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Several herpes- and poxviruses have captured chemokine receptors from their hosts and modified these to their own benefit. The
human and viral chemokine receptors belong to class A 7 transmembrane (TM) receptors which are characterized by several
structural motifs like the DRY-motif in TM3 and the C-terminal tail. In the DRY-motif, the arginine residue serves important
purposes by being directly involved in G protein coupling. Interestingly, among the viral receptors there is a greater diversity in
the DRY-motif compared to their endogenous receptor homologous. The C-terminal receptor tail constitutes another regulatory
region that through a number of phosphorylation sites is involved in signaling, desensitization, and internalization. Also this
region is more variable among virus-encoded 7TM receptors compared to human class A receptors. In this review we will focus on
these two structural motifs and discuss their role in viral 7TM receptor signaling compared to their endogenous counterparts.

1. Introduction

Seven transmembrane (7TM) receptors constitute the largest
superfamily of membrane proteins and function as impor-
tant mediators of extracellular signals to intracellular re-
sponses. The chemical diversity of the endogenous ligands
is tremendous ranging from small simple chemical entities
like photons, ions, and nucleotides, to more complex small
ligands like monoamines and peptides, and larger proteins,
glycoproteins, and lipids. The 7TM receptors are divided into
five classes of which class A or rhodopsin-like receptors is
the dominating class [1]. The receptors are characterized by
seven membrane-spanning α-helices as well as coupling to
G proteins; hence, the name is G protein coupled receptors
(GPCRs). (In this review we will use the term 7TM receptors
instead of GPCRs as these receptors also signal trough non-
G protein-dependent pathways, like β-arrestin-mediated sig-
naling [2].) Signaling by 7TM receptors through G proteins

leads to, for example, either inhibition (Gαi) or activation
(Gαs) of adenylyl cyclase and cAMP production, activation of
phospholipase C with inositol triphosphate turnover (Gαq),
or activation of RhoGEF (Gα12/13) depending on which G
protein the receptor is activating [3]. Furthermore, the Gβγ

subunit is also involved in signaling and the 7TM receptors
also signal via G protein-independent pathways like MAP-
kinase activation-mediated by β-arrestins [4].

Despite the structural diversity in the repertoire of
the endogenous 7TM receptor agonists, the conformational
changes that occur upon receptor activation are believed to
be overall identical. Thus, as the last two decades of biochem-
ical and biophysical studies indicate, TM6, and to a minor
degree TM7 and TM3, undergo conformational rearrange-
ment during receptor activation [5, 6]. Centered around the
highly conserved proline in the middle of TM6 (position
VI:15 or 6.50) TM6 is believed to perform movements
that results in space creation thereby permitting binding
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of intracellular signal transduction molecules like G proteins
and β-arrestins [7]. (The numbering of amino acids in the
helices is provided according to two numbering systems: the
generic numbering system suggested by Schwartz [8], fol-
lowed by the numbering system of Ballesteros and Weinstein
[9],) Several crystal structures of 7TM receptors have been
presented within the last decade initiated by the structure
of bovine rhodopsin [10] followed by the adrenergic recep-
tors [11–15], the adenosine receptors [16–18], additional
rhodopsin variants [19–21], muscarinic receptors, [22, 23]
and several others [24–26] including the chemokine receptor
CXCR4 [27]. In the recent years, crystal structures of not
only inactive, but also active 7TM receptors, have been iden-
tified. Thus, in the agonist-bound β2-adrenergic receptor,
a relatively large rearrangement of the lower segments of
TM6 is observed, when compared to the corresponding
inactive structure [13–15]. This structural feature is also
observed in the crystal structure of opsin in complex with a G
protein peptide fragment upon comparison with dark-state
rhodopsin [21, 28]. The overall arrangement of the seven
transmembrane α-helices delineate the main binding pocket,
and most studies in the search of functionally important
residues have focused on amino acids facing this main
binding pocket (delimited by TM3, TM4, TM5, TM6, and in
part TM7). This is with good reason as most small molecule
ligands interact with residues in this pocket [11, 12, 29].
Furthermore, most conserved microswitches of functional
importance also face the main binding pocket. This includes
ArgIII:26 (3.50), which is part of the conserved DRY-motif
in TM3, the rotameric toggle switch TrpVI:13 (6.48), which
is part of the CWxP-motif in TMVI, and TyrVII:20 (7.53),
which is part the NPxxY-motif in TMVII—all of which play
crucial roles during receptor activation [30, 31]. However,
also residues in the region delimited by TM1, TM2, TM3,
and TM7 (the so-called minor binding pocket) function
as regulatory switches or major ligand anchor points [32–
34].

The DRY-motif is the most conserved motif among
the microswitches mentioned above (Figures 2(a) and 2(c))
[21, 30] and has been shown to directly interact with the
G protein in a recent crystal structure of the β2-adrenergic
receptor in complex with the Gαs-subunit—a crystal that
displayed the actual signaling complex and uncovered the
importance of both the DRY-motif and the NPxxY-motif
in receptor activation [14, 35]. While the overall interaction
between the G protein and the receptor is mainly hydropho-
bic within the transmembrane core, the ArgIII:26 (3.50) is
sandwiched between a Tyr in the G protein and TyrVI:20
(7.53) of the NPxxY-motif, highlighting the importance of
concerted action of both motifs [14, 35].

