Review Article

Prevalence of Group B Streptococcus in Vagina and Rectum of Pregnant Women of Islamic & Non-Islamic Countries: A Systematic Review and Meta-Analysis

Fatemeh Abbasalizadeh¹, Sajjad Pourasghary², *Maryam Shirizadeh¹, Sanaz Mousavi¹, Morteza Ghojazadeh³, Hossein Hoseinifard³, Fatemeh Salehnia³, Leila Nikniaz³

1. Department of Obstetrics and Gynecology, Al-Zahra Hospital, Tabriz University of Medical Sciences, Tabriz, Iran

2. Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran

3. Research Center for Evidence Based Medicine, Tabriz, Iran

*Corresponding Author: Email: maryam.shirizadeh@gmail.com

(Received 14 Sep 2020; accepted 22 Nov 2020)

Abstract

Background: Group B streptococcus or streptococcus Agalactia is a gram positive beta hemolytic bacteria which is the main factor in neonatal infections. This study aimed at determining the prevalence of GBS in world and clarifying the rate of this infection in Islamic and non-Islamic countries.

Methods: We performed a systematic search by using different databases including Medline, Scopus, Science Direct, Psycho-Info ProQuest and Web of Science published up to Feb 2019. We undertook meta-analysis to obtain the pooled estimate of prevalence of GBS colonization in Islamic and non-Islamic countries.

Results: Among 3324 papers searched, we identified 245 full texts of prevalence of GBS in pregnancy; 131 were included in final analysis. The estimated mean prevalence of maternal GBS colonization was 15.5% (CI:95% (14.2-17)) worldwide; which was 14% (CI:95% (11-16.8)) in Islamic and 16.3% (CI:95% (14.6-18.1)) in non-Islamic countries and was statistically significant. Moreover, with regards to sampling area, prevalence of GBS colonization was 11.1 in vagina and 18.1 in vagina-rectum.

Conclusion: Frequent washing of perineum based on religious instructions in Islamic countries can diminish the rate of GBS colonization in pregnant women.

Keywords: Group B streptococcus; Vagina; Rectum; Pregnant women

Introduction

Group B streptococcus or streptococcus Agalactia is a gram positive beta hemolytic bacteria which is the main factor in neonatal infections (1). This organism is able to abundantly colonize in genital and digestive tracts of pregnant women and enter amniotic fluid through chorioamniotic membranes (2). In various studies, different numbers of prevalence of this organism in pregnant women have been mentioned, 50%-70% of these women transmit GBS to infants (3). The effect of this bacteria in bringing about undesirable consequences in pregnancy such as pre-term labor, premature rupture of membranes, Chorioamnionitis, and fetal infections has been put

Copyright © 2021 Abbasalizadeh et al. Published by Tehran University of Medical Sciences. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (https://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.

forward (4). Furthermore, in recent systematic reviews, the infection in infants is considerably related to the vaginal colonization of mother with GBS during pregnancy (5). GBS can produce infections in infants such as Septicemia, Meningitis, Cellulitis, Conjunctivitis, Pneumonia, Adenitis, Osteomyelitis, Otitis media. Out of these infections, septicemia and meningitis are threatening the lives of the infants more than the others. Although they are put under treatment, they mostly lose their lives (6). Considering the importance of GBS infections and the health of mothers and infants exposed to post-partum infections, screening of pregnant in terms of GBS colonization has been suggested for the sake of treatment in due time and prevention of the bacterial transmission to the infants (7). Some revisions occurred in the protocol of (CDC) in order to make bacterial screening obligatory for all pregnant during 35 to 37 wk of the pregnancy (8).

Screening is carried out on the basis of vaginal secretion culture and that of rectum and in the case of positive culture pregnant, Antibiotic prophylaxis during pregnancy has been suggested (9,1). Variations in the rate of colonization due to difference in geographical regions, social conditions, pregnancy age of the study population, microbiological diagnostic methods, sexual activity, physical status, time and place of sampling and among religious and ethnical groups differ (10-14). Previous systematic review carried out in 2017 has stated that the prevalence of GBS is 18%. The maximum amount is related to Caribbean region with 35% and minimum amount is found in East Asia with 11%. Moreover, this study considers various serotypes in different regions of the world (15). According to the hypothesis of this study based on the possibility of low prevalence of Group B streptococcus in pregnant of Islamic countries due to the religious instructions concerning hygiene after urination and defecation, the outcomes of this study may propose some strategies for preventing GBS infection. Up to now, there has not been any systematic review considering the comparison between Islamic and non-Islamic countries in this respect. Therefore, this study aimed at clarifying the rate of vaginal and rectal colonization of this infection in Islamic countries and comparing it with that of non-Islamic countries.

Materials and Methods

This systematic review and meta-analysis study concerning the prevalence of Group B Streptococcus (GBS) in the world and compares the prevalence of it in Islamic and non-Islamic countries, carried out in Iran in 2019.

