-negative Escherichia coli strains ATCC 25922 and DC2 CGSC 7139 and the Gram-positive
Staphylococcus aureus strains ATCC 25923 and ATCC 6538 were used to determine the antimicrobial
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activity of the parent tachyplesin peptides and their cyclic analogues against bacteria with differences in
the physical and chemical properties of their cell wall. E. coli ATCC 25922 (“smooth” LPS) and S. aureus
ATCC 25923 are common control strains for antimicrobial susceptibility testing [50,51]. E. coli DC2
CGSC 7139 is hypersensitive to antibacterial agents and more permeable to dyes [52], while S. aureus
ATCC 6538 is known to form biofilms [53]. Tachyplesin peptides and their cyclic analogues were tested
against planktonic cultures of all strains and against S. aureus ATCC 6538 in the biofilm form for direct
comparison of their antimicrobial activity.

Tachyplesin I–III were two-to-four times more potent than their cyclic analogues against all
bacterial strains in their planktonic growth form (Table 3). Generally, the Gram-negative strains were
more susceptible than the Gram-positive strains. Similar MICs have been reported previously for
TI against E. coli ATCC 25922, [1] and TI and TII against S. aureus ATCC 25923 [2,3]. Tachyplesin
peptides were most active against E. coli DC2 CGSC 7139 and E. coli ATCC 25922. The activity against
these bacterial strains was reduced when the peptides were cyclized. The peptides were least active
against S. aureus ATCC 6538 in the planktonic form, and no difference in activity was observed between
tachyplesin peptides and cyclic analogues (Table 3).

Table 3. The minimal inhibitory concentrations (MICs) of tachyplesin I–III (TI-TIII) and of their cyclic
analogues (cTI-cTIII) against planktonic bacteria.

MIC (µM)

Peptide E. coli DC2
CGSC 7139

E. coli
ATCC 25922

S. aureus
ATCC 25923

S. aureus
ATCC 6538

TI 0.5–1 0.0625–0.5 1–4 4–8
TII 0.5–1 0.125–0.5 1–4 4–8
TIII 0.25–0.5 0.0625–0.5 1–4 4–8
cTI 4 1 2–8 8
cTII 4–8 1–2 2–8 8
cTIII 4–8 1–2 2–8 8

To determine whether the tachyplesin peptides could act against bacterial biofilms, the cells
metabolic activity was measured for biofilms formed by S. aureus ATCC 6538 (Figure 3 and Table 4).
All peptides exhibited similar activity against the bacteria in the biofilm form, with a 50% loss of cell
metabolic activity observed at ~20 µM. However, approximately 40% of the biofilm was metabolically
active at 32 µM, the highest concentration tested, suggesting a reduced activity against biofilm
compared to the planktonic S. aureus ATCC 6538 bacteria.
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Table 4. Activity of tachyplesin I–III (TI–TIII) and cyclic analogues (cTI–cTIII) against S. aureus ATCC
6538 in the biofilm growth form.

Peptide CC50 (µM) 1 Metabolically Active Cells (%) 2

TI 21.5 ± 2.2 37.7 ± 4.3
TII 23.1 ± 2.9 39.9 ± 2.9
TIII 24.2 ± 4.1 43.3 ± 4.1
cTI 17.8 ± 3.6 31.9 ± 6.0
cTII 19.4 ± 1.5 34.6 ± 7.1
cTIII 18.0 ± 1.4 37.5 ± 7.2

1 Peptide concentration required to induce the reduction of 50% of the metabolically active cell population (CC50)
determined using one-site specific binding with the Hill slope. 2 Percentage of cells remaining metabolically active
at 32 µM, the highest peptide concentration tested.

2.4.2. Activity against Cancerous Cells

TI, TII, TIII, and their cyclic analogues were tested against three melanoma (MM96L, HT144
and WM164) and one cervical cancer (HeLa) cell line (Supplementary Tables S2 and S3) to determine
whether the peptides exhibit different cytotoxic activities. The aneuploid immortal keratinocyte
cell line HaCaT was included as a non-cancerous control. Cytotoxicity toward cancer cell lines was
compared by determining peptide concentrations required to achieve 50% of cell death (CC50) from
dose-response curves (Table 5).

Table 5. The cytotoxicity of tachyplesin I–III (TI-TIII) and cyclic analogues (cTI-cTIII) against
cultured cells.

CC50 (µM) 1 Melanoma
Selectivity 5

Peptide MM96L 2 HT144 2 WM164 2 HeLa 3 HaCaT 4

TI 1.5 ± 0.1 1.7 ± 0.2 2.5 ± 0.1 13.1 ± 1.2 11.6 ± 1.6 2–21
TII 1.6 ± 0.1 2.0 ± 0.1 1.6 ± 0.1 18.0 ± 3.9 3.7 ± 0.2 3–35
TIII 1.8 ± 0.1 2.0 ± 0.1 1.7 ± 0.1 21.7 ± 1.1 7.3 ± 0.5 5–48
cTI 1.3 ± 0.1 1.4 ± 0.1 2.7 ± 0.1 6.7 ± 0.6 7.9 ± 0.5 2–76
cTII 1.1 ± 0.1 0.8 ± 0.04 2.4 ± 0.3 7.2 ± 0.4 2.4 ± 0.3 3–58
cTIII 1.7 ± 0.1 0.9 ± 0.03 1.3 ± 0.1 9.3 ± 0.4 7.5 ± 0.3 3–98
1 The concentration necessary to kill 50% of cells was calculated from dose-response curves (n ≥ 3, ± SEM).
2 Melanoma cell lines: MM96L, HT144, WM164, 3 cervical cancer cell line: HeLa, 4 healthy epithelial control
cell line: HaCaT (aneuploid immortal keratinocyte). Description and verification of each cell line are detailed in
Supplementary Tables S2 and S3). 5 selectivity for melanoma cell lines was estimated through the activity-toxicity
index (ATI). ATI = MHC/MCC50 (modified from Reference [46]), with MHC being the minimal concentration
necessary to induce 10% (lower value) or 50% (higher value) cell death in human RBCs and MCC50 being the
median of CC50 values of all melanoma cell lines. Values above 1 indicate a higher selectivity for the cancerous cells
over RBCs.