The positively charged ArgIII:26 (3.50) has been pro-
posed to be involved in other conformational constrains of
importance for receptor activation. Thus, an inactivating salt
bridge (a so-called ionic lock) has been suggested between
the Arg and another conserved residue, the acidic GluVI:-
05 (6.30) in intracellular loop 3 (ICL3) [36]. This ionic lock
is broken during receptor activation where TyrVI:20 (7.53)
rotates towards the helix bundle as seen in the active crystal
structures of both rhodopsin [21] and the β2-adrenergic

receptor irreversibly bound to an agonist [37] or stabilized
by a nanobody [13]. However, as the GluVI:-05 (6.30) is
only conserved among 25 % of all class A receptors [14,
35], and not present in any of the chemokine receptors
[38], the molecular interactions involved in conformational
constraining of inactive receptor states and the role of
ArgIII:26 (3.50) must be different in receptors without
GluVI:-05(6.30). Finally, the DRY-motif interacts with ICL2
of the receptor, thereby stabilizing a position of this loop
capable of interacting with a hydrophobic pocket on the G
protein and directly linking the highly conserved DRY-motif
to the receptor/G protein interaction [14].

Another important region for receptor activity is the
intracellular C-terminal tail of the 7TM receptors as it
contains phosphorylation sites and other regulatory recog-
nition motifs necessary for desensitization by G protein-
coupled receptor kinases (GRKs), β-arrestin recruitment and
signaling, internalization and receptor recycling, and for
other means of signal regulation [39]. These two receptor
motifs will be the focus of the current review, where we
will compare the structural and functional properties, degree
of conservation, and functional diversity of the two motifs
between class A 7TM receptors encoded by viruses and
endogenously encoded 7TM receptors. Most of the virus-
encoded 7TM receptors belong to the chemokine subfamily
[40] and consequently extra attention will be directed
towards the viral molecular piracy within the chemokine
system and the endogenous chemokine receptors.

2. The Chemokine System

The chemokine system plays an important role in the human
immune defense against pathogens such as viruses since the
chemokines (abbreviated from chemotactic cytokines) are
involved in leukocyte migration during inflammation and
also control activation and differentiation of lymphoid cells
[41, 42]. The chemokine receptors belong to class A 7TM
receptors and comprise the largest subfamily within this
group with 19 different endogenous chemokine receptors
and up to 50 chemokine ligands [43]. The chemokines are
divided into four subfamilies depending on the presence or
absence of residues between the first two of usually four
conserved cysteines: the CXC (CXCL1-16) and CC (CCL1-
28) chemokines along with the CX3C (CX3CL1) and XC
(XCL1) chemokines [44, 45]. The CXC chemokines are
further divided based on an ELR-motif prior to the CXC-
motif. (In the following, the “novel” systematic chemokine
nomenclature is used [44]) ELR CXC chemokines are
induced under acute and chronic inflammation, play an
angiogenic role, and mainly attract neutrophils while the
non-ELR CXC chemokines exert their effect on lymphocytes
and are more constitutively expressed as well as being
angiostatic or angiomodulatory [46, 47]. The chemokine
receptors are likewise divided into four groups in accordance
with the classification of their preferred ligands [44, 48].
The interaction between chemokine and receptor range
from high selectivity to large promiscuity; although not
cross-interacting with other subfamilies. The main signaling
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pathway of the endogenous chemokine receptors is via Gαi

leading to calcium release and chemotaxis [49].

3. The Virus-Encoded 7TM Receptors

Considering the role of chemokines in the immune system
it is not surprising that several viruses, by an act of
molecular piracy of host genes, encode chemokines and/or
chemokine receptors in their genomes. It is primarily the
large poxviruses and the β- and γ-herpesviruses which
encode chemokine receptors (and ligands) [50], however
also the retrovirus HIV utilizes the endogenous chemokine
system by using the two chemokine receptors CCR5 and
CXCR4 as cell-entry co-factors together with CD4 during
infection and spread [42, 51]. Also the viral CC (and
CX3C) chemokine receptor homolog US28 (described fur-
ther below) encoded by HCMV (human cytomegalovirus)
has been implicated as a HIV cell-entry co-factor [52]. The
majority of the viral receptors have structural features in
common with the endogenous chemokine receptors in spite
of having a sequence identity to these of only 25–59% [42].
However, compared to the endogenous chemokine receptors,
the viral receptors show a vast divergence in their signaling
capacities as well as ligand specificity with constitutive activ-
ity being typical for the viral receptors, unlike the endoge-
nous chemokine receptors [53–57]. Constitutive activity
also occurs among endogenous non-chemokine receptors,
as shown for a few receptors [58]; however an increasing
number of examples illustrate that the range of naturally-
occurring constitutively activating mutations are tightly
associated with disease or a particular phenotype [58]. This
includes mutations in the melanocortin 1 receptor (MC1R;
associated with melanism, [59]), MC4R (obesity, [60]), the
ghrelin receptor (short stature, [61]) and rhodopsin (retinitis
pigmentosa, [62]) among others.