Search strategy & selection criteria

We have searched papers dealing with prevalence of GBS in rectum and vagina of pregnant throughout the world. The search covers databases such as ScienceDirect, MedLine, Scopus, Web of Science (Web of Knowledge), Psycho-Info-ProQuest in which papers have been published up to Feb of 2019. Unpublished documents (gray literature) and documents presented in conferences have been searched too. We have even consulted with those involved in similar subjects in order to get more information about published and unpublished documents in this regard. Keywords (colonization, vaginal, rectal, pregnant women, pregnancy, prevalence, Group B streptococcus, streptococcal infections, GBS, streptococcus Agalactia) have been used in searching the papers. These terms have been derived from MeSh and EMTree.

The selection of papers

Inclusion criteria: The criteria for selecting papers concentrate on all studies which consider the prevalence of group B streptococcus of every age of pregnancy or delivery. They included those studies in which sampling of rectum and vagina was conducted. No time limitation has been considered.

Exclusion criteria: Those papers which met the following criteria were excluded from our study:

-Those papers which had clearly methodological defects.

-Those papers which had surveyed non-pregnant population or had not declared the prevalence in pregnant separately.

-Those papers surveyed the women with previous illness such as Diabetes or Immunocompromised disease.

-Those papers determined the Streptococcus with a method other than the culture like PCR.

Data extraction and survey of study quality

The papers have been selected in three stages after their extraction from related databases with the above mentioned keywords by an expert in the field. First, the titles and then the abstracts of all the papers were surveyed and those papers which were not compatible with the study aims were extracted. Afterwards full texts of the papers were studied and those which didn't meet our criteria or were weakly related to our subject were put aside. Selected materials were evaluated by two experts and their different ideas about the materials were referred to the third evaluator. The quality of materials before their extraction and separation was assessed with PRISMA checklist (checklist of all the papers are in the appendix). The necessary extracted data was summarized in Extraction form. They included the author's names, publication year, the kind of study, country, sample size, pregnancy age, average age of mothers, culture media, various bacterial serotype, sensitivity or antibiotic resistance and sampling place separately recorded. We have used source management software Endnote X5 to organize, and study the topic and abstracts, and even to identify the repeated materials. Furthermore, Islamic and non-Islamic countries were divided into two groups and then analyzed with reference to countries whose names were recorded in the site of Organization of Islamic Cooperation (OIC). F bias risk of all studies was evaluated by an epidemiologist. The quality of the included papers was assessed with the checklist related to studies about the prevalence of JBI.

Statistical Analysis

We have used frequency and percent to show the data, and the heterogeneity among the studies

was surveyed with Cochran and I² statistics which indicate the changes among the studies. We have assumed the rate of I² less than 0/50 as the presence of homogeneity among the studies. Random effects model was used to combine the results and the analysis of subgroups was conducted on the basis of pregnancy age, the kind of society (Islamic/non-Islamic). Statistical analysis was carried out using CMA v.3.1 software and p-value less than 0.05 was assumed as meaningful level. Moreover, we have surveyed the prevalence of GBS in minor subgroups which covered the survey of prevalence in different continents, antibiotic sensitivity and resistance, and the analysis based on GBS serotypes.

Results

The results of the search and the characteristics of the studies

Overall, 3324 papers were identified, 1850 papers due to their repetition, 733 papers after considering their titles, and 496 papers after reviewing their abstract were excluded from our study. After we have surveyed full texts of papers, we excluded 114 papers from our study, therefore, 131 papers were included in our meta-analysis study (Fig. 1).

Out of 131 papers in our study, we found 99 papers in which pregnancy age at the time of sampling had been mentioned and three cases of sampling were conducted at delivery, but in one study, pregnancy age was not mentioned. The remaining studies were carried out during the second and third trimester.

We have found 127 studies in which the place of sampling was stated, that is, in 86 cases, the places of sampling were rectum and vagina and in 41 cases it was vagina. Different culture medias have been used in the studies. Among the 131 studies, only 91 studies had referred to the kind of culture media. In 56 cases, the sampling media Todd Hweit, in 17 cases Blood agar, in 6 cases CHROM, in 5 cases LIM Broth, in 3 cases Granada, and in 3 cases Clumbia were used.

Fig. 1: The characteristics of the study

Among the included papers, only 22 papers had surveyed different serotypes of GBS separately and 28 papers discussed antibiotic sensitivity.

In some studies, the sensitivity for one type of antibiotic was considered while in some others effects of various antibiotics were discussed. In other words, in 24 studies sensitivity to Penicillin, in 17 studies sensitivity to Ampicillin and Vancomycin, in 16 sensitivity to Erythromycin were surveyed. Moreover, 17 studies had considered antibiotic resistance that is, in 15 studies resistance to Erythromycin, in 14 papers resistance to Clindamycin, in 15 studies resistance to Tetracycline and in 3 studies resistance to Penicillin were discussed.

