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Abstract: The heat generated by a high-power device will seriously affect the operating efficiency
and service life of electronic devices, which greatly limits the development of the microelectronic
industry. Carbon fiber (CF) materials with excellent thermal conductivity have been favored by
scientific researchers. In this paper, CF/carbon felt (CF/C felt) was fabricated by CF and phenolic
resin using the “airflow network method”, “needle-punching method” and “graphitization process
method”. Then, the CF/C/Epoxy composites (CF/C/EP) were prepared by the CF/C felt and epoxy
resin using the “liquid phase impregnation method” and “compression molding method”. The
results show that the CF/C felt has a 3D network structure, which is very conducive to improving
the thermal conductivity of the CF/C/EP composite. The thermal conductivity of the CF/C/EP
composite reaches 3.39 W/mK with 31.2 wt% CF/C, which is about 17 times of that of pure epoxy.

Keywords: polymer composites; CF; thermal conductivity; 3D oriented structure

1. Introduction

Over the past few years, the microelectronic industry has been rapidly developed and
5G technology is becoming more mature [1,2]. Electronic equipment is becoming more and
more miniaturized and high-performance. Heat dissipation is still a serious factor hindering
the development of electronic equipment. If the heat of electronic equipment cannot be
discharged in time, the temperature of electronic equipment will rise rapidly, which will
affect the efficiency and service life of electronic equipment. Therefore, the research and
development of materials with high thermal conductivity has become a solution to the
problem of heat dissipation. Polymer materials have good mechanical properties and
chemical stability [3–5], but the thermal conductivity is generally low. Epoxy resin is an
amorphous material, which mainly transmits heat through phonon heat conduction, so the
thermal conductivity is only about 0.2 W/mK, so it needs to be modified [6].

The method of adding fillers is a fast way to improve the thermal conductivity of poly-
mers. Metal materials (such as copper powder [7–9], silver powder [10,11], metal sheet and
wire [12–14]), carbon materials (such as carbon fiber (CF) [15–17], graphene material [18,19],
graphite material [20,21], carbon nanotubes [22,23], carbon black [24,25]), inorganic fillers
(such as aluminum nitride [26,27], boron nitride [28–30], silicon nitride [31,32], silicon
carbide [33], alumina [34,35]) and other high thermal conductivity fillers are often used to
improve the thermal conductivity of polymers. When the particulate filler content is small,
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it is difficult to significantly improve the thermal conductivity of the matrix. When the
filler forms a certain thermal network chain inside the polymer, the thermal conductivity
of the composite material will be promoted significantly. However, when the content of
the thermal conductive filler is too high, the granular material is prone to agglomeration,
which makes the composite have certain defects and destroys the mechanical property.
As a one-dimensional (1D) material, CF has high thermal conductivity in the axial direc-
tion of the fiber [36,37]. The CF filaments easily overlap each other inside the matrix to
form a denser heat-conducting network [38,39]. The overlapping area between the CFs
can greatly promote the heat conduction efficiency of the composite material. Therefore,
the application and development of CF materials in the field of thermal management
have become more and more prevalent in recent years. Tongle Xu et al. [40] mixed CF
and graphene materials in a vacuum environment to form a three-dimensional thermal
conductive structure. Then, the mixture was impregnated in polyamideimide resin (PAI).
The thermal conductivity of CF composite material in the vertical direction is 0.53 W/mK,
which is 1.65 times higher than that of pure PAI material. Jiake Ma et al. [41] fabricated
epoxy/CF composites with a three-dimensional (3D) CF framework by the freeze-drying
method. When the CF content is 13 vol%, the vertical thermal conductivity of the composite
(2.84 W/mK) is about 15 times that of pure epoxy resin. Xiao Hou et al. [42] composited CF
filaments with uniaxial orientation with Polydimethylsiloxane (PDMS), and the thermal
conductivity of the material in the vertical direction reached 6.04 W/mK. The reed structure
of CF promotes the transmission of heat, but the uniaxially oriented composite material
also has the limits of the application in the field of thermal management materials.