Furthermore, besides being constitutively active, the viral
receptors also signal promiscuously through many pathways,
as compared to the predominant Gαi coupling of endogenous
chemokine receptors [41, 47]. For instance the ORF74 (open
reading frame 74) 7TM receptor encoded by HHV8 (human
herpesvirus 8) associates with both Gαi and Gαq [63] as well
as signals through MAP kinases [64] leading to the activation
of numerous transcription factors, cell proliferation and
transformation, VEGF secretion and angiogenesis [64–68].
The ORF74 from herpesvirus saimiri (HVS-ECRF3) also
signals through both Gαi, Gα12/13, and Gαq in a ligand-
dependent manner, however the constitutive activity of this
receptors is constrained to Gαi and Gα12/13, but not Gαq [69,
70]. A similar broad spectrum and promiscuous signaling
is also observed for the US28 (unique short 28) and UL33
(unique long 33) 7TM receptors encoded by HCMV, which
signals constitutively through both Gαi, and Gαq along with
MAP kinases [71–73].

Besides being evolutionary distinct from the endogenous
chemokine receptors, the herpesvirus-encoded chemokine
receptors cluster in four families (Figure 1): U12/UL33 of
HHV6, HHV7, and CMV; U51/UL78 of HHV6, HHV7 and
CMV; US27/US28 of CMV; and ORF74 of HHV8 as well

as non-human herpesviruses [50]. (UL78 from CMV is
evolutionarily conserved with U51 from HHV6 and HHV7.
However, as the UL78 receptors have shown no functional
homology to chemokine receptor, they have been excluded
from current review.) The common feature of encoding
chemokine receptors throughout the pox- and herpesviruses
suggests that these receptors play an important role in the
viral life cycle as well as in circumvention of the host immune
system. A few studies of receptor-disrupted viruses have
shown diminished replication in vivo in selected tissues [74,
75].

Chemokine receptors are also found in the genomes of
poxviruses [76, 77]. In contrast to the broader subfamily
resemblance to CC as well as CXC chemokine receptors
along with the promiscuous chemokine-binding profile of
many herpesvirus-encoded receptors, the poxvirus-encoded
receptors solely resemble the CCR8 chemokine receptor (as
illustrated in Figure 1) and only interact with CCR8-binding
ligands [78, 79]. Briefly, the poxvirus-encoded receptors are
located in two areas in the viral genome: 7L and 145R. The
best characterized poxvirus receptors are 7L and 145R from
YLDV (Yaba-like disease virus) [76, 77].

Also, nonchemokine receptors are found in viral
genomes exemplified by the BILF family from several γ1-
herpesviruses including human EBV (Epstein Barr virus).
The BILF1 receptors from human and rhesus EBV are the
only BILF receptors that have been characterized from a
pharmacological point of view and like most other virus-
encoded 7TM receptors they display constitutive activity
[80, 81]. As an extra refinement and interplay with the host
immune system, it should be mentioned that viruses also
regulate the expression of endogenous 7TM receptors within
the chemokine system, and class A in general. For instance,
GPR183, also known as EBI2 (Epstein-Barr virus induced
receptor 2), which is induced >200 fold upon EBV cell-entry
[33, 40, 82].

4. The Impact of the DRY-Motif among
Endogenous Class A Receptors

The Asp, Arg, Tyr, or DRY-motif in the intracellular end
of TM3 is one of the most conserved motifs among class
A 7TM receptors [31] (Figure 2(c)) and plays a pivotal
role in receptor activation. This amino acid triplet is
located in positions III:25 (3.49), III:26 (3.50), and III:27
(3.51), respectively, at the border to the intracellular loop
2 (ICL2) with a conservation as DRY in 66%, 96%, and
67% of all class A 7TM receptors [31]. The DRY-motif
is even more conserved within the chemokine subfamily
(Figure 2(a)) with 100% conservation of ArgIII:26 (3.50)
and 95% conservation of both aromatic residues in position
III:27 (3.51) and negatively charged residues in position
III:25 (3.49).

As mentioned in the introduction, it has been sug-
gested that, in some class A 7TM receptors (e.g., the β-
adrenergic receptors and in rhodopsin) the ArgIII:26 (3.50)
together with AspIII:25 (3.49) and GluVI:-05 (6.30), the
latter located in ICL3, form an ionic lock holding TM3
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Figure 1: Phylogenetic tree of viral and human chemokine receptors based on their amino acid sequence. The length of each branch reflects
the similarity between receptors. It was generated by aligning the sequences using the settings: Blosum62, gap open penalty of 5 and gap
extension penalty of 0.1 followed by the Jukes-Cantor distance analysis done in Geneious Pro. For further information about the virus-
encoded receptors and GenBank accession number please see Table 1. ∗As the sequence of these viral receptors are very alike it cannot be
excluded that they are in fact the same.

and TM6 together in the inactive state [10, 36]. During
receptor activation, protonation of AspIII:25 (3.49) leads
to release of the constraining interaction, thus allowing the
outward movement of TM6 [5, 83]. This is also supported
by charged- neutralizing mutations of AspIII:25 (3.49) sug-
gesting that this residue is important for receptor activation
[84]. However, the negatively charged residue at position
VI:-05 (6.30) is not nearly as conserved as the DRY-motif
indicating other possible ways to constrain the receptor in
the inactive conformation [30]. During receptor activation,
the interaction between adjacent Asp/GluIII:25 (3.49) and
ArgIII:26 (3.50) of the DRY-motif is disturbed and ArgIII:26
(3.50) is instead able to interact with TyrV:24 (5.58) as well

as directly with the Gα protein. This direct interaction with
the G protein has been confirmed by the crystal structure of
Opsin in complex with a small peptide from the C-terminal
of the Gαt protein [21]. Receptor activation opens a pocket
at the intracellular site making the interaction with the C-
terminal of the Gα protein possible. This allows for the
exchange of GDP with GTP thus activating the G protein for
further downstream signaling [85].