Meta-Analysis results

About 131 studies were included in the metaanalysis and 115680 individuals were surveyed. The rate of homogeneity was meaningful. (Q=4969.21, df=130, I²=97.5, P<0.001). Considering the results of the meta-analysis, we noticed that the prevalence of GBS in pregnant women of all the studied countries was 15.5%. (15.5%, CI=95% (14.2-17.0))

The prevalence of GBS in pregnant women of Islamic and non-Islamic countries

About 44 cases of study had been conducted in countries where Moslem population were living and in the studies of Islamic countries 18359 individuals had been surveyed, so heterogeneity among the studies were meaningful. (Q=1102.17, df=43, I^2 =96.09). According to the results of the meta-analysis, the prevalence of GBS in pregnant

women in Islamic countries was 14% (14%, CI=95%, (11.0-16.8)). In Fig. 2, the prevalence of GBS in pregnant has been illustrated.

Model	Study name	9	Statistic	s for each study	_		Event rate and 95% Cl				
	Event I	lower	Upper								
		rate	limit	limit Z-Value p	-Value						
	Abdelaziz Z. et al(2014)	0.040	0.020	0.078 -8.807	0.000		1				
	Abdollahi Fard S. et al(2008)	0.100	0.068	0.144-10.422	0.000						
	Ahmad Khan M. et al(2015)	0.130	0.113	0.149-23.297	0.000						
	Ahmadi A. et al(2018)	0.040	0.016	0.098 -6.502	0.000						
	Al-Sweih N. et al(2004)	0.160	0.103	0.241 -6.376	0.000				F		
	Clouse K. et al(2019)	0.200	0.150	0.261 -7.842	0.000						
	darabi R. et al(2017)	0.120	0.081	0.175 -8.830	0.000				_		
	Fatemi f. et al(2008)	0.210	0.169	0.257 -9.803	0.000						
	Ghaddar N. et al(2014)a	0.180	0.129	0.246 -7.551	0.000				Ē		
	Ghaddar N. et al(2014)b	0.210	0.189	0.232-20.127	0.000						
	Ghanbarzadeh N. et al(2017)	0.050	0.034	0.073-14.349	0.000						
	Habib zadeh SH. et al(1389)	0.150	0.119	0.187-12.693	0.000						
	Hadavand Sh. Et al(2015)	0.030	0.014	0.064 -8.593	0.000						
	Haghshenas Mojaveri M. et al(2014)	0.150	0.118	0.188-12.388	0.000						
	Hamedi A. et al(2012)	0.060	0.034	0.103 -9.241	0.000						
	Hassan zadeh P. et al(2011)	0.140	0.106	0.183-11.090	0.000						
	Jahromi B. et al(2008)	0.090	0.075	0.108-22.908	0.000						
	Javanmanesh F. et al(2012)	0.230	0.205	0.257-16.304	0.000						
	javanmanesh F. et al(2013)	0.230	0.205	0.257-16.304	0.000						
	Kabiri S. et al(2016)	0.200	0.164	0.242-11.132	0.000						
	Kadanali A. et al(2005)	0.170	0.118	0.239 -7.295	0.000				F		
	Le Doare K. et al(2016)	0.330	0.297	0.364 -9.120	0.000						
	Mansouri s. et al(2008)	0.090	0.070	0.116-16.246	0.000						
	Medugu N. et al(2017)	0.340	0.300	0.383 -7.026	0.000						
	Mozaffari A. et al(1385)	0.150	0.092	0.234 -6.194	0.000				⊢		
	Munir Sh. Et al(2018)	0.140	0.098	0.195 -8.908	0.000						
	Musleh J. et al(2017)	0.190	0.157	0.229-12.160	0.000						
	Najmi N. et al(2013)	0.170	0.136	0.210-11.986	0.000						
	Nasri Kh. Et al(2013)	0.160	0.114	0.220 -8.291	0.000				ł		
	Nazer M.R. et al(2011)	0.140	0.085	0.223 -6.299	0.000				-		
	Nkembe M. et al(2018)	0.140	0.085	0.223 -6.299	0.000				-		
	Norozi M. et al()	0.090	0.064	0.126-12.064	0.000						
	Oluwafunmilola B. et al(2017)	0.180	0.133	0.239 -8.239	0.000						
	Sadaka S.et al(2018)	0.270	0.213	0.336 -6.245	0.000				'₩		
	Saghafi N. et al(2017)	0.020	0.008	0.052 -7.705	0.000						
	Saha S. et al(2017)	0.150	0.131	0.172-21.013	0.000				1		
	Sahraee Sh. Et al(2019)	0.100	0.068	0.144-10.318	0.000						
	Sharifi Y. et al(1390)	0.840	0.789	0.880 9.612	0.000					X	
	Shirazi M. et al(2013)	0.050	0.038	0.066-20.089	0.000						
	Steenwinkel F. et al(2008)	0.020	0.005	0.071 -5.792	0.000			₽			
	Yasini M. et al()	0.090	0.065	0.123-12.941	0.000						
	Yasini. Et al(2014)	0.090	0.065	0.123-12.941	0.000						
	Yesildager U. et al(2015)	0.090	0.042	0.183 -5.540	0.000			∣■-			
	Zamzami T. et al(2011)	0.320	0.272	0.372 -6.445	0.000						
Random		0.140	0.116	0.168-16.559	0.000	1	I	♦	I		
						-0.75	-0.38	0.00	0.38	0.75	
							F		F		
							Favours A		ravours B		