Using CF to form a high thermal conductivity path network in composites is a research
hotspot at present. In addition to forming an orientation structure in the composite, it is also
necessary to form a connection between the orientation structures to further expand the
heat path and promote the heat transfer efficiency of the heat conduction phonon. In this
paper, CF felt with a three-dimensional CF framework structure was prepared by the “air
flow network method” and the “needle-punching method”. The “graphitization process
method” was used to fabricate CF/C felt with a carbon bonded structure between the three-
dimensional CF frameworks by the pyrolysis of phenolic resin at high temperature. The
CF orientation structure makes the CF have higher thermal conductivity in the orientation
direction. The bonded carbon structure can further broaden the thermal conduction path,
reduce the interfacial thermal resistance, and improve the thermal conductivity of the
composites. Finally, the CF/C/Epoxy (CF/C/EP) composites were prepared by liquid-
phase impregnation and the compression molding method. When the CF/C content
reaches 35.2 wt%, the thermal conductivity of the composite reaches 3.39 W/mK. The
methods used in this study are simple and can be used in large-scale production, which
can provide some suggestions for the application of thermal conductive materials in the
microelectronic and aerospace industries.

2. Materials and Methods
2.1. Materials

The SYT45 CF used in this study is a kind of Polyacrylonitrile-based CF (PAN CF). The
diameter and the density of the CF material are 7 µm and 1.79 g/cm [3], respectively. The
tensile strength and the tensile modulus of the CF are 4000 MPa and 230 GPa, respectively.
The CF used in the study was purchased from Zhongfu Shenying CF Co., Ltd., Lianyun-
gang, China. Phenolic resin PF-5408 with 65 wt% solid content, 9.5–11.8 wt% free phenol,
2.5–4.0 wt% moisture was supplied by Shengquan Group Co., Ltd., Jinan, China. Epoxy
resin Araldite LY 1564 is a white transparent liquid with a viscosity of about 40 mPa·s.
Polyamine curing agent Aradur 3486 is a light yellow liquid. Both reagents were supplied
by Huntsman Company, Salt Lake City, Utah, USA.
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2.2. Preparation Method of CF Felt

Figure 1 indicates the preparation process of the CF felt and CF/C felt. The CF felt
is prepared by the airflow network technology and needle punching method. The main
preparation steps are as follows: The CF filaments with a length of 12 mm were put into a
chamber with some nets. After passing through a section of air duct, the CFs fell down to
form an x-y structure CF mat. The gas pressure difference is one atmosphere. Then, the
needle punching was introduced. Some of the CF filaments in the x-y plane were punched
into the z-axis direction. The ratio of the CF filaments in the x-y plane and z-axis plane is
100:1. These z-axis CFs strengthened the connection of the mat. The density of the CF felt is
about 0.04–0.08 g/cm [3]. The thickness is about 10 mm. This equipment is from Vulcan
New Materials Technology Co., Ltd., Hangzhou, China.
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Figure 1. The preparation process of the carbon fiber (CF) felt and CF/C felt.

2.3. Preparation Method of CF/C Felt

CF/C felt was optimized on the basis of CF felt. The main preparation methods are
as follows: The phenolic resin and ethanol solution were mixed in a certain proportion
and were stirred evenly. A quality of CF felt was immersed in a phenolic solution. The
felt body was fully impregnated and then was transferred to the oven at 120 ◦C for 1 h
to remove the ethanol, and 170 ◦C for 5 h to cure. At last, the cured composite was put
into the high temperature furnace at 2000 ◦C for the graphitization process. The phenolic
resin was decomposed under the high temperature and the carbon residue was left on the
surface of the CF. The anisotropic CF/C composite has been prepared completely. This
kind of composite is different from the CF felt. The CF/C felt, cured and graphitized, has a
certain strength and 3D stable structure. The carbon produced by the pyrolysis of phenolic
resin can bond the fibers together, increase the thermal conduction path between the fibers,
and further improve the thermal conductivity of the composites.