From the crystal structure of the chemokine receptor
CXCR4, it is evident that the overall structure is similar
to the other crystal structures of class A 7TM receptors,
nevertheless with a few differences mainly in the extracellular
part which constitutes the chemokine ligand-recognition
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Figure 2: Sequence logos of the DRY-motif for chemokine receptors (a), chemokine-like viral receptors (b), class A 7TM receptors (c), and
BILF-like receptors (d). The chemical properties of the amino acids are represented in color (polar: green, neutral: purple, basic: blue, acidic:
red, and hydrophobic: black). This figure was created using the web application: http://weblogo.threeplusone.com/.

domain [27]. Importantly, the chemokine receptors (though
belonging to class A) contain a positively charged residue
at position VI:-05 (6.30) and hence the ionic lock between
ArgIII:26 (3.50) and a negative charged residue at VI:-05
(6.30) does not exist in these receptors [38]. The lack of a
negative charge in this position has inspired the introduction
of the ionic lock in the chemokine receptors by substitution
of the positive charge in VI:-05 (6.30) with a negative
charge. This introduction of the putatively correct conditions
for the ionic lock resulted in a reduced basal activity of
the chemokine receptor CCR5, indicating that the receptor
is locked in an inactive conformation with no ligand-
induced activation and a strongly impaired ability to bind
chemokines. Substitution of ArgIII:26 (3.50) with Ala or
Gln maintained chemokine binding though still showed
reduced basal activity [38]. Thus, the presence of an ionic

lock between TM3 and TM6 leaves the chemokine receptor
unable to switch to an active conformation; therefore, che-
mokine receptors must utilize a different mechanism than
the classic ionic lock described above. However, the decrease
in basal activity of CCR5 upon introduction of the ionic
lock is in accordance with the general interpretation of
the role of this motif in class A receptor activation, where
loss of the ionic lock (VI:-05 (6.30) mutation), leads to
constitutive activity [36]. Disregarding the lack of an ionic
lock in chemokine receptors, the DRY-motif still plays an
important role in the receptor activation, as exemplified in
CCR5, where mutation of ArgIII:26 (3.50) to the neutral
Asn disrupted both basal activity and chemokine-induced
Gαi protein coupling (through calcium mobilization and
GTPγS binding assays) despite retained affinity for CCL4
[86]. Interestingly, an increased basal phosphorylation of

http://weblogo.threeplusone.com/
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Table 1

No. Receptor Accession number

1 Class A 7TM receptors

2 CCR1 NP 001286.1

3 CCR2 NP 001116513.2

4 CCR3 NP 001828.1

5 CCR4 NP 005499.1

6 CCR5 NP 000570.1

7 CCR6 NP 004358.2

8 CCR7 NP 001829.1

9 CCR8 NP 005192.1

10 CCR9 NP 112477.1

11 CCR10 NP 057686.2

12 CCR11 NP 057641.1

13 CXCR1 NP 000625.1

14 CXCR2 NP 001548.1

15 CXCR3 NP 001495.1

16 CXCR4 NP 003458.1

17 CXCR5 NP 001707.1

18 CXCR6 NP 006555.1

19 CX3CR1 NP 001328.1

20 XCR1 NP 005274.1

21 HCMVUS28 P69332.1

22 RhCMVUS28.1 YP 068305.1

23 RhCMVUS28.2 AAN15199.1

24 RhCMVUS28.3 YP 068303.1

25 RhCMVUS28.4 YP 068302.1

26 RhCMVUS28.5 YP 068307.1

27 HCMVUS27 P09703.1

28 HCMVUL33 CAA37385.1

29 GpCMVGp33 AAK43591.1

30 RhCMVUL33 YP 068150.1

31 TCMVT33 NP 116383.1

32 MCMVM33 Q83207.1

33 RCMVR33 NP 064138.1

34 HHV6U12 P52380.1

35 HHV7U12 P52381.1

36 HHV6U51 NP 042944.1

37 HHV7U51 YP 073791.1

38 HHV8ORF74 AAC28486.1

39 MgHV68ORF74 NP 044914.1

40 AtHV3ORF74 NP 048046.1

41 SHV2ORF74 NP 040276.1

42 MMRVORF74 NP 570822.1

43 EHV2ORF74 NP 042670.1

44 EHV3E1 NP 042597.1

45 SPV 146 Swinepox virus NP 570306.1

46 Sheeppox-GPCR NP 659585.1

47 lumpy skin disease virus AAN02735.1

48 Sheeppox-Q2/3L Q86917.1

49 7L Yaba-like disease virus NP 073392.1

50 7L Yaba Monkey Tumor virus NP 938268.1

51 145R-Yaba Monkey Tumor virus NP 938396.1

52 145R-Yaba-like disease virus NP 073530.1

the ArgIII:26Asn- (3.50-) mutated receptor was observed
along with β-arrestin-mediated endocytosis as well as a
higher rate of internalization in response to CCL4 stimula-
tion [86]. Other studies have indicated the need for an intact
DRY-motif in β-arrestin1 binding to CCR5, thus supporting
the importance of this motif for receptor function [87].