Fig. 2: Prevalence of GBS in pregnants women of Islamic countries

About 87 studies have taken place in countries where non-Muslim population were living. In these studies, 97321 individuals had been considered and the result was that heterogeneity among the studies was meaningful (Q=3834.67, df=86, $I^2=97.75$). According to our meta-analysis, the prevalence of GBS in pregnant women of non-Islamic countries was 16.3% (16.3%, CI=95%) (14.6-18.1)). The prevalence of GBS has been illustrated in (Fig. 3). The prevalence of GBS in pregnant of Islamic and non-Islamic countries is 14% and 16.3% respectively. Therefore, according to the ratio test, difference in the case of prevalence of GBS between Islamic and non-Islamic countries was meaningful statistically.

	Study nume	statistics for each study					Event rate and 95% CI					
		Event	limit	Upper limit	Z-Value	-Value						
	Abarzua E. et al(2014)	0.140	0 121	0.161	.21.646	0.000						
	Africa Ch. Et al(2018)	0.170	0.132	0.217	-10.334	0.000						
	Alboury-Liaty M. et al(2011)a	0.150	0.141	0.159	-47.603	0.000						
	Alboury-Liaty M. et al(2011)b	0.130	0.116	0.145	-28.960	0.000						
	Alboury-Liaty M. et al(2011)c	0.180	0.164	0.197	-26.956	0.000						
	Armer T. et al (1993)	0.230	0.192	0.272	-10.471	0.000						
	Assera S. et al(2018) Bacaite F. et al(2011)	0.150	0.113	0.174	-10.383	0.000						
	Badri M. et al(1977)a	0.180	0.150	0.215	-13.399	0.000						
	Badri M. et al(1977)b	0.100	0.069	0.143	-10.629	0.000						
	Baker C. et al(1973)	0.230	0.177	0.293	-7.281	0.000						
	Bayo M. et al(2002)	0.070	0.052	0.093	-16.473	0.000						
	Benedetto C. et al(2004)	0.150	0.138	0.163	-35.130	0.000						
	Bertoncello A. et al(2018)	0.140	0.122	0.160	-22.482	0.000						
	Carrol K C et al(1996)	0.200	0.186	0.274	-27.707	0.000						
	Chukwu, M. et al(2015)	0.310	0.267	0.356	-7.520	0.000						
	cruz Alverez A. et al(2014)	0.280	0.207	0.367	-4.645	0.000						
	Dangor Y. et al(2016)	0.250	0.203	0.304	-8.017	0.000						
	Defez m. et al(2016)	0.080	0.047	0.134	-8.302	0.000						
	Dos Reis Costa A. et al(2008)	0.200	0.150	0.261	-7.862	0.000						
	Enweronu-laryea C. et al(2001)	0.190	0.164	0.219	-15.897	0.000						
	Garcia D. et al(2010)	0.004	0.000	0.236	-3.927	0.000						
	Gizachew M. et al(2017)	0.260	0.219	0.306	-9.002	0.000						
	Grimwood K. et al(2002)	0.220	0.172	0.277	-8.122	0.000						
	Gutierrez G. et al(2005)	0.001	0.000	0.018	-4.781	0.000						
	Hakansson S. et al(2008)	0.250	0.229	0.272	-18.843	0.000						
	Hassan A. et al(2014)	0.190	0.125	0.279	-5.688	0.000						
	nyun Kim d. et al(2018)	0.120	0.101	0.141	-20.617	0.000						
	K low K, et al(2013)	0.230	0.186	0.281	-8.479	0.000						
	Khalili M. et al(2017)	0.120	0.100	0.143	-19.445	0.000						
	Klewis S. et al(2015)	0.260	0.250	0.270	-40.288	0.000						
	Linhares J. et al(2011)	0.100	0.066	0.148	-9.620	0.000						
	Lucovnik M. et al(2014)	0.170	0.152	0.189	-23.555	0.000						
	Lysakowska M. et al(2011)	0.300	0.220	0.394	-3.979	0.000						
	Marchaim D. et al(2003)a	0.120	0.098	0.147	-16.896	0.000						
	Marchaim D. et al(2003)b	0.190	0.123	0.283	-5.486	0.000						
	Matani Ch. Et al(2016)	0.250	0.210	0.317	-7.326	0.000						
	Mehiretie Mengist H. et al(2017)	0.120	0.080	0.176	-8.687	0.000						
	Mengist A. et al(2016)	0.190	0.131	0.268	-6.385	0.000						
	Mitima K. et al(2014)	0.200	0.167	0.237	-12.510	0.000						