The cytotoxic activities of the tachyplesin peptides and their cyclic analogues are dependent
on the cell lines (Table 5). All peptides were most effective against the melanoma cell lines MM96L,
HT144 and WM164 (cytotoxic activities ranged between CC50 0.8–2.7 µM). Compared to the control
cell line HaCaT, the cytotoxic activities of the peptides against melanoma were significantly different
(p < 0.05) with the exception of cTII against WM164. The cervical cancer cell line HeLa was more
resistant towards the tachyplesin peptides compared to the melanoma cell lines and higher peptide
concentrations were necessary to reach 50% cell death. Differences in cytotoxic activity against HeLa,
compared to the control cell line HaCaT, can be observed for all peptides except TI and cTI. The cyclic
analogues cTI–cTIII were approximately 2x more potent against HeLa than the parent peptides TI–TIII
(p < 0.05).

The peptides have a similar selectivity for the melanoma cell lines at lower peptide concentrations
which would induce ≤10% hemolysis in RBCs. At concentrations inducing ≤50% hemolysis in RBCs,
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the cyclic analogues cTI–cTIII were more selective. Overall, the most promising therapeutic range was
observed for TIII, cTI and cTIII (Table 5).

2.5. Mechanistic Studies

Peptides with an amphipathic arrangement of charged and hydrophobic residues are known
to act against bacterial and cancer cells via selective membrane targeting, penetration and/or lysis.
To characterize how peptide-membrane interactions affect biological activity, we undertook detailed
peptide-membrane binding studies that compare parent and cyclic tachyplesin peptides.

2.5.1. Peptide Binding to Model Membranes

The ability of TI to bind to model membranes has been previously shown and a preference
for negatively-charged membranes was found [31,46]. We were interested in comparing the
membrane-binding properties of the parent tachyplesins versus the cyclic analogues to determine
whether differences in membrane binding could explain the relative biological activities (see Table 5).
Given the similar potencies among the three tachyplesins, and among the three cyclic analogues,
we compared the interaction of TI and cTI, as representative of parent and cyclic tachyplesin
peptides, respectively, with model membranes using surface plasmon resonance (SPR). Phospholipids
containing PC-headgroups are the most common in the outer leaflet of the mammalian plasma
membrane [54,55]; thus, we prepared model membranes composed of the zwitterionic POPC
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), which forms fluid bilayers at 25 ◦C and mimics
the overall fluidity and neutral surface of healthy eukaryotic cells [56]. Phospholipids containing
the negatively-charged PS-headgroups are normally restricted to the inner leaflet in eukaryotic cell
membranes but are exposed at the cell surface of cancerous cells [20,22,23]. Therefore, we used
model membranes with 20% of POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine), POPC/POPS
(4:1 molar ratio), to represent the negatively-charged surface of cancer cells.

Both TI and cTI bound with higher affinity to negatively-charged POPC/POPS (4:1) than to
zwitterionic POPC lipid bilayers. cTI had stronger affinity to both lipid systems than the parent
peptide, as shown by a higher peptide-to-lipid (P/L) ratio during association, a slower dissociation
rate (koff) from the lipids, and a higher amount of peptide remaining associated to the membrane at
the end of dissociation (P/Loff) (Figure 4a,b and Table 6). Additionally, TI and cTI disrupted large
unilamellar vesicles (LUVs) of POPC/POPS (4:1) with higher efficacy than LUVs of POPC, which agrees
with their preference for negatively-charged over neutral membranes. However, TI disrupted LUVs
of POPC and of POPC/POPS (4:1) more efficiently than the cyclic analogue cTI (Figure 4c, Table 6).
Thus, the higher binding saturation and affinity of cTI (see P/Lmax and kinetic parameters in Table 6)
to the membranes did not correlate with its ability to disrupt membranes. The higher efficacy of TI
in disrupting membranes, compared to the cyclic analogue, might explain the higher activity of the
parent TI–TIII for planktonic bacterial cells (see Table 3), compared to their cyclic analogues.
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Figure 4. Membrane binding and disruption induced by tachyplesin I (TI) and cyclic tachyplesin
I (cTI). Model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)
and POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS) (4:1) were compared. (a) Surface
plasmon resonance sensorgrams obtained with 32 µM peptide injected over lipid bilayers deposited on
an L1 chip surface for 180 s (association); dissociation was monitored for 600 s. Response units (RU) were
converted into a peptide-to-lipid ratio (P/L (mol/mol)) to take into consideration the differences in lipid
packing resulting in different amounts being deposited to cover the chip surface. (b) The dose-response
curves show P/L obtained at the end of the association phase (t = 170 s) and plotted as a function of
peptide concentration injected. (c) Percentage of vesicle leakage determined by fluorescence emission
intensity of 5-carboxyfluorescein (λex = 490 nm, λem = 513 nm) leaking from LUVs at increasing
concentrations of peptide. Lipid concentration used was 5 µM, and the peptide was tested up to
10 µM. Dose-response curves were fitted with one-site specific binding with Hill slope equation in
GraphPad Prism.

Table 6. The kinetic and affinity parameters from surface plasmon resonance analysis of the interaction
of 32 µM tachyplesin I (TI) and cyclic tachyplesin I (cTI) with neutral (POPC) and negatively-charged
model membranes (POPC/POPS (4:1)) and leakage induced by the same peptides and lipid systems.

Peptide Lipid
System

P/Lmax
(mol/mol) 1

KD
(µM) 1

koff

(x 10−2 s−1) 2
P/Loff

(mol/mol) 2
LCmax
(%) 3

TI
POPC

0.26 ± 0.06 22.4 ± 10.9 1.50 ± 0.11 0.046 ± 0.001 39.5 ± 4.6
cTI 0.33 ± 0.07 16.7 ± 8.4 0.91 ± 0.03 0.065 ± 0.001 32.9 ± 9.4
TI POPC/POPS

(4:1)
0.37 ± 0.04 11.8 ± 2.4 2.75 ± 0.22 0.096 ± 0.001 76.0 ± 2.8

cTI 0.48 ± 0.08 9.2 ± 3.4 0.70 ± 0.03 0.137 ± 0.002 58.5 ± 3.6
1 P/Lmax and KD were calculated from the dose-response curves (one-site specific binding with Hill slope equation,
GraphPad Prism) in Figure 4b. The P/Lmax value represents the peptide-to-lipid ratio (mol/mol) when peptide-lipid
binding reaches saturation, KD is the peptide concentration necessary to reach the half-maximal binding response.
2 koff is the dissociation constant and P/Loff is the peptide-lipid ratio at the end of association phase calculated from
the sensorgrams obtained with 32 µM peptide in Figure 4a. koff and P/Loff were fitted in GraphPad Prism, assuming
a Langmuir kinetic. 3 Percentage of leakage achieved when incubating 10 µM peptide with 5 µM LUVs. POPC is
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine; POPS is 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine.