Another class A receptor lacking the ionic lock residue
VI:-05 (6.30) is the histamine 4 receptor (H4R), which shows
high constitutive activity. Introduction of GluVI:-05 (6.30)
did, however, not decrease the constitutive activity [88] as
expected from other studies where disruption of an already
existing ionic lock leads to increased constitutive activity
[36] or like the CCR5 chemokine receptor loss of activity
upon ionic lock introduction [38]. Additionally, the H3R
also shows constitutive activity in spite of having the putative
conditions for an ionic lock [88–90] indicating that the
histamine receptors have a functional difference from the
general class A 7TM receptors when it comes to activation
and constitutive activity. However, the H4R did show com-
plete loss of G protein activation upon mutation of ArgIII:26
(3.50) supporting the importance of the DRY-motif for cou-
pling to G proteins [85, 88, 91]. A similar phenomenon was
observed in the H2R where charge-neutralizing mutations
of ArgIII:26 (3.50) led to severely decreased basal cAMP
production in terms of efficacy indicating diminished Gαs

coupling. However, the mutated receptor was able to induce
a response upon agonist stimulation though still with lower
efficacy compared to wild type [92]. In the same study, it was
shown that the charge-neutralizing mutations of ArgIII:26
also resulted in highly structurally instable receptors, where
surface expression could only be detected after stabilization
with either an agonist or inverse agonist, indicating a role not
only in receptor activation, but also in receptor stability for
this position [92]. Furthermore, the DRY-motif has also been
implicated in receptor stability of the β2-adrenergic receptor
[15].

The C5A binding protein, C5L2, is among the few 7TM
receptors that lack a positive charge in position III:26, as
it has a Leu in this position (together with Asp in III:25
(3.49) and Cys in III:27 (3.51) [93]). The native C5L2 is also
known as a nonsignaling C5A binding protein, however, this
impaired G protein coupling could be partially restored by
reintroducing ArgIII:26 (3.50) [93]. Other endogenous class
A receptors without a positive charge in III:26 (3.50) include
D6 and Duffy antigen/receptor for chemokines (DARC)—
two nonsignaling 7TM structured receptors belonging to the
chemokine receptor system. Both are known as nonsignaling
proteins as they do not couple to G proteins, but they
exert chemokine scavenging and transendothelial transport
instead. DARC is, furthermore, rather specifically expressed
by endothelial cells lining postcapillary venules, and here it
exerts its presumed role in accumulation of extravascular
chemokines, chemokine transcytosis, and presentation on
the luminal surface thereby facilitating leukocyte adhesion
[94–97]. GPR77, GPR78, and GPR133 constitute three
orphan class A receptors with unknown functions that also
lack the ArgIII:26 (3.50), and, in addition a handful of
receptors without positive, charge are identified among the
olfactory receptors.
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5. The DRY-Motif Is Less Conserved among
Virus-Encoded 7TM Receptors

The conservation of the ArgIII:26 (3.50) in the DRY-motif
is low among the virally encoded chemokine receptors when
compared to the endogenous counterparts (Figures 2(a) and
2(b)). Furthermore, there is a much larger diversity with
respect to all three residues as evident by Figure 2(b). These
changes in the DRY-motif could be part of the reason for the
altered signaling properties with higher constitutive activity,
and activation of a broader range of signaling pathways
[53, 98].

Regarding ArgIII:26 (3.50), one receptor deserves special
notice, namely, the CXC chemokine receptor ORF74 from
equine herpesvirus 2 (EHV2). This receptor contains a
DTW-motif instead of the DRY consensus, thus missing a
positive charged residue in position III:26 (3.50). In spite
of this, the receptor shows constitutive activity through the
Gαi pathway and ligand-mediated signaling in response to
the endogenous chemokine CXCL6 [55, 99]. Interestingly,
introduction of the DRY-motif in the EHV2-ORF74 led
to a 4-fold decrease in constitutive activity while retaining
activation by the agonist, CXCL6 [55], suggesting that this
receptor has been optimized to act in the absence of a positive
charge in the DRY-motif.

As is also evident from Figure 2(b), the virus-encoded
chemokine receptors from different pox- and herpesviruses
show a larger diversity in the whole DRY-motif; primarily
with large deviations within the first residue III:25 (3.49).
For instance, the CXC chemokine receptor ORF74 by HHV8
contains a VRY-motif in place of the endogenous DRY-
motif. This receptor is associated with Kaposi’s sarcoma and
shows a high degree of constitutive signaling and stimulates
proliferation [100] as well as tumor transformation in mice
[64]. The closest endogenous chemokine receptor to HHV8-
ORF74 is CXCR2, and studies have shown that replacement
of AspIII:25 (3.49) with Val in CXCR2, thus making this
receptor more ORF74-like with respect to this motif, leads
to constitutive activation of CXCR2 with altered signal-
ing properties in the direction of HHV8-ORF74 signaling
[101]. In contrast, the opposite mutation in HHV8-ORF74
(ValIII:25Asp thereby reintroducing the DRY-motif) did not
have major effects on either ligand binding or receptor
signaling [102]. Another example is the ORF74 receptor from
murine herpesvirus 68 (MHV68), which contains an HRC-
motif and has been indicated to activate similar oncogenic
pathways as HHV8-ORF74 [103, 104]. However, further
studies are needed to determine the signaling capabilities
of several ORF74 receptors as well as the influence of their
altered DRY-motif on constitutive activity and regulatory
circumvention.

The human herpesviruses HHV6 and HHV7 both
encode two 7TM receptors, U12 and U51, which contain
IRY- and ERI-motifs, respectively. HHV6-U12 has been
shown to act as a chemokine receptor [105], whereas HHV6-
U51 has been shown to be a constitutively active Gαq-coupled
CC chemokine receptor [106]. However, neither of these two
receptors have the functional impact of the altered DRY-
motif been studied.