	Mohammad Ali M. et al(2019)	0.160	0.122	0.208	-10.172	0.000						
	Motlova J. et al(2004)	0.290	0.255	0.328	-9.835	0.000						
	Mukesi M. et al(2019)	0.140	0.113	0.172	-14.501	0.000						
	Namugongo A. et al (2005)	0.250	0.180	0.330	-5.108	0.000						
	Ocamp-Torres M. et al(2000)	0.090	0.073	0.110	-19.974	0.000						
	Orrett F.A. et al(1993)	0.310	0.250	0.377	-5.285	0.000						
	Orrett F.A. et al(2003)	0.330	0.269	0.398	-4.721	0.000						
	Page-Ramsey S. et al(2011)	0.190	0.136	0.259	-7.150	0.000						
	Peterson K. et al(2014)	0.040	0.037	0.043	-80.207	0.000						
	Price D. et al(2006)	0.190	0.151	0.236	-10.333	0.000						
	Puapornpong P. et al(2008)a	0.030	0.030	0.082	-10.853	0.000						
	Rausch A. et al(2009)	0.210	0.189	0.233	-19.577	0.000						
	Rick A. et al(2017)	0.170	0.147	0.196	-17.829	0.000						
	Rocchetti T. et al(2010)	0.250	0.210	0.294	-9.574	0.000						
	Rojo-Bezarez B. et al(2016)	0.140	0.127	0.154	-32.911	0.000						
	Romanic m. et al(2014)	0.290	0.201	0.398	-3.634	0.000						
	Sabaini de Melo S. et al(2017)	0.280	0.242	0.321	-9.444	0.000						
	Savoia D. et al(2007)	0.180	0.145	0.139	-11.512	0.000						
	Seale A. et al(2017)	0.120	0.113	0.127	-57.791	0.000						
	seto M. et al(2019)	0.200	0.171	0.232	-14.375	0.000						
	Siqueira MS. Et al(2019)	0.140	0.103	0.187	-10.215	0.000						
	Toresani I. et al(2001)	0.040	0.026	0.060	-14.351	0.000						
	Tor-Udom S. et al(2006)	0.160	0.127	0.199	-12.249	0.000						
	Trieau L. et al(2009)	0.160	0.104	0.237	-6.632	0.000						
	Isui M. et al(2014)	0.100	0.083	0.120	-20.866	0.000						
	Vinnemeier C.D. et al(2015)	0.190	0.159	0.230	-12.959	0.000						
	Wenjing J. et al(2017)	0.080	0.074	0.086	-58.240	0.000						
	Whitney C. et al(2004)a	0.120	0.082	0.173	-9.157	0.000						
	Whitney C. et al(2004)b	0.150	0.107	0.206	-8.759	0.000						
	Whitney C. et al(2004)d	0.120	0.083	0.171	-9.383	0.000						
	Whitney C. et al(2004)e	0.070	0.043	0.111	-9.922	0.000						
	Whitney C. et al(2004)f	0.120	0.082	0.172	-9.225	0.000						
	Whitney C. et al(2004)g	0.110	0.074	0.161	-9.251	0.000						
	woldu Z. et al(2014)	0.070	0.046	0.333	-11,431	0.000						
	Wollheim C. etal(2016)	0.230	0.177	0.293	-7.263	0.000						
	Yadeta T. et al(2018)	0.140	0.124	0.157	-25.879	0.000						
	Young B. et al(2011)	0.200	0.169	0.235	-13.111	0.000						
	Zusman A. et al(2006)	0.180	0.151	0.213	-14.246	0.000						
	6	0.163	0.146	0.181	-24.906	0.000						
andom							· · · · ·					

Fig. 3: Prevalence of GBS in pregnants women of non-Islamic countries

The prevalence of GBS in pregnant according to the sampling region

The sampling region in 41 studies was vagina and the heterogeneity among included studies was meaningful (Q=1550.32, df=40, I²=97.42, P<0.001). According to the results of the metaanalysis, the prevalence of GBS in pregnant undergone sampling in the vagina was 11.1% (11.1%, CI=95% (9.2-13.4)). The prevalence of GBS in the vagina of pregnant is illustrated in (Fig. 4). The sampling region in 86 studies was vagina-rectum, and heterogeneity was meaningful statistically (Q=2561.78, df=85, I²=96.68, P<0.001). According to the results obtained from meta-analysis, the prevalence of GBS in the pregnant from whose vaginal-rectal region samples had been drown was 18.1% (18.1, CI=95% (16.4-19.9)). The prevalence of GBS in vaginal-rectal region of pregnant women has been shown in (Fig. 5).