To examine the ability of cTI to bind model membranes that mimic bacterial
cell membranes, we prepared vesicles with an E. coli polar lipid extract composed of
zwitterionic phosphatidylethanolamine (PE)-phospholipids, negatively-charged phosphatidylglycerol
(PG)-phospholipids, and cardiolipin (CA) in the proportion 67:23.2:9.8 (wt/wt%). The SPR sensorgram
and dose-response curves (Supplementary Figure S3) show that cTI has a high affinity for E. coli lipids.
Comparison of the dose-response curves and fitted parameters show that the maximum amount of
cTI bound to E. coli lipids (P/Lmax, Supplementary Table S4) is not as high as for the other tested
negatively-charged membranes or for the zwitterionic POPC, but the P/Loff is higher than from the other
tested membranes (see Supplementary Table S4), suggesting that a large amount of peptide remains
bound to the bilayers that mimic bacterial membranes. To investigate whether cTI distinguishes
the negatively-charged headgroups present in bacteria (i.e., PG) from those in cancer cells (i.e., PS),
we compared the binding of cTI to POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol;
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4:1)) and to POPC/POPS (4:1). cTI has a slightly higher affinity for model membranes containing
PS-phospholipids than to those containing PG-phospholipids, as shown by the higher maximum
amount of peptide bound to POPC/POPS (4:1), and a slower dissociation rate (see P/Lmax, koff and
P/Loff in Supplementary Figure S3).

2.5.2. Partitioning of Trp Residue into Model Membranes

The fluorescence emission of Trp is sensitive to the local environment. In an aqueous environment,
the fluorescence emission spectrum of Trp has a maximum at ~350 nm (λex = 280 nm), in a hydrophobic
environment the fluorescence emission spectrum is blue-shifted and an increase in the fluorescence
quantum yield is usually observed [57–59]. Tachyplesin peptides have one Trp residue: the fluorescence
emission properties of this residue can be used to examine the environment surrounding it and inform
on the partitioning and orientation of the peptides bound to model lipid bilayers. In the current study,
we followed the changes in Trp fluorescence emission spectra of TI–TIII and of the cyclic analogues
cTI–cTIII upon titration with LUVs composed of zwitterionic (POPC) or of negatively-charged
membranes with two distinct negatively-charged headgroups, i.e., PS and PG (Figure 5).
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Figure 5. The partitioning of the 12.5 µM of tachyplesin I–III (TI-TIII) and cyclic analogues (cTI-cTIII)
into lipid membranes. (a) Normalized fluorescence emission spectra of cTI in aqueous solution (grey)
and upon titration with LUVs composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine;
up to 3 mM) or of POPC/POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine; 4:1) up to 1 mM).
Fluorescence emission spectra were obtained with excitation at 280 nm (b) Wavelength at which TI
(solid symbol) and cTI (open symbol) have their maximum fluorescence emission in buffer and with
increasing concentrations of LUVs composed of different lipid mixtures (POPC: red; POPC/POPS (4:1):
blue; POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; 4:1): green).

TI and cTI bound to both zwitterionic POPC and negatively-charged POPC/POPS (4:1) bilayers,
as shown with SPR (see Figure 4a,b); however, a blue shift in the Trp fluorescence emission spectra
was only observed for model membranes containing negatively-charged phospholipids (Figure 5a,
Table 7). Even at the highest concentration of 3 mM POPC LUVs, no change in the Trp fluorescence
emission spectra was observed for any of the peptides. In contrast to POPC, a blue shift was detected
when peptides were incubated with negatively-charged model membranes POPC/POPS (4:1) and
POPC/POPG (4:1) at lipid concentrations as low as 0.1 mM (Figure 5).

In the presence of negatively-charged membranes, the Trp fluorescence emission maxima of
cTI–cTIII had a larger shift than the respective parent peptides TI–TIII (Table 7), as illustrated with TI
and cTI (Figure 5b). The differences between parent and cyclic peptides were most pronounced with
POPC/POPS (4:1) bilayers: TI–TIII required more than twice the amount of POPC/POPS (4:1) LUVs
compared to cTI–cTIII (0.19–0.30 mM vs. 0.08–0.12 mM) to induce half of the maximal shifts of the Trp
fluorescence emission spectra (Figure 5b, Table 7). Comparison among parent peptides shows similar
spectral shifts for a given model membrane (see for instance Trp fluorescence emission shifts of TI–TIII
when titrated with POPC/POPS); the same is true among cyclic analogues. These results suggest that
the mutations R/K1 or R/K15 have a weak influence, whereas backbone cyclization between R/K1 and
G18 impacts the insertion of the Trp residue into lipid membranes.
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Table 7. Shift in the fluorescence emission maximum wavelength of tachyplesin I–III (TI-TIII) and
cyclic analogues (cTI-cTIII) in buffer and in the presence of model membranes.

POPC POPC/POPS (4:1) POPC/POPG (4:1)

Peptide shift (nm) 1 shift (nm) 0.5 [L] (mM) 2 shift (nm) 0.5 [L] (mM)

TI 2 22 0.19 30 0.09
TII 0 19 0.30 29 0.09
TIII −3 18 0.30 23 0.10
cTI 0 28 0.11 28 0.06
cTII 1 27 0.08 29 0.05
cTIII 3 27 0.12 28 0.08

1 blue shifts observed with 3 mM POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine);
1 mM POPC/POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine; 4:1), or 1 mM POPC/POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; 4:1) LUVs. 2 lipid concentrations required to achieve
half of the maximum blue shift observed (0.5 [L] in mM).

The Trp fluorescence emission spectra of all tachyplesin analogues displayed larger blue shifts in
the presence of POPC/POPG (4:1) compared to POPC/POPS (4:1) LUVs, which suggests that the Trp
residue partitions better and/or inserts further into PG-containing membranes than into PS-containing
membranes (Table 7). Despite the blue shift in the fluorescence emission spectra of all the peptides
when in the presence of negatively-charged membranes, no increase in quantum yield was detected
(data not shown). This could be explained by fluorescence quenching induced by neighboring amino
acid side chains, local carbonyl groups [58], or through photon re-absorption between Trp residues of
neighbor peptides molecules due to their closer proximity once inserted into lipidic membranes.