Preparation Method of the CF/C/EP Composite

The preparation process of the CF/C/EP composite is shown in Figure 2. The physical
picture is reflected in Figure 3. The raw materials of the CF/C/EP composite are the CF/C
felt and epoxy resin. The main steps are as follows: Firstly, the CF/C felts were immersed
into the epoxy system (epoxy/curing agent = 3/1) for 2 h in a vacuum oven. Secondly, the
CF/C felt with epoxy resin was transferred into the hot press at 100 ◦C for 1 h under the
pressure of 10 MPa. Then, the CF/C/EP composite was prepared after demolding. The size
of the mold is 4 cm × 4 cm × 2 cm. In this paper, the content of CF/C felt in epoxy resin
was increased by different compression ratios. The compressive ratios of the composite
were 1, 1.5, 2 and 2.5, respectively.
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2.4. Characterization Methods

In this study, digital analytical balance FA1106 and digital vernier caliper SHAHE were
selected for measuring the mass and volume of the CF/C/EP composite. The two tools
were manufactured by Biaogeda Laboratory Instrument Supplies Co., Ltd., Guangzhou,
China and Ningbo Beilun District Kecheng Instrument Co., Ltd., Guangzhou, China,
respectively. The optical photos of CF/C/EP composites were captured by a Sony α6000L
digital camera. The microstructure of CF felt, CF/C felt and CF/C/EP composite materials
was observed and analyzed by the scanning electron microscope. The instrument was
produced by Jianhu Instrument Equipment Co., Ltd., Shanghai, China. The cross-section
samples were obtained by the quenching method, and to make the image clear, a nano layer
of gold material was evaporated on the cross section. The thermogravimetric analysis (TGA)
of the CF/C/EP composite was conducted by the NETZSCH TG209 F3 from Germany
under a nitrogen atmosphere at the range of 50–800 ◦C with a heating speed of 20 ◦C per
min. The surface of the composite was tested by the thermal infrared imaging of Ti-400
from the Fluke Company, Everett, WA, USA. For studying the heat transfer performance
of the composite, the thermal conductivity of samples was tested by the hot disk thermal
constant analyzer (TPS500) according to ISO/DIS 22007-2.2 ”Plastics determination of
thermal conductivity and thermal diffusivity—Part 2: Transient plane heat source (Hot
Disk) method”, and this instrument was purchased from Kegonas Ltd., Stockholm, Sweden.

3. Results and Discussions
3.1. The Preparation and Morphology of the CF Composites

The schematic of the CF felt and CF/C felt is illustrated in Figure 4. The length of the
CF used in the study is 12 mm. The 1D CF is distributed in the x-y plane by the “airflow
network method”. Because of the non-binding between the CF filaments, the CF mat
treated by the airflow is loose and difficult to be the felt. Moreover, the orientation of the
few CF filaments could be changed with the introduction of the needle-punching method.
The CFs in the x-y plane change the distribution of the CF to the z-axis direction, which
enhances the bonding of the CF filaments in different x-y planes and provides more heat
conduction paths.



Polymers 2021, 13, 980 5 of 13

Polymers 2021, 13, x FOR PEER REVIEW 5 of 13 
 

 

enhances the bonding of the CF filaments in different x-y planes and provides more heat 
conduction paths. 

 
Figure 4. The schematic diagram of the CF felt and CF/C felt. 

In order to further increase the stability of CFs, pyrolysis carbon from phenolic resin 
was used to bond the CFs close to each other. The CF felt tends to be hard, which has a 
more sTable 3D structure. Due to the surface tension, the phenolic resin is more likely to 
stay at the overlapping point. The carbon residues mostly appear at the intersection of CF 
filaments, and the enhancement of the 3D structure provides a great help for the prepara-
tion of epoxy CF materials. It is worth noting that the carbon residue left by the phenolic 
resin strengthens the felt structure and further improves the conductivity of the compo-
site. Oriented CFs can improve the in-plane thermal conductivity. The thermal conductiv-
ity of the 3D thermal skeleton can be improved by reducing the thermal resistance of the 
interface and widening the thermal conduction path. 

As is shown in Figure 3, three samples are the pure epoxy resin, CF/C/EP composites 
with low content CF/C felt and high content CF/C felt. The cross-section of pure epoxy 
resin is smooth and transparent. However, the thermal conductivity of epoxy resin is low, 
and the introduction of CF can improve the thermal conductivity of the epoxy composites. 
It could be seen that when the CF/C content is low, some white holes exist in the cross-
section of the CF/C composite, but these holes disappear when the CF/C content increases. 
The integrity of the composite is improved and more holes are squeezed out with the CF/C 
content increasing, which is good for the heat transmission inside the material. 