The UL33 family, consisting of 7TM receptors from
murine (M33), rat (R33), and human (UL33) cytome-
galovirus, is known to constitutively signal through a vast
array of G proteins [72]. The rodent counterparts differ
from the human by containing an NRY-motif whereas UL33
contains the conserved DRY-motif. A mutational analysis
of M33 revealed that ArgIII:26 (3.50) is important for the
viral constitutive signaling in NFAT, CREB, and IP-turnover
assays as mutation into a neutral Gln abolished constitutive
activation of the receptor. The importance of this was sup-
ported by in vivo data where a virus with a missing ArgIII:26
(3.50), NRY changed to NQY, was unable to replicate in
the salivary glands [107]. Very interestingly, mutation of
AsnIII:25 (3.49) into the consensus AspIII:25 (3.49), NRY to
DRY, leads to an increased constitutive signaling (especially
through NFAT-mediated transcription) suggesting that the
endogenous DRY-motif is preferable for high activity. Having
lower receptor activity could be advantageous for the virus
as this might be favorable for the virus life cycle [107].
In line with the results for M33, a mutation of ArgIII:26
(3.50) rendered the R33 receptor inactive with respect to
G protein coupling [108]. However, in contrast to M33, it
was found that replacement of AsnIII:25 (3.49) with the
endogenous AspIII:25 (3.49) in R33 (NRY to DRY) did
not change the constitutive activity, and that replacement
with the nonpolar AlaIII:25 (3.49) (NRY to ARY) led to
a diminished PLC stimulation, but an unaltered pertussis
toxin-sensitive signaling indicating impaired Gαq-signaling
but maintained Gαi.

Another HCMV-encoded receptor, US28, signals consti-
tutively through several pathways such as Gαq/phospholipase
C, NFκB, CREB, and MAP kinases [73, 109, 110]. This
viral chemokine receptor contains the conserved DRY-
motif and a mutational analysis of ArgIII:26Ala found that
disruption of the DRY-motif leads to impaired Gαq protein
activation and IP-turnover in spite of wild-type levels of
cell-surface expression [111]. Like HHV8-ORF74, US28 has
been implicated in cancer as the constitutive signaling of
the receptor can activate proliferative pathways leading to
tumor formation [112–114]. Additionally, HCMV has been
found in glioblastomas, which could indicate a possible role
in tumorigenesis [115–118].

Also among the BILF receptors, found in several γ1-
herpesviruses, has this motif obtained extra attention.
Interestingly, the DRY-motif in the constitutively active
BILF1 receptors from human and rhesus EBV differs from
the consensus in all three residues being EKT (GluIII:25
(3.49), LysIII:26 (3.50), ThrIII:27 (3.51), Figure 2(d)) [80,
81]. Substitution of EKT with EAT in BILF1 from EBV
resulted in abolished Gαi signaling, whereas the conservative
substitution of Lys with Arg (ERT) signaled as wt BILF1
(EKT). Interestingly, introduction of the whole conserved
motif (DRY) actually impaired the receptor activity partially,
indicating that the EKT-motif is functionally superior to the
conserved DRY-motif in this BILF1 receptor. In addition to
the Gαi coupling, the authors tested the impact of the EAT-
motif in NIH3T3 cell transformation and tumor growth in
nude mice, and they found that also via these pathways
the EAT-motif was completely silent compared to wt BILF1
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Figure 3: Relative sequence length and putative phosphorylation sites of the C-terminal region of class A 7TM receptors, chemokine
receptors and virus-encoded chemokine receptors. The vertical axis displays the number of amino acids of the C-terminus (blue), defined
as being after the highly conserved proline of the NPxxY-motif, and the number of serine, threonine and tyrosine in this region (beige). The
horizontal axis displays the average of 334 non-olfactory class A 7TM receptors (1), the chemokine receptors (2–20) and the viral chemokine
receptors (21–52). For further information about specific receptors and GenBank accession number please see Table 1.

(EKT). Furthermore, the DRY substitution displayed an
intermediate active phenotype in these two functional read-
outs [119]. Thus, the BILF1 receptor depends on a positive
charge in the DRY-motif and has, as a consequence of the
altered motif (DRY to EKT), been optimized to signal with
higher activity [80, 81, 119].

6. The C-Terminal Tails of Class A Receptors
Are Conserved with Respect to Length and
Number of Phosphorylation Sites

Whereas the extracellular N-terminal region of class A 7TM
receptors are quite diverse, the intracellular C-terminal tails
are more homologous, both in terms of length and primary
structure. As evident from Figure 3, the average length and
number of phosphorylation sites are similar among the
endogenous chemokine receptors and class A 7TM receptors
in general, whereas the virally encoded receptors show a
larger diversity, but are generally shorter in length and
have fewer phosphorylation sites. The phosphorylation sites
serve important regulatory purposes for receptor desensiti-
zation and cell surface expression [120, 121]. Quickly after
receptor activation and G protein interaction, GRKs initiate
phosphorylation of serine and threonine residues in the C-
terminal tail (and intracellular loops) thereby promoting the
interaction of the receptor with β-arrestins and a subsequent