2.5.3. Insertion of Trp Residue into Model Membranes

The in-depth location of the Trp residue of tachyplesin peptides bound to lipid membranes was
investigated using fluorescence quenching methodologies. Acrylamide, an aqueous quencher unable
to partition into lipid bilayers, was used to quench the fluorescence of Trp residues exposed to the
aqueous solution. If the Trp residue inserts into the lipid bilayer, it becomes inaccessible to quenching
by the aqueous-soluble acrylamide. In addition to acrylamide quenching, we used the lipidic quenchers
5- and 16-doxyl stearic acids (5DS and 16DS) to gain information on the in-depth location of TI and
cTI within the membrane. The acids 5- and 16DS are fatty acids that insert into the lipid bilayer and
possess the quencher moiety, nitroxide, located at carbon 5 and 16 of the fatty acid chain, respectively.
The proximity of the nitroxide moiety to the Trp residue is required for quenching of its fluorescence
emission; thus, comparison between the 5- and 16DS quenching efficacies gives information on the
location of the Trp residue when the peptide is partitioned into membranes [60,61]. Changes in the Trp
fluorescence emission of individual peptides were followed upon titration with each of the quenchers.
The fluorescence emission intensity in the absence and presence of the quencher (I0/I) were plotted
as a function of the quencher concentration and used to determine the Stern-Volmer constants (KSV)
(Figure 6), which are proportional to the accessibility of the quencher to the fluorophore.

A reduction in the slope (KSV) of the fitted data points in the presence of lipids, compared to the
aqueous solution, indicates the reduced quenching efficacy by acrylamide. The percentage of Trp
accessible to acrylamide was estimated by the ratio of KSV obtained in the presence and absence of
LUVs, assuming that the Trp residue is fully exposed to acrylamide when the peptide is in an aqueous
solution. Acrylamide quenched the Trp fluorescence emission of both TI and cTI with a similar efficacy
in the buffer and in the presence of 1 mM POPC LUVs (Figure 6a, Table 8). These results show that
when TI and cTI are bound to POPC, their Trp residue is accessible to acrylamide and likely to be
exposed to the aqueous environment. In contrast, when in the presence of 1 mM POPC/POPS (4:1),
the Trp fluorescence emission of TI and cTI was not efficiently quenched by acrylamide, suggesting that
their Trp residue is not accessible to acrylamide. A similar result is expected for all the analogues given
the lack of insertion of the Trp residue of TI–TIII and of cTI–cTIII when bound to POPC membranes
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and the large blue shift in the fluorescence emission spectra of the Trp residue of all the analogues
when bound to POPC/POPS (4:1) membranes (see Table 7).
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palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), 1 mM POPC/POPS (1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoserine; 4:1), 0.1 mM POPC/POPS (4:1) or 0.1 mM POPC/POPG (1-palmitoyl-2-
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Figure 6. The effect of aqueous (acrylamide) and lipidic (5DS and 16DS) quenching on the
tryptophan fluorescence intensity to investigate peptide in-depth location within model membranes.
(a) The Trp fluorescence emission of 12.5 µM cTI in aqueous solution or in the presence
of LUVs (1 mM POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), 1 mM POPC/POPS
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine; 4:1), 0.1 mM POPC/POPS (4:1) or 0.1 mM
POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; 4:1)) in the absence (I0) and upon
titration with increasing concentrations of acrylamide (I). Data are shown as Stern-Volmer plots (i.e.,
I0/I versus concentration of quencher). (b) Quenching of Trp fluorescence emission of 12.5 µM TI and
cTI incorporated in 1 mM POPC/POPS (4:1) membranes by 5DS or 16DS.

Table 8. Fluorescence quenching of 12.5 µM tachyplesin I-III (TI-TIII) or cylic tachyplesin I-III (cTI-cTIII)
by acrylamide.

Acrylamide Accessibility (%) 1

1 mM 1 mM 0.1 mM 0.1 mM

Peptide POPC POPC/POPS (4:1) POPC/POPS (4:1) POPC/POPG (4:1)

TI 90.5 ± 4.3 16.2 ± 21.9 72.3 ± 3.9 54.2 ± 5.8
TII 76.2 ± 3.2 56.8 ± 6.9
TIII 82.1 ± 4.7 75.4 ± 4.6
cTI 103.8 ± 2.3 22.5 ± 14.3 32.3 ± 8.3 32.0 ± 4.1
cTII 61.4 ± 5.5 36.1 ± 7.7
cTIII 48.7 ± 6.5 46.2 ± 5.7

1 Tryptophan accessibility of tachyplesin I-III (TI–TIII) and cyclic tachyplesin (cTI–cTIII) in the
presence of LUVs (1 mM POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), 1 mM POPC/POPS
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine; 4:1), 0.1 mM POPC/POPS (4:1) or 0.1 mM POPC/POPG
(1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol; 4:1)) to the aqueous quencher acrylamide. The accessibility of
the Trp residue to the quencher was calculated from the Stern-Volmer constants, KSV, which were derived from the
linear fit of the data points (Equation (1)) of the peptide in buffer and peptide in the presence of lipids (see Figure 6a).
Full exposition (100%) of the Trp residue to an aqueous environment was assumed in the buffer.

To identify potential differences between the six analogues, we monitored the quenching of
Trp fluorescence emission by acrylamide in the presence of 0.1 mM POPC/POPS (4:1) or of 0.1 mM
POPC/POPG (4:1) membranes. In the presence of 0.1 mM POPC/POPS (4:1) LUVs, acrylamide
quenched the Trp fluorescence emission of TI–TIII with a higher efficacy than that of the cyclic
analogues, suggesting that the Trp residue of cTI–cTIII is more protected from acrylamide. The Trp
of the native tachyplesin peptides was less accessible for quenching in the presence of 0.1 mM
POPC/POPG (4:1) LUVs compared to 0.1 mM POPC/POPS (4:1) LUVs through insertion into the
membrane. The accessibility of the acrylamide to the Trp residues of the cyclic analogues remained
approximately the same with both lipid systems (Table 8). These results suggest that when compared at
the same lipid concentrations, more TI–TIII are inserted into POPC/POPG (4:1), than into POPC/POPS
(4:1) membranes, whereas the cyclic analogues did not distinguish between the two negatively-charged
lipid mixtures.
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Comparison of the quenching efficacy by 5DS and 16DS tested with POPC/POPS (4:1) bilayers,
showed that 16DS quenched the Trp fluorescence emission of TI and cTI with a higher efficacy than
5DS, which was particularly evident for the cyclic analogue (see Stern-Volmer plots and KSV values in
Figure 6b, Table 9). The higher quenching efficacy induced by 16DS suggests that the Trp residue of
TI and of cTI is located within the hydrophobic core of the POPC/POPS (4:1) bilayers. The negative
deviation to the linearity (see Figure 6b and fb values in Table 9) suggests that the Trp residue of a
fraction of peptide molecules is not accessible to the quenchers. This can be an indication of peptide
molecules adopting different orientations within the membrane; nevertheless, the average location of
the Trp residue of cTI and TI confirms that both peptides have their Trp residue deeply inserted and, in
particular, the cyclic analogue. Overall, these results suggest that the Trp residue of cyclic analogues
partitioned with a higher efficacy and/or were inserted deeper into anionic lipid bilayers, than parent
tachyplesin peptides (Figure 7).