Fig. 4: Prevalence of GBS in pregnants undergone sampling in the vagina

	odel	Study name	2	Statistic	cs for ea	ach study		Event rate and 95% CI	
Arbura F. et al (2011) 1.0 0.11 0.17 0.13 0.17 Barati F. et al (2011) 0.10 0.17 0.18 0.00 Barati F. et al (2011) 0.10 0.17 0.18 0.00 Cheknowski F. et al (2011) 0.10 0.17 0.18 0.00 Cheknowski F. et al (2011) 0.10 0.17 0.18 0.00 Cheknowski F. et al (2011) 0.10 0.17 0.18 0.00 Cheknowski F. et al (2011) 0.10 0.10 0.11 0.11 0.11 Cheknowski F. et al (2011) 0.10 0.11 <td< th=""><th></th><th></th><th>Event I rate</th><th>Lower limit</th><th>Upper limit</th><th>Z-Value p</th><th>Value</th><th></th><th></th></td<>			Event I rate	Lower limit	Upper limit	Z-Value p	Value		
Accel C. 5: 14(2013) 0.12 0.12 0.12 0.12 0.12 0.12 Asset 5: 4: 14(2011) 0.13 0.13 0.13 0.13 0.13 0.14 Baset 5: 4: 14(2011) 0.13 0.13 0.13 0.14 0.15 0.000 Chulwu, M. et al(2013) 0.13 0.27 0.26 0.26 0.000 0.000 Disper, Y. et al(2010) 0.00 0.00 0.000 0.000 0.000 0.000 Disper, Y. et al(2017) 0.00 0.000 0.000 0.000 0.000 0.000 Disper, Y. et al(2017) 0.000 0.000 0.000 0.000 0.000 0.000 Disper, Y. et al(2017) 0.000 0.000 0.000 0.000 0.000 0.000 Disper, Y. et al(2017) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Disper, Y. et al(2017) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0		Abarzua F. et al(2014)	0.140	0.121	0.161	-21.646	0.000		
Actic S. et al (2011) 110 110 117 117 117 117 Baschie C. et al (2011) 120 120 120 120 120 120 Chulken A. et al (2011) 120 120 120 120 120 120 Chulken A. et al (2012) 120 120 120 120 120 120 Chulken A. et al (2012) 120 <t< td=""><td></td><td>Africa Ch. Et al(2018)</td><td>0.170</td><td>0.132</td><td>0.217</td><td>-10.334</td><td>0.000</td><td></td><td></td></t<>		Africa Ch. Et al(2018)	0.170	0.132	0.217	-10.334	0.000		
missible 2. et al (2011) 0.19 0.19 0.19 0.19 0.19 0.19 ctristict 2. et al (2011) 0.20 0.20 0.20 0.20 0.20 0.20 ctristict 2. et al (2011) 0.20 0.20 0.20 0.20 0.20 0.20 Das Barc (0.2011) 0.20 0.20 0.20 0.20 0.20 0.20 Circla (0.2011) 0.20 0.20 0.20 0.20 0.20 0.20 Das Barc (0.2012) 0.20 0.20 0.20 0.20 0.20 0.20 Circla (0.2011) 0.20 0.20 0.20 0.20 0.20 0.20 0.20 Circla (1.2011) 0.20 0.20 0.21 0.21 0.20 0.20 0.20 0.20 Circla (1.2012) 0.20 0.21 0.21 0.20		Assefa S. et al(2018)	0.150	0.113	0.197	-10.383	0.000		
Batchon, Lat et al (2011) 0.120 0.127 0.127 0.127 0.127 0.127 0.127 0.000 Current Al et al (2011) 0.200 0.207 0.207 0.207 0.000 Dangert - 4 at al (2010) 0.200 0.207 0.207 0.207 0.000 Destine Costa A. et al (2001) 0.200 0.200 0.201 0.207 0.200 0.000 Gurent - 4 (al (2010) 0.200 0.201 0.207 -1.202 0.000 Gurent - 6 (al (2020) 0.200 0.212 0.217 -1.212 0.000 Habasson - 5 (al (2002) 0.200 0.212 0.227 1.848 0.000 Habasson - 5 (al (2002) 0.200 0.211 0.211 0.200 0.000 Habasson - 5 (al (2002) 0.200 0.211 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201 0.201		Bacaite E. et al(2011)	0.150	0.129	0.174	-19.290	0.000		
Botho A. et al (2015) 0.20 0.20 0.20 0.20 0.20 0.20 Donger Y. et al (2015) 0.20 0.20 0.20 0.20 0.20 0.20 Donger Y. et al (2015) 0.20 0.20 0.20 0.20 0.20 0.20 Garca D. et al (2015) 0.20 0.20 0.20 0.20 0.20 0.20 Garca D. et al (2017) 0.20 0.20 0.21 0.20 0.20 0.20 Guarda D. et al (2017) 0.20 0.22 0.27 1.848 0.000 Hussan S. et al (2010) 0.20 0.21 0.22 0.27 1.848 0.000 Junchine M. et al (2017) 0.20 0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.20		Bertoncello A. et al(2018)	0.140	0.122	0.160	-22.482	0.000		