Figure 5 reveals the morphology of the CF felt and the CF/C/EP composite. It can be 
seen in Figure 5 that the morphology of the composite in different directions is character-
ized by scanning electronic microscopy (SEM). The surface of the CF is smooth and the 
filament is about 7 μm at the diameter in Figure 5a. Many overlapping CF filaments are 
connected by the carbon residue in Figure 5b,c. The layered structure could remain after 
the immersing and heating process. As is shown in Figure 5b, there are many carbon res-
idues formed after the treatment of the graphitization process. Therefore, these carbon 
residues further stabilize the structure of the CF/C felt and provide more heat conduction 
paths inside the composite. Figure 5c shows the SEM images of the CF/C felt in the z-axis 
direction, which provides a very clear layered structure. Most of the CFs are distributed 
in the x-y plane direction, and a small amount of CF filaments change the original distri-
bution and present a vertical distribution with the introduction of the needle punching 
method. These CF filaments improve the stability to a certain extent, and play an im-
portant role in maintaining a good structure. On the other hand, the vertical CF is good 
for promoting the thermal conductivity of the material. Due to the effect of the surface 
tension, the phenolic resin with high viscosity easily stays at the intersection of CF fila-
ments. After being immersed in the epoxy resin, the pores and cracks of the composite 
could almost not be found. Figure 5d–f shows the morphology images of the cross section 
of the CF/C/EP composite. The CF and epoxy resin are very tightly bonded together. The 
resin wraps the overlapping CFs, and there are almost no pores and defects between the 
two parts, which also reflects that the epoxy resin has been completely immersed during 
the impregnation process. As shown in Figure 5f, under the action of lamination, the con-
tact area between CFs is greatly increased inside the composite material. Multiple CF fil-
aments are tightly combined, which greatly reduces the interface thermal resistance. The 

Figure 4. The schematic diagram of the CF felt and CF/C felt.

In order to further increase the stability of CFs, pyrolysis carbon from phenolic resin
was used to bond the CFs close to each other. The CF felt tends to be hard, which has a
more sTable 3D structure. Due to the surface tension, the phenolic resin is more likely
to stay at the overlapping point. The carbon residues mostly appear at the intersection
of CF filaments, and the enhancement of the 3D structure provides a great help for the
preparation of epoxy CF materials. It is worth noting that the carbon residue left by the
phenolic resin strengthens the felt structure and further improves the conductivity of the
composite. Oriented CFs can improve the in-plane thermal conductivity. The thermal
conductivity of the 3D thermal skeleton can be improved by reducing the thermal resistance
of the interface and widening the thermal conduction path.

As is shown in Figure 3, three samples are the pure epoxy resin, CF/C/EP composites
with low content CF/C felt and high content CF/C felt. The cross-section of pure epoxy
resin is smooth and transparent. However, the thermal conductivity of epoxy resin is low,
and the introduction of CF can improve the thermal conductivity of the epoxy composites.
It could be seen that when the CF/C content is low, some white holes exist in the cross-
section of the CF/C composite, but these holes disappear when the CF/C content increases.
The integrity of the composite is improved and more holes are squeezed out with the CF/C
content increasing, which is good for the heat transmission inside the material.

Figure 5 reveals the morphology of the CF felt and the CF/C/EP composite. It can be
seen in Figure 5 that the morphology of the composite in different directions is characterized
by scanning electronic microscopy (SEM). The surface of the CF is smooth and the filament
is about 7 µm at the diameter in Figure 5a. Many overlapping CF filaments are connected by
the carbon residue in Figure 5b,c. The layered structure could remain after the immersing
and heating process. As is shown in Figure 5b, there are many carbon residues formed
after the treatment of the graphitization process. Therefore, these carbon residues further
stabilize the structure of the CF/C felt and provide more heat conduction paths inside the
composite. Figure 5c shows the SEM images of the CF/C felt in the z-axis direction, which
provides a very clear layered structure. Most of the CFs are distributed in the x-y plane
direction, and a small amount of CF filaments change the original distribution and present
a vertical distribution with the introduction of the needle punching method. These CF
filaments improve the stability to a certain extent, and play an important role in maintaining
a good structure. On the other hand, the vertical CF is good for promoting the thermal
conductivity of the material. Due to the effect of the surface tension, the phenolic resin with
high viscosity easily stays at the intersection of CF filaments. After being immersed in the
epoxy resin, the pores and cracks of the composite could almost not be found. Figure 5d–f
shows the morphology images of the cross section of the CF/C/EP composite. The CF
and epoxy resin are very tightly bonded together. The resin wraps the overlapping CFs,
and there are almost no pores and defects between the two parts, which also reflects
that the epoxy resin has been completely immersed during the impregnation process. As
shown in Figure 5f, under the action of lamination, the contact area between CFs is greatly
increased inside the composite material. Multiple CF filaments are tightly combined, which
greatly reduces the interface thermal resistance. The possibility of contact increasing means
that the heat conduction paths are enriched, and the phonons could spread smoothly in
the carbon network, which optimizes the thermal performance of the composite. It is
worth recognizing that the needle punching method and compression molding method are
beneficial to improve the thermal performance of the CF/C/EP composite.
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3.2. The Heat Resistance of the CF/C/EP Composite