Table 9. Fluorescence quenching of tachyplesin I (TI) and and cyclic tachyplesin I (cTI) partitioned into
1 mM POPC/POPS (4:1) LUVs by the quenchers 5DS and 16DS. 1.

5DS 16DS

Peptide KSV (M−1) fb KSV (M−1) fb Z (Å) 2

TI 3.7 ± 1.3 0.63 ± 0.57 19.6 ± 4.3 0.74 ± 0.37 8.8
cTI 4.9 ± 1.8 0.61 ± 0.54 26.3 ± 7.1 0.83 ± 0.52 5.5

1 The KSV and fb (the fraction of light emitted by the peptide accessible to the quencher) were determined using the
Lehrer equation (Equation (2)). 2 The calculated average distance, Z in Å, of the Trp residue from the bilayer center
was determined using the parallax method (Equations (3) and (4)) [62].
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Figure 7. Schematic representation of the proposed orientations of tachyplesin peptides and cyclic
analogues, when inserted into negatively-charged membranes based on the tryptophan fluorescence
quenching, results with 5- and 16DS. The phospholipids in grey represent PC headgroups and the
phospholipids in red represent PS headgroups. The peptides have a backbone length of approximately
25 Å (measured in PyMol) and are able to span across a lipid monolayer. Other orientations are possible.
The distribution of the 5DS and 16DS quencher within a phospholipid bilayer was illustrated based on
previous publications [60,63].
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3. Discussion

In this study we demonstrated the high structural homology of the three tachyplesin peptides
TI, TII and TIII. The primary sequence of these peptides differs only between Lys or Arg residues at
positions 1 or 15, and both of these positions are located close to the flexible peptide termini. The cyclic
analogues cTI, cTII and cTIII share a high structural homology with each other and with their respective
parent peptide, but the backbone cyclization reduced the range of motion of the amino acid side chains
located in the region of the termini (see Figure 1d).

TI–TIII and cTI–cTIII were active against representative Gram-positive and Gram-negative bacteria
at low micromolar MICs (see Table 3). The antimicrobial activities of the three tachyplesin peptides were
similar, as were the activities of the three cyclic analogues; however, differences were observed between
the two groups. Overall, the parent tachyplesin peptides exhibited stronger antimicrobial activities
than the cyclic analogues against all bacteria tested in the planktonic growth form. The Gram-negative
E. coli strains were more sensitive to the peptides than the Gram-positive S. aureus strains. Against the
S. aureus biofilm (see Figure 3 and Table 4), the tachyplesin peptides were >5-fold less active compared to
the planktonic cells, likely due to the reduced accessibility of the peptides to the bacterial cell in biofilm
form or the low ability of the peptides to penetrate the extracellular matrix of exopolysaccharides
and access the cells [64]. The activities of the tachyplesin peptides against biofilms are comparable
to other tested antimicrobial peptides [53]. The efficacy against the biofilms could be increased by
using higher concentrations of the tachyplesin peptides or by using the peptide in combination with
other antibiofilm or extracellular matrix disrupting agents [65]. Interestingly, TIII had been previously
shown to prevent the formation of a Pseudomonas aeruginosa biofilm in a rat model of ureteral stent
infection [66]; thus, even if the peptides cannot be used to completely disrupt the biofilm at the tested
concentration, they could be useful for preventing biofilm formation on biomedical devices [67].

TI–TIII and cTI–cTIII peptides had a higher efficacy against the melanoma cell lines MM96L,
HT144 and WM164 than to non-cancerous cells or the HeLa cervical cancer cell line (see Table 5).
Interestingly, the cyclic tachyplesin analogues were more active against the cervical cancer cell line
HeLa, than the parent tachyplesins. Differences in membrane composition between the different cells
might explain the selectivity of the six analogues for melanoma over other cell lines [43], whereas a
variation in the lipid-binding affinity and orientation within the membrane between parent versus
cyclic analogues might explain more subtle differences observed against individual cell lines.

The experiments with model membranes confirmed the preference of all peptides for
negatively-charged membranes (see Figure 4). TI, and its cyclized analogue cTI had a higher
affinity for the negatively-charged POPC/POPS (4:1) than for neutral POPC bilayers, as shown in SPR
experiments. cTI bond stronger and dissociated slower from POPC/POPS (4:1) and POPC bilayers
than TI; however, TI disrupted both lipid bilayers with a higher efficacy than cTI. The ability of
tachyplesin peptides to disrupt negatively-charged and neutral membranes with higher efficacy than
their respective cyclic analogues, corroborates with their higher antimicrobial and hemolytic activities.

The fluorescence spectroscopy experiments show that the Trp residue of all six tachyplesin
analogues partition and/or insert deeper into POPC/POPG (4:1), than into POPC/POPS (4:1) lipid
bilayers (see Figure 5); in contrast, SPR studies show that cTI has a slightly higher affinity for
POPC/POPS (4:1) than for POPC/POPG (4:1) membranes. This apparent contradiction emphasizes that
specific phospholipid headgroups and membrane composition play a role in regulating and fine-tuning
peptide-lipid binding interactions and the location of specific residues within the membrane.

The orientation of the peptide bound to membranes might also be affected by the phospholipid
headgroup. When TI–TIII and cTI–cTIII were bound to neutral model membranes, their tryptophan
residue did not insert into the bilayer. These results support an orientation in which both parent and
cyclic tachyplesin peptides are parallel to the water-lipid interface, or with an orientation in which the
β-turn (Y8-I11) inserts into the hydrophobic region. In the presence of negatively-charged membranes,
the Trp residue of both parent and cyclic tachyplesin peptides partitioned into the membrane. However,



Int. J. Mol. Sci. 2019, 20, 4184 15 of 25

the Trp residue in cyclic peptides cTI–cTIII seemed to be more deeply inserted into the bilayer and less
exposed to the aqueous environment (see Figure 6, Tables 8 and 9).