steric hindering of the receptor/G protein-interaction [4].
The consequences of β-arrestin recruitment are endocytosis
of the receptor/β-arrestin complex and a subsequent recy-
cling to the cell surface or degradation. Interestingly, β-
arrestins only associate with the ubiquitin ligase promoting
the degradation pathway when it interacts with a ligand-
stimulated receptor [122, 123]. The shorter C-terminal tails
of the viral receptors could suggest that viruses circumvent
the host regulatory processes of receptor internalization in
order to obtain constitutive signaling abilities. Furthermore,
some viral receptors are constitutively endocytosed and
predominantly intracellularly localized [74, 124, 125], which
have led to the suggestion, that they could act as scavengers
(like DARC and D6 among endogenous chemokine recep-
tors, see above) by internalizing the endogenous chemokine
ligands that binds to the receptor and thereby removing the
chemokines from the host cell surroundings as a way of
evading the immune system, as discussed further below for
the HCMV-encoded US28 [53, 124, 126, 127].

7. The C-Terminal Tail of Endogenous
Chemokine Receptors

The endogenous chemokine receptors are rather similar in
their C-terminal tails, and not different from the super-
family of endogenous class A 7TM receptors (Figure 3).
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The 19 human chemokine receptors have in average the
same number of phosphorylation sites as the endogenous
class A 7TM receptors (13 in each case), and an average
length of 57 residues, which is in the proximity of the 66
residues in average for the endogenous class A receptors.
The internalization routes and regulation has been described
for several endogenous chemokine receptors, an interest
facilitated by the discovery of CCR5 and CXCR4 acting as
HIV cell-entry cofactors [125, 128, 129]. Consequently, the
endocytosis pattern of CCR5 and CXCR4 and the regulation
of this have been studied in great detail and it was recently
shown that internalization of CXCR4 plays an important
antiviral role [130–133]. In the case of CCR5, the binding
of CCL5 leads to receptor phosphorylation of serine residues
in the C-terminal tail by GRKs, which consequently leads to
internalization and desensitization of the signal [134, 135].
Besides the involvement of the serine residues in β-arrestin
recruitment, a dileucine motif in the C-terminal tail is also
important for CCR5 receptor endocytosis [136]. Serial trun-
cation of the CCR5 C-terminal tail resulted in progressive
loss of cell surface expression, which could not be rescued
by substitution with the C-terminal tail of CXCR4 [137].
Mutational analysis of CXCR4 showed that this receptor is
likewise dependent on C-terminal serine phosphorylation
sites and a dileucine motif for proper receptor internalization
[138, 139]. Internalization of CXCR4 can follow two distinct
pathways: CXCL12 ligand-mediated endocytosis was shown
to be dependent on the serine phosphorylation sites whereas
phorbol ester induced internalization is dependent on the
dileucine motif [131, 132]. Interestingly, a naturally occur-
ring mutation of CXCR4 with C-terminal deletions exists in
patients with WHIM syndrome (warts, hypogammaglobu-
linemia, recurrent bacterial infection, myelokathexis). Loss
of the C-terminal tail leads to decreased endocytosis of
the receptor and consequently a reduced regulation of the
receptor followed by an increased signaling with enhanced
calcium flux and cell migration; a possible cause of the
pathophysiology seen in WHIM syndrome [140]. Thus, the
C-terminal tail plays an important role in the physiology of
endogenous chemokine receptors.

8. The C-Terminal Tails of Virus-Encoded
Receptors Are Generally Shorter

The HCMV-encoded chemokine receptor US28 signals con-
stitutively via several pathways and upon stimulation by
CC chemokines [54, 73]. Furthermore, CX3CL1 has been
reported to act as an inverse agonist, albeit with low efficacy
(up to 25% inhibition of basal activity) [141]. Additionally,
unlike the majority of endogenous class A 7TM receptors,
US28 is constitutively internalized in a ligand-independent
manner [126, 127, 142]. Thus, by immunofluorescence
staining, US28 was found to be accumulated intracellularly
in endocytic organelles and by advanced immunogold
electron microscopy shown to be localized to multivesicular
endosomes [126]. Further studies revealed that US28 endo-
cytosis occurs via a clathrin-mediated mechanism [127].
Importantly, only a small fraction of US28 is present at the

cell surface (<20%), with the rest undergoing constitutive
ligand-independent endocytosis with a fast internalization
rate, as compared to CXCR4. Truncation of the C-terminal
tail of US28 led to an increase in both magnitude and
duration of the constitutive signaling indicating that the
C-terminal tail plays a regulatory role in desensitizing the
receptor. This was supported by hyperactivation of US28 in
cells where β-arrestin 1 and 2 were genetically deleted [141].
A mutational analysis of serine residues in the C-terminal of
US28 revealed that a decreased number of phosphorylation
sites increased the cell surface expression of the receptor
[143]. Truncating the C-terminal tail of US28 or replacing
it with tails from other 7TM receptors (HHV8-ORF74 and
human tachykinin NK1) led to an increase in constitutive
activity of the receptor. Substitution of the HHV8-ORF74
tail with the tail from US28 diminished the cell surface
expression of the HHV8-ORF74 chimera indicating that the
C-terminal tail, in itself, is sufficient for desensitization by
receptor endocytosis [144]. The constitutive endocytosis of
US28 may serve as a chemokine scavenger and mediate
the viral immune evasion by antagonizing the recruitment
of cells involved in the immune response and thereby
manipulating the host immune system. Another HCMV-
encoded chemokine receptor, US27, also shows a large degree
of intracellular localization. Swapping the C-terminal tail
of US27 with that of the endogenous chemokine receptor
CXCR3 led to cell surface expression similar to wild-type
CXCR3; likewise, when substituting the endogenous tail with
the viral US27 tail, the chimeric receptor was predominantly
located intracellularly indicating that the C-terminal tail of
US27 is necessary and sufficient for intracellular localization
[145].