Thermogravimetry can be used to characterize the thermal stability of a composite
and the content of filler in the composite. Figure 6 is the curve of the TGA. Figure 6 exhibits
the heat resistance and CF/C content in the CF/C/EP composite. Table 1 marks the final
CF/C residue content in Figure 6. It can be found that the residues of CF/C/EP composites
increase with the increasing CF/C felt content. When the compressive ratios of the CF/C
felt are 1, 1.5, 2, and 2.5, the content of CF/C is 17%, 23.3%, 32.2% and 35.2%, respectively. It
is worth noting that the CF/C/EP could not be decomposed until 280 ◦C, which shows the
good heat resistance of the composite. In addition, with the increase in CF/C content in the
composites, the decomposition temperature of the composites increases gradually, which
indicates that the increase in CF/C is beneficial to improve the thermal decomposition
temperature of the composites.
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Table 1. The loading of the CF/C in the various CF composites.

Samples CF/C [vol (g/cm3)] CF/C [wt%]

CF/C/EP-1 2.7 17.0
CF/C/EP-1.5 4.2 23.3
CF/C/EP-2 5.5 32.2

CF/C/EP-2.5 7.0 35.2

3.3. Thermal Conductivity of the CF/C/EP Composites

The thermal conductivity of the CF/C/EP composite is tested from two directions
by a hot disk thermal constant analysis instrument. A thin disc-shaped double helix
probe was used as a plane heat source and a temperature sensor, which was placed in
the middle of the two testing samples with smooth surfaces. By adjusting the heating
power and the temperature rise of the probe, the thermal conductivity of the composite
could be measured. Figure 7a summarizes the thermal conductivity of the CF/C/EP
composite. The thermal conductivities in the through-plane direction are 0.19 (0% CF/C),
0.71 (17.0% CF/C), 1.09 (23.3% CF/C), 1.22 (32.2% CF/C) and 1.34 W/mK (35.2% CF/C),
respectively, showing that the thermal conductivity of the CF/C/EP composite increases
with increasing CF/C content in the composite. Compared with the thermal conductivity
in the through-plane, a more significant increase is shown in the in-plane direction. The
thermal conductivities in the through-plane direction are 0.19 (0% CF/C), 2.00 (17.0%
CF/C), 2.67 (23.3% CF/C), 3.28 (32.2% CF/C) and 3.39 W/mK (35.2% CF/C), respectively,
showing that the thermal conductivity in the in-plane direction of the CF/C/EP composite
also increases with increasing CF/C content in the composite. With the increase in CF
content, the proportion of high thermal conductivity material (CF/C) increases, the contact
surface between CFs increases, the thermal conduction path increases, and the thermal
conductivity increases. Therefore, the thermal conductivities of CF/C/EP composites both
in-plane and through-plane all increase with the increasing CF/C content. Although the
contact interface between the CF/C skeleton and epoxy matrix also increases, there is a
certain interface thermal resistance. However, the contribution of high thermal conductivity
filler to the thermal conductivity is far higher than the negative effect of the interface, so the
thermal conductivities of CF/C/EP composites all gradually increase with the increasing
CF/C content.