Previous studies detected minor alterations to the peptide backbone of TI: the bending of the
termini when the peptide was in contact with lipid membranes [36,68]. Doherty et al. [69] suggested
that large amplitude motions of TI in the plane of the lipid membrane are essential for translocation,
pore formation and membrane disruption. Since backbone cyclization impacts the flexibility of the
termini region, cyclic tachyplesin analogues could be more restricted in the conformational changes
of their backbone upon interaction with the membrane. The lower flexibility in the termini region
might explain the lower ability of the cyclic analogue cTI to disrupt lipid bilayers compared to the
parent tachyplesin. Furthermore, backbone cyclization created a second turn (Y17-W2) at which the
Trp residue is located (see Figure 1d). The cyclic tachyplesin peptides are likely to insert deeply
into the lipid membrane with the second turn (Y17-W2) inserting close to the center of the bilayer
(see Figure 6 and Table 9), whereas in the parent peptides, the Trp residue is slightly closer to the
membrane interface. A shallower location of the Trp residue could result from the parent peptides
adopting a tilted orientation within the membrane (see Figure 7). Differences in the orientation of
the peptides when inserted into lipid membranes could explain the higher membrane-disruptive
properties and hemolytic activity of TI, compared to cTI (see Figure 4c and Table 6).

Backbone cyclization was shown to increase stability to proteolytic degradation, reduce membrane
disruption and decrease hemolysis (see Figure 2). Interestingly, cTII has a slightly higher hemolytic
activity compared to cTI and cTIII. cTII has an Arg residue at position 1 and a Lys at position 15, whereas
cTI and cTIII have Lys residues at position 1. Arg and Lys residues establish different interactions with
the phospholipid headgroups. The side chain of Arg residues can establish hydrogen bonds (H-bond)
with two phospholipid headgroups, whereas the side chain in Lys residues can only form one H-bond.
In contrast to Lys, Arg residues can form an H-bond through their side chains while being involved
in cation-π-interactions [70]. Taking into consideration the increased toxicity of cTII due to an Arg
residue, a Lys residue at position 1 favors the selectivity towards cancer cells.

In conclusion, TI–TIII and their cyclized analogues cTI–cTIII have high structural homology.
Backbone cyclization increased peptide stability against proteolytic degradation, reduced the flexibility
of amino acid side chains located in the terminal regions (i.e., R/K1, W2), and hemolytic activity while
maintaining potent anticancer and antimicrobial activities. Since high resistance to proteolysis and low
toxicity for host cells are preferred properties for peptide-based drug templates, the cyclic analogues
have a higher potential than the parent counterparts, despite a possible loss of potency depending on
the target. The Arg at position 1 of the amino acid sequence of TII and cTII proved to be non-beneficial
for reducing hemolytic activity and improving selectivity for cancerous cells. Thus, cTI and cTIII have
a higher potential than cTII as peptide-based anticancer drug templates. We also found that melanoma
cell lines are more susceptible to the treatment with the tachyplesin peptides than the cervical cancer
cell line HeLa. Systematic changes of the amino acid sequence might be applied to further increase
the selectivity and/or anticancer activity of cyclic tachyplesin analogues (i.e. cTI or cTIII) to target
specific cancers.

4. Material and Methods

4.1. Peptide Synthesis, Folding and Purification

The synthesis, folding and purification of synthetic peptides were carried out as previously
described [42,71]. Briefly, the peptides were synthesized using 9-fluorenylmethoxycarbonyl (Fmoc)
solid-phase peptide synthesis (SPPS) on an automatic peptide synthesizer (Symphony, Protein
Technologies Inc., Tucson, USA). Rink amide resin was used for the synthesis of parent tachyplesin
peptides and 2-chlorotrityl (2-CTC) resin for the backbone cyclized analogues. The peptides were
oxidized overnight in 0.1 M ammonium bicarbonate buffer at pH 8.5 and purified using reverse-phase
HPLC (solvent A: H2O, 0.05% (v/v) trifluoroacetic acid (TFA), solvent B: 90% (v/v) acetonitrile,
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0.05% (v/v) TFA) until the desired purity of >95%. The correct peptide mass was confirmed with
ESI-MS, while native disulfide connectivity was inferred from the dispersion of peaks in the 1D NMR
spectra using a Bruker Avance 600 MHz spectrometer (Billerica, USA). The peptide concentration was
determined from the absorbance at 280 nm (E280 = 8730 M−1.cm−1 as estimated extinction coefficient
based on the contribution of Tyr and Trp residues, and disulfide bonds).

4.2. NMR Spectroscopy

For the structural analysis of TI–III and cTI–III, peptide (1 mg/mL) was dissolved in H2O/D2O
(10:1, v/v) and the pH adjusted to pH 4–5. 1D 1H spectra, two-dimensional total correlated spectroscopy
(TOCSY) and nuclear Overhauser effect spectroscopy (NOESY) were acquired with a Bruker Avance
600 MHz NMR spectrometer (Billerica, USA) at a temperature of 298 K. Additional spectra for 1H-13C
HSQC and 1H-15N HSQC in H2O/D2O (10:1, v/v) and exclusive correlation spectra (E.COSY) in D2O
were acquired. Spectra were referenced to an internal standard 2,2-dimethyl-2-silapentone-5-sulfonate
(DSS) at 0 ppm. CYANA 3.97 was used to automatically calculate and refine structures based on
distance restraints derived from the NOESY spectra [72], and torsion angles (φ and ϕ) generated
using TALOS-N and Hα, Cα, Cβ, HN chemical shifts derived from NOESY, 1H-13C HSQC and 1H-15N
HSQC spectra [73]. Several χ1 side-chain angle restraints were added based on E.COSY and NOESY
data. A final set of structures was generated with CNS [74] using torsion angle dynamics, refinement
and energy minimization in explicit solvent. Final structures were assessed for stereochemical quality
using MolProbity [75].