In general, the viral chemokine receptors, ORF74,
encoded by several herpesviruses have very short C-terminal
tails when compared to the endogenous receptors (Figure 3).
A study of several γ-herpesviruses identified an eight-amino-
acid conserved region at the membrane proximal part of the
C-terminal tail suggested to play a role in G protein coupling
and Gα-selectivity [146]. Especially one basic residue showed
importance for Gαq coupling—a residue which is conserved
among the endogenous chemokine receptors suggesting an
evolutionary conserved function of this residue such as G
protein signaling [146]. HHV8-ORF74 is primarily located at
the cell surface and deletion of the five terminal amino acids
containing 3 phosphorylation sites did not seem to affect
cell surface expression, though it did impact the signaling
capabilities of the receptor seen by a diminished NFκB and
AP-1 signaling [147]. As signaling deficiencies are seen by the
removal of just five amino acids, it is tempting to consider
that the length of the C-terminal tail has been optimized to
only contain necessities and thus demonstrating a minimum
requirement for a functional viral receptor tail. Another
study also found expression levels of 12 and 24 amino
acids C-terminal tail deletions similar to wild-type albeit
with reduced constitutive activity in spite of retained ligand
regulation by chemokines [148]. It was suggested that the C-
terminal helix 8, which is present in the terminal 24 amino
acids, is involved in stabilizing the interaction between the
receptor and G protein, thus playing a role in mediating
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Table 2

No. Receptor Accession number

1 Class A 7TM receptors

2 CaHV3-ORF6 NP 733858.1

3 CHV15-BILF1-rh YP 068006.1

4 EBV-BILF1 YP 401711.1

5 EHV2-E6 NP 042607.1

6 AlceHV-E5 NP 065513.1

7 PLHV3-A5 AAO12316.1

8 PHV2-A5 AAF16523.1

9 PLHV1-A5 AAF16521.1
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Figure 4: Relative sequence length and putative phosphorylation
sites of the C-terminal region of class A 7TM receptors and the
BILF-like receptors. The vertical axis displays the number of amino
acids of the C-terminus (blue), defined as being after the highly
conserved proline of the NPxxY-motif (class A 7TM receptors)
or predicted by the Transmembrane Hidden Markov model using
Geneious Pro (BILF receptor family), and the number of serine,
threonine, and tyrosine in this region (beige). The horizontal axis
displays the average of 334 non-olfactory class A 7TM receptors
(1) and the EBV-encoded BILF receptors (2–9). For further details
about specific receptors and GenBank accession number please see
Table 2.

signals upon chemokine binding [148]. Though the C-
terminal tail of ORF74 appears to be involved in signal
mediation, deletion of small parts of the tail including
phosphorylation sites does not seem to largely affect cell
surface expression or constitutive signaling suggesting that
a short tail is enough for the receptor to function to a
certain degree. Having such short tails might be a way of
evading host regulatory mechanisms, such as GRKs and
internalization, thereby ensuring virus-mediated constitutive
signaling.

The BILF receptor family is rather conserved when it
comes to the length of their C-terminal tails suggesting that
the C-terminus serves an important purpose for the virus
(Figure 4). The BILF1 receptor encoded by EBV shows a
similar cell surface expression pattern as HHV8-ORF74 and
signal constitutively through Gαi [80]. Though the BILF1
receptor does not resemble the endogenous chemokine

receptors, it does serve a purpose in viral immune evasion
as it is involved in internalization and degradation of MHC-
I (major histocompatibility complex class I) molecules.
Deletion of the C-terminal tail of the receptor led to impaired
lysosomal degradation of internalized MHC-I molecules
suggesting that the tail might contain a localization sequence
guiding the receptor/MHC-I complex to the lysosomes
[149].

9. Summary

From what is reviewed above, it is evident that the
virus-encoded 7TM receptors differ from the endogenous
counterparts—both from a structural and a functional point
of view. The viral receptors have been captured from the
host and through evolution (i.e., combinatorial chemistry
by random mutagenesis followed by natural selection of the
most virulent strain) been optimized to benefit the virus
life cycle. As the chemokine receptor exploitation (and the
general 7TM receptor piracy) is a widespread phenomenon
among many viruses, it is likely that these receptors serve
important purposes for virus survival, for instance, evasion
of the antimicrobial immune response, viral persistence, viral
dissemination, and control of own infection as shown for
a few receptors. The selection of the chemokine system for
interference by the viruses points towards this system as
essential in multiple different immune responses. By study-
ing the structural and functional alterations in the virus-
encoded receptors as compared to the endogenous receptors,
greater knowledge can be obtained for 7TM receptors in
general. Thus, from a molecular pharmacology point of view,
the chemokine receptors represent unique opportunities to
study basic principles of receptor activation, internalization,
and recycling pathways as examples of targeted evolution
where the receptors have undergone major changes driven
by a heavy evolutionary pressure. Since 7TM receptors are
excellent drug targets, the development of high-potency
antagonists or inverse agonists for the virus-encoded 7TM
receptors could putatively pave the path for tomorrow’s
antiviral and anti-inflammatory drugs.
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