Figure 7b reflects the enhancement of the thermal conductivity of the CF/C/EP
composites with different CF contents. Comparing the two groups of data, it can be seen
that the thermal conductivities of CF/C/EP composites in the in-plane direction are all
much higher than those of CF/C/EP composites in the through-plane direction, which
can be classified as the following points. (1) SEM images from Figure 5 show that most
of the CFs are laid in the x-y plane, so most of the axial directions of CFs are distributed
in the x-y plane. There are few CFs in the z direction. The thermal conductivity of CF
in the axial direction is much higher than that of the vertical direction due to the effect
of tensile crystal orientation, so it can be understood that the thermal conductivities of
CF/C/EP composites in the in-plane direction are all much higher than those of CF/C/EP
composites in the through-plane direction. (2) From the SEM images of Figure 5c, it can
be seen that the distance of CFs between the adjacent planes is much higher than that in
the same plane. Therefore, the connection points between the CFs in the adjacent planes
are also relatively small, the heat conduction path is relatively small, and the CFs in the
adjacent planes are blocked by a lot of epoxy resin, so the number of heat conduction
systems in the z direction is relatively low. (3) It can be seen from Figure 5b,c that there
are many bonding carbon points between the in-plane CFs, which can bond the in-plane
CFs together and increase the thermal conductivity path, thus promoting the improvement
of the thermal conductivity of CF/C/EP composites in the in-plane direction. However,
due to the larger distance between the CFs in the adjacent planes, there are fewer bonding
carbon points, and the increase in the thermal conduction path is relatively small, so
the increase in thermal conductivity is relatively small. Bonded carbon points promote
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the in-plane thermal conductivity of the CF/C/EP composite. In conclusion, the three
elements of CFs’ orientation structure, CFs’ spacing and bonding carbon points act on
the composites together, which makes the enhancement of the thermal conductivity of
CF/C/EP composites in the in-plane direction higher than that of CF/C/EP composites in
the through-plane direction.
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Figure 7c summarizes the data of the thermal conductivity from the previous re-
search [41–47]. From Figure 7c, no matter whether the resin matrix of the composite is
PDMS, epoxy or paraffin, the thermal conductivity of the composite gradually increases
with the increasing CF content, which indicates that the high thermal conductivity filler
CF can improve the thermal conductivity of the resin matrix. Through special methods
such as the “freeze-drying orientation method” or other methods, CFs can be oriented so
that the composites can obtain higher thermal conductivity in the orientation direction.
Xiao hou [42] prepared PMDS/CF composites by the “freeze-drying method”. The short
CFs in the composites were oriented in one direction. The thermal conductivity of the
composites reached 6.04 W/mK (12.8 vol% CF). Jiake Ma [41] also prepared epoxy/CF
composites by the “freeze-drying method”. The thermal conductivity of the composites
reached 2.84 W/mK (13.0 vol% CF). However, the thermal conductivity of the composites
is relatively high only in one direction, and the thermal conductivity in other directions
is limited. In addition, the preparation methods of these composites are complex, so it
is not suitable for the large-scale preparation of high thermal conductivity composites at
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this stage. In this paper, the preparation methods of high thermal conductivity composites
have the following advantages. (1) 3D CF/C skeleton structure can make the composites
obtain higher thermal conductivity in plane, which has certain performance advantages
compared with other structures. The thermal conductivity of the CF/C/EP composite
reaches 3.39 W/mK with 31.2 wt% CF/C, which is about 17 times that of pure epoxy. The
x-y-z structure of the composite is consistent in all directions in the x-y plane, that is, higher
thermal conductivity is obtained in both directions, which is conducive to heat dissipa-
tion in all directions in the x-y plane. (2) In this paper, CF/C felt was fabricated by CF
and phenolic resin using the “airflow network method”, “needle-punching method” and
“graphitization process method”. The CF/C/EP composites were prepared by the CF/C
felt and epoxy resin using the “liquid phase impregnation method” and the “compression
molding method”. These preparation methods are very mature and can be used to prepare
high thermal conductivity composites on a large scale. The composites can be processed
and applied directly. The maximum size of the composite can reach 2000 × 2000 × 50 mm,
which is more conducive to industrialization.