4.3. Serum Stability

The serum stability assay was carried out as previously described [42] with some modifications.
Briefly, tachyplesin variants were incubated in 25% (v/v) human serum diluted in phosphate-buffered
saline (PBS) at a final concentration of 50 µM at 37 ◦C. Triplicates were collected at time 0 h and 24 h and
the serum proteins were precipitated with acetonitrile (1:3 ratio) supplemented with 3% TFA. Samples
were kept on ice for 10 min before centrifugation at 17,000× g for 10 min at 4 ◦C. The peptide containing
supernatant of each sample was harvested and quantified using RP-HPLC (10 to 45% solvent B, 1%/min
gradient). The percentage of peptide stability in human serum was calculated by comparing the area of
the peptide peak obtained at 24 h to that at time 0 h. A linear peptide containing 18 amino acid residues
(KGGGGSGQLIDSMANSFV) was included as a control susceptible to proteolytic degradation.

4.4. Hemolytic Studies

A small amount of blood was collected from three healthy human donors. The blood was
immediately diluted in PBS and centrifuged 4–5 times for 1 min at 4000 rpm to wash and separate the
human red blood cells (RBCs). RBCs suspension (0.25% (v/v) in PBS) was incubated with peptides with
two-fold serial dilutions of the peptide (highest concentration tested was 128 µM, and the lowest was
0.25 µM) in a 96-well plate. Melittin, a membrane disruptive peptide, was used as control. The plates
were incubated for 1 h at 37 ◦C. After incubation, the plates were centrifuged for 5 min at 1000 rpm to
pellet any non-lysed RBCs. A total of 100 µL of the supernatant were transferred to a new 96-well
plate [76]. The hemoglobin released into the supernatant from lysed cells was measured by absorbance
at 415 nm using the Tecan infinite M1000Pro multiplate reader (Männedorf, Switzerland).

4.5. Cell Culture

Cells were grown in cell culture flasks and incubated in a humidified atmosphere (5% CO2,
37 ◦C). The cancer cell lines HeLa and the control cell line HaCaT were grown in a DMEM medium
supplemented with 1% (v/v) penicillin/streptomycin and 10% (v/v) fetal bovine serum (FBS). The cancer
cell lines MM96L, HT144 and WM164 were grown in a RPMI medium supplemented with 1% (v/v)
penicillin/streptavidin, 10% (v/v) FBS, 20 mM l-glutamine, and 10 mM sodium pyruvate. Cell cultures
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were maintained by dilution upon reaching confluence, each 48–72 h. More information about the cell
lines [77] is available in Tables S2 and S3.

4.6. Cytotoxicity Assays

Cells were seeded into 96-well flat-bottom plates at 5 × 103 cells/well and incubated overnight.
The medium was removed and replaced with 90 µL serum-free medium, 10 µL of 10x concentrated
peptide solutions in PBS were added. PBS was added as blank and 0.1% (v/v) Triton X-100 was used to
establish 100% of cell death. After 2 h incubation at 37 ◦C, 10 µL of filtered 0.05% (w/v) resazurin solution
was added to each well [70]. Resazurin is converted to the pink and fluorescent compound resorufin by
viable cells [78]. After incubation overnight, the fluorescence intensity (λex = 565 nm and λem = 584 nm)
was measured with the Tecan infinite M1000Pro multiplate reader (Männedorf, Switzerland).

The selectivity was calculated through the activity-toxicity index (ATI) [46]. ATI = MHC/MCC50,
with MHC being the minimal concentration necessary to induce 10% or 50% cell death in human red
blood cells and MCC50 the median of cytotoxic concentrations (CC50) of all tested melanoma cell lines.

4.7. Antimicrobial Studies

S. aureus ATCC 25923, S. aureus ATCC 6538, E. coli ATCC 25922, and E. coli DC2 CGSC 7139 were
grown in Mueller Hinton Broth (Sigma Aldrich, St. Luis, USA). Bacterial cultures in the exponential
growth phase were diluted to an OD600nm of 0.001 and seeded into 96-well plates. Peptides at different
concentrations, starting at 64 µM and with two-fold serial dilutions (i.e., 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25,
0.125 and 0.0625 µM), were incubated with cells [43]; 0.05% (v/v) resazurin was added to the cultures
the next day and the conversion to resorufin was measured after 1 h of incubation at 37 ◦C using a
565 nm excitation and 584 nm emission wavelength, as above.

4.8. Biofilm Studies

S. aureus ATCC 6538 (1 × 106 cfu/mL) was cultured in Tryptic Soy Broth, containing 0.25% (w/v)
glucose and incubated in 96-well microtiter flat-bottomed polystyrene plates for 24 h at 37 ◦C. Preformed
biofilms were then washed with Mueller Hinton Broth to remove non-adherent cells. Two-fold serial
dilutions of each peptide (highest concentration tested was 32 µM and lowest was 0.25 µM) were
added to the biofilms for 4 h. Untreated 24 h preformed biofilms were used as a control. The metabolic
activity of biofilm-embedded cells was determined using a resazurin reduction fluorometric assay as
previously described [53].

4.9. Lipid Vesicle Preparation

Mixtures with synthetic lipids (POPC, POPS, POPG, Avanti Polar Lipids) or E. coli lipid extract
(Avanti Polar Lipids, Alabaster. USA) were extruded in HEPES buffer (10 mM HEPES, 150 mM NaCl,
pH 7.4) to produce lipid vesicles, as previously described [43,79]. LUVs (Ø ≤ 100 nm) were used in
fluorescence spectroscopy assays and small unilamellar vesicles (SUVs, Ø ≤ 50 nm) for SPR.

4.10. Fluorescence Spectroscopy Assays

Fluorescence emission spectra (300–400 nm, excitation at 280 nm, slits 3/3 mm) of 12.5 µM peptide
and l-Trp in HEPES buffer (in quartz cuvettes, path length of 0.5 cm) were scanned upon titration with
LUVs composed of various lipid compositions (up to 3 mM POPC, and up to 1.5 mM POPC/POPS (4:1)
or POPC/POPG (4:1)) [80] using a FluoroMax-4 spectrofluorometer (Horiba, Kyoto, Japan). Integrated
areas of the fluorescence emission spectra were corrected for fluorophore dilution and light dispersion
due to titration with LUVs suspension; the blank was discounted.
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4.11. Quenching of Tryptophan Fluorescence

The membrane in-depth location of the Trp residue within the peptides was followed using
Acrylamide (Sigma Aldrich, St. Luis, USA) and 5- and 16-DS (Sigma Aldrich, St. Luis, USA).
Quenching induced by acrylamide was monitored with 12.5 µM peptide in a HEPES buffer, in the
presence of 1 mM of POPC, 0.1 mM POPC/POPS (4:1), 1 mM POPC/POPS (4:1), or 0.1 mM POPC/POPG
(4:1) titrated with increasing concentration of acrylamide [81]. The fluorescence emission spectra
were determined with an excitation wavelength of 290 nm to reduce the quencher/fluorophore light
absorption ratio. The fluorescence emission spectra area was corrected for the inner filter effect [82]
due to increased absorbance of acrylamide. Data points were analyzed using the Stern-Volmer
representation (Equation (1)), the KSV is determined from the slope.

I0

I
= 1 + KSV [Q] (1)

A total of 12.5 µM of TI, or of cTI, in HEPES buffer and 1 mM POPC/POPS (4:1) were titrated with
increasing concentration of 5DS, or of 16DS. The fluorescence emission spectra area was corrected for
the inner filter effect [82] due to increased absorbance of 5-,16DS. The effective concentration of 5DS and
16DS in the lipid bilayer was calculated: partition coefficients of 5DS and 16DS into fluid membranes
are 89,000 and 9730, respectively [59,81]. The data points had a negative deviation to linearity and the
KSV was determined by fitting the data with the Lehrer equation (Equation (2)) [59,81].

I0

I
=

1 + KSV [Q]

(1 + KSV [Q])(1− fB) + fB
(2)

I0 = fluorescent intensity in buffer
I = fluorescent intensity in presence of quencher
KSV = Stern-Volmer constant
[Q] = quencher concentration
f B = fraction of light accessible to the quencher =

I0,B
I0

I0,B = fluorescent intensity of the accessible population of the quencher when [Q] = 0

The average distance of the Trp residue from the bilayer center (Å) was determined using the
parallax method [62] following the equation,

z1F =

(
1
−πC ln F1

F2
− L2

21

)
2L21

(3)

zcF = z1F + Lc1 (4)

in which the z1F is the distance between the Trp residue and the quencher moiety in 5DS, L21 is the
distance between the quencher groups in 5 and 16DS (5 Å), F1 is the fluorescence of 12.5 µM of TI,
or of cTI, in the presence of 1 mM POPC/POPS (4:1) and 0.4 mM 5DS, F2 is the fluorescence of 12.5 µM
of TI, or of cTI, in the presence of 1 mM POPC/POPS (4:1) and 0.4 mM 16DS. C is the molar fraction
of quencher within the total lipid concentration per unit area (assuming the surface of lipid to be
70 Å2) [62]. zcF is the distance between the Trp residue and the center of the bilayer, Lc1 is the distance
between the center of the bilayers and the quencher group of 5DS (15 Å).

4.12. Surface Plasmon Resonance (SPR)

SPR was used to investigate the affinity and binding kinetics of peptides to membranes of different
compositions. The experiments were conducted with an L1 biosensor chip (GE Healthcare) at 25 ◦C
using a BIAcore 3000 instrument (GE Healthcare, Chicago, USA) [83,84]. The HEPES buffer was used
for sample preparation and as a running buffer. Lipid bilayers were immobilized onto L1 chip by
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injection of SUVs at a flow rate of 2 µL/min. Peptide samples with two-fold serial dilutions (the highest
concentration tested was 64 µM and the lowest was 1 µM) were injected over the lipid bilayer at a
flow rate of 5 µL/min. Association of the peptides onto the lipid bilayer was followed for 180 s and
the dissociation from the lipid for 600 s. The BIAeval software was used to analyze the sensorgrams.
The response units (RU) were normalized to the peptide-to-lipid ratio (P/L); the P/L obtained at a fixed
time point at the end of the association curve (at 170 s), at which the response has reached a plateau
and the binding is close to equilibrium, was used to compare the affinity of the peptides to the different
lipid systems [84].

4.13. Vesicle Leakage Assay

LUVs (Ø ≤ 100 nm) were prepared with the HEPES buffer containing 40 mM of the fluorescent
5-carboxyfluorescein (CF, Sigma Aldrich, St. Luis, USA). LUVs filled with CF at self-quenching
concentrations were separated from the non-encapsulated dye on a Sephadex G-50 column equilibrated
with HEPES buffer [85]. The concentration of CF-LUVs was determined through a calibration curve
prepared from the original lipid mixture using Stewart’s assay (absorbance at 485 nm) [86]. Peptides
were incubated (25 ◦C, 20 min) at two-fold dilutions (starting at 10 µM) with LUVs (5 µM) in the
HEPES buffer in a 96-well flat-bottom black optiplates (Perkin Elmer, Waltham, USA). Vesicles and
peptides were incubated for 20 min in dark and the release of CF was measured in a Tecan infinite
M1000Pro multiplate reader using 490 nm as the excitation and 513 nm as emission wavelengths.

4.14. Statistical Analysis

Values (mean or fit ± SEM) were analyzed in GraphPad Prism 7 to test for significant differences
in the cytotoxic activity of the peptides. The multiple t-test function with the Holm–Sidak method was
applied when indicated. P values below 0.05 were considered to be significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/17/
4184/s1.
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BMRB Biological magnetic resonance data bank
CC Cytotoxic concentration
CF 5-carboxyfluorescein
cTI Cyclic Tachyplesin I
cTII Cyclic Tachyplesin II
cTIII Cyclic Tachyplesin III
cTI–cTIII Cyclic Tachyplesin I, II and III
DS Doxyl-stearic acid
E.COSY Exclusive correlation spectra
ESI-MS Electrospray ionization mass spectroscopy
FBS Fetal bovine serum
Fmoc 9-fluorenylmethoxycarbonyl
HC50 Hemolytic concentration necessary for 50% lysis of RBCs
HDP Host defense peptide
KSV Stern – Volmer constant
LPS Lipopolysaccharide
LUV Large unilamellar vesicle
MCC Minimal cytotoxic concentration
MHC Minimal hemolytic concentration
MIC Minimal inhibitory concentration
NMR Nuclear magnetic resonance
NOESY Nuclear Overhauser effect spectroscopy
PBS Phosphate buffered saline
PDB Protein data bank
PC Phosphatidylcholine
PS Phosphatidylserine
PG Phosphatidylglycerol
P/L Peptide-to-lipid ratio
POPC 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine
POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine
POPG 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)
RBCs Red blood cells
RP-HPLC Reverse-phase high-performance liquid chromatography
RT Retention time
RU Response unit
SEM Standard error of mean
SPPS Solid phase peptide synthesis
SPR Surface plasmon resonance
SUV Small unilamellar vesicle
TI Tachyplesin I
TII Tachyplesin II
TIII Tachyplesin III
TI–TIII Tachyplesin I, II and III
TFA Trifluoroacetic acid
TOCSY Total correlated spectroscopy
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