3.4. Thermal Management Performance of the CF/C/EP Composite

The pure epoxy resin, low content and high content CF composites were selected as
test subjects to study the thermal management performance. The surface temperatures of
the composites were captured by thermal infrared imaging, as shown in Figure 8. The three
samples all have the specification of 1 cm × 1 cm × 0.1 cm and were put on the same heat
source. In Figure 8, the temperature distribution at the surface and the surface temperature
curve with the heating time are shown.
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The optical picture of the three samples, which are epoxy resin, low content CF/C
and high content CF/C composite, respectively, is exhibited in Figure 8. It can be seen that
the three samples reflect significantly different temperatures at the surface in 10 s. The
temperature of the high content sample changes faster than that of the epoxy resin and the
low content composite. As time goes on, the gap between the three samples becomes larger
and larger. From the changes in the temperature, it can be found that the high content
CF/C/EP composite has the best heat transfer and thermal management performance. The
curve of the temperature trend at the surface can better reflect the thermal performance.
The curve of temperature versus time can reflect the thermal management performance of
the materials. The thermal conductivity of epoxy resin (0.19 W/mK) is the lowest, so the
temperature of epoxy resin is the lowest among the three samples and the heat transfer
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ability of epoxy resin is the worst. With the addition of CF/C, the thermal conductivity of
the composite increases gradually, and the ability of heat transfer of the composite material
is gradually enhanced. Therefore, with the increasing CF/C content, the temperature of
the composite increases more obviously. When heated for 40 s, the temperature at the
surface of the epoxy resin, low content and high content composites is 95.4 ◦C, 113.3 ◦C
and 141.2 ◦C, respectively.

Figure 9 displays the mechanism of the heat conduction in the CF/C/EP composite.
CF/C forms a 3D thermal network in the epoxy resin. The higher thermal conductivity and
better thermal management ability of the 3D thermal skeleton in the CF/C/EP composite
can be attributed to the following points. (1) In the CF/C/EP composites, the heat transfer
is along the axial direction of CF, so the thermal conductivity of CF/C/EP composites is
relatively high, and the thermal management ability is good. The thermal conductivity
of the CF in the axial direction is higher than that in the non-axial direction due to the
tensile crystalline orientation of the CF in the manufacturing process. Seen from the SEM
images in Figure 5, the axial direction of CFs is mainly concentrated in the x-y plane. When
the heat is transferred in the plane, most of the heat transfer direction is along the axial
direction of CFs. Therefore, the higher the CF/C content in the composite, the higher the
thermal conductivity of the composite, the stronger the ability of heat dissipation, and the
better the thermal management ability. (2) The bonding carbon points between the CFs
increase the thermal conduction path, improve the thermal conductivity of the composite,
and further improve the thermal management ability of the composite. According to
the fractal theory [48–50], the increase in the connecting path is beneficial to improve the
thermal conductivity of the composites. In this paper, the increase in carbon bonding
is equivalent to the increase in the heat conduction path, so it is in line with the fractal
theory. From the SEM images in Figure 5b, it can be found that CFs, especially the in-
plane CFs, are bonded together by the bonded carbon produced by the high-temperature
pyrolysis of phenolic resin, forming a heat conduction path. The ability of the composite to
dissipate heat has been enhanced, and the ability of heat management has become better.
(3) After compression, the density of the 3D skeleton structure is increased, the ability
of heat transfer of the composite is enhanced, the thermal conductivity is increased, and
the heat management ability is increased. After compression, the distance between CFs
becomes smaller, the density of CFs and bonded carbon increases, and the heat conduction
path increases obviously. Therefore, the thermal conductivity increases obviously, the heat
transfer effect is more obvious, and the heat management ability is improved. From the
above analysis, it can be seen that the three functions of the “CF axial increasing heat
transfer effect”, “bonded carbon increasing heat conduction path effect” and “compression
increasing heat conduction filler density effect” improve the thermal conductivity of the
composite and the thermal management ability of the composite. It is hoped that the
CF/C/EP composite structure with the 3D thermal conduction network can provide some
suggestions for the application of CF composites.
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4. Conclusions

The CF/C/EP composites with 3D thermal network structure were prepared by
the CF/C felt and epoxy resin using the “liquid phase impregnation method” and the
“compression molding method”. The CF/C felt has a 3D network structure, which is
very conducive to improving the thermal conductivity of the CF/C/EP composite. The
thermal conductivity of the CF/C/EP composite reaches 3.39 W/mK with 31.2 wt% CF/C,
which is about 17 times that of pure epoxy. The “CF axial increasing heat transfer effect”,
“bonded carbon increasing heat conduction path effect” and “compression increasing heat
conduction filler density effect” can improve the thermal conductivity of the composite
and the thermal management ability of the composite. The CF/C/EP composite structure
with the 3D thermal conduction network can provide some suggestions for the application
of CF composites in the field of aerospace and electronic material for thermal management.
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