Chickovi, M. et al (2015) 0.10 0.20 0.30 0.20 0.30 0.20 Des Seta Cota A. et al (2001) 0.00 0.10 0.21 0.21 0.20 Garachew C. et al (2001) 0.00 0.00 0.00 0.00 0.00 Garachew C. et al (2001) 0.00 0.00 0.00 0.00 0.00 Garachew C. et al (2001) 0.00 0.00 0.00 0.00 0.00 Garachew C. et al (2001) 0.00 0.00 0.00 0.00 0.00 Hassenson, A. et al (2001) 0.00 0.00 0.00 0.00 0.00 0.00 Hassenson, A. et al (2001) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Hassenson, A. et al (2001) 0.00 <td></td> <td>Botelho A. et al(2018)</td> <td>0.260</td> <td>0.246</td> <td>0.274</td> <td>-27.707</td> <td>0.000</td> <td></td> <td></td>		Botelho A. et al(2018)	0.260	0.246	0.274	-27.707	0.000		
curved A. et al (2004) 0.200 0.200 0.200 0.200 0.200 0.200 Doro ther. (12000) 0.000 0.000 0.000 0.000 0.000 Gurde D. et al (2000) 0.000 0.000 0.000 0.000 0.000 Gurde D. et al (2000) 0.000 0.000 0.000 0.000 0.000 Gurde D. et al (2000) 0.000 0.000 0.000 0.000 0.000 Joachism A. et al (2010) 0.000 0.000 0.000 0.000 0.000 Joachism A. et al (2010) 0.000 0.000 0.000 0.000 0.000 0.000 Joachism A. et al (2010) 0.000 </td <td></td> <td>Chukwu. M. et al(2015)</td> <td>0.310</td> <td>0.267</td> <td>0.356</td> <td>-7.520</td> <td>0.000</td> <td></td> <td></td>		Chukwu. M. et al(2015)	0.310	0.267	0.356	-7.520	0.000		
Don Meti-Chart #12000) 0.20 0.2		cruz Alverez A. et al(2014)	0.280	0.207	0.367	-4.645	0.000		
Deside 10:01:A. et al.(2005) 0.00 0.00 0.00 0.00 Grance L. et al.(2005) 0.00 0.00 0.00 0.00 Grance L. et al.(2005) 0.00 0.00 0.00 0.00 Grance L. et al.(2005) 0.00 0.00 0.00 0.00 Hassenson A. et al.(2005) 0.00 0.00 0.00 0.00 Hassenson A. et al.(2005) 0.00 0.00 0.00 0.00 Kursen K. et al.(2005) 0.00 0.00 0.00 0.00 Kursen K. et al.(2005) 0.00 0.00 0.00 0.00 Kursen K. et al.(2015) 0.00 0.00 0.00 0.00 Kursen K. et al.(2015) 0.00 0.00 0.00 0.00 Machaner K. et al.(2015) 0.00 0.00 0.00 0.00 Machaner K. et al.(2015) 0.00 0.00 0.00 0.00 0.00 Machaner K. et al.(2015) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00		Dangor Y. et al(2016)	0.250	0.203	0.304	-8.017	0.000		
bit with the stal (2017) 1.00 0.014 0.014 0.000 Git allowski with stal (2017) 0.000 0.000 0.000 0.000 Hassan A. et al (2007) 0.200 0.220 0.227 1.84.8 0.000 Hassan A. et al (2013) 0.200 0.200 0.200 0.000 0.000 Jackhum A. et al (2013) 0.200 0.200 0.200 0.000 0.000 Luharers J. et al (2013) 0.200 0.200 0.200 0.000 0.000 Luharers J. et al (2013) 0.200 0.201 0.201 0.000 0.000 Luharers J. et al (2013) 0.200 0.201 0.201 0.000 0.000 Marchamin D. et al (2001) 0.200 0.201 0.201 0.000 0.000 Marchamin D. et al (2001) 0.200 0.201 0.000		Dos Reis Costa A. et al(2008)	0.200	0.150	0.261	-7.862	0.000		
Norma Norma Norma Norma Norma Stringer Stringer Norma Norma Norma Norma Stringer Stringer Stringer Norma Norma Norma Norma Norma Stringer Stringer Stringer Stringer Norma		Enweronu-laryea C. et al(2001)	0.190	0.164	0.219	-15.897	0.000		
Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Subset Hassan, St et al(2001) Subset Subset Subset Justeins A. et al(2013) Subset Subset Subset Justeins A. et al(2014) Subset Subset Subset Justeins A. et al(2013) Subset Subset Subset Justeins A. et al(2014) Subset Subset Subset Justeins A. et al(2011) Subset Subset Subset Marcham D. et al(2001) Subset Subset Subset Subset Marcham D. et al(2011) Subset Subset Subset Subset Subset Marcham D. et al(2011) Subset		Garcia D. et al(2010)	0.004	0.000	0.058	-3.927	0.000		
Set Windows L. H. HULDON) L. 200 L. 200 L. 200 Hakanson A. et al (2014) L. 200 L. 200 L. 200 Jacktisma A. et al (2015) L. 200 L. 200 L. 200 Jacktisma A. et al (2015) L. 200 L. 200 L. 200 Jacktisma A. et al (2011) L. 200 L. 200 L. 200 Linneres. J. et al (2011) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2003) L. 200 L. 200 L. 200 Marchain D. et al (2001) L. 200 L. 200 L. 200 Marchain D. et al (2001) L. 200 L. 200 L. 200 Namuege A. et al (2001)		Gizachew M. et al(2017)	0.260	0.219	0.306	-9.002	0.000		
unclement unclement unclement unclement		Grimwood K. et al(2002)	0.220	0.172	0.277	-8.122	0.000		
memory A: 1: (2010) 0:01 0:02 0:02 0:00 hyun Kim d: 1: (2010) 0:02 0:02 0:00 hyun Kim d: 1: (2011) 0:00 0:00 0:00 histis: A: et al (2011) 0:00 0:01 0:01 0:00 Marcham D: et al (2011) 0:00 0:01 0:01 0:01 0:01 Marcham D: et al (2011) 0:00 0:01 0:01 0:01 0:00 Mustis: M: et al (2011) 0:00 0:01 0:01 0:01 0:01 0:00 Mustis: M: et al (2011) 0:01 0:02 0:02 0:00 0:00 0:00 0:00 Numeyres A: et al (2011) 0:00 0:01 0:01 <td< td=""><td></td><td>Gutierrez G. et al(2005)</td><td>0.001</td><td>0.000</td><td>0.018</td><td>-4.781</td><td>0.000</td><td></td><td></td></td<>		Gutierrez G. et al(2005)	0.001	0.000	0.018	-4.781	0.000		
muxtum d. et al(2019) 0.20 0.21 2.20 0.000 Klew K. et al(2015) 0.20 0.28 3.87 0.000 Klew K. et al(2011) 0.10 0.22 0.28 0.000 Uncomik M. et al(2011) 0.10 0.22 0.28 0.000 Uncomik M. et al(2011) 0.10 0.22 0.28 0.000 Warcham D. et al(2011) 0.10 0.22 0.28 0.000 Marcham D. et al(2011) 0.20 0.21 0.21 0.25 0.000 Marcham D. et al(2010) 0.20 0.21 0.22 0.000 0.000 Marcham D. et al(2010) 0.20 0.22 0.21 0.22 0.000 Muselik A. et al(2010) 0.20 0.22 0.21 0.22 0.000 Muselik A. et al(2010) 0.20 0.22 0.21 0.20 0.21 0.22 0.21 Namegerada A. et al(2010) 0.20 0.23 0.21 0.23 0.21 0.23 0.21 0.22 0.22 0.21 <td></td> <td>Hassan A. ot al(2014)</td> <td>0.250</td> <td>0.229</td> <td>0.272</td> <td>-18.843</td> <td>0.000</td> <td></td> <td></td>		Hassan A. ot al(2014)	0.250	0.229	0.272	-18.843	0.000		
market market market market market market Klow, K.et 14(2013) 122 0.23 0.24 0.000 Klow, K.et 14(2011) 0.10 0.000 0.000 0.000 Luhares, J.et 12(2011) 0.10 0.000 0.000 0.000 Marchaim D.et 14(2001) 0.10 0.22 0.29 0.37 0.000 Marchaim D.et 14(2001) 0.10 0.12 0.000 0.000 0.000 Marchaim D.et 14(2001) 0.10 0.12 0.20 0.01 0.000 Marchaim D.et 14(2001) 0.20 0.21 0.20 0.20 0.20 0.20 0.20 0.20 0.21 0.20 0.20 0.20 0.20 0.20 0.20		hun Kim d. et al(2014)	0.130	0.125	0.279	-3.000	0.000		
n.tow etailon13 0.22 0.23 0.24 0.00 Lucowitk etailon13 0.10 0.06 0.14 -0.00 Lucowitk etailon13 0.10 0.06 0.14 -0.00 0.00 Marchaim D.etail(2011) 0.20 0.22 0.23 0.20 0.00 0.00 Marchaim D.etail(2010) 0.20 0.23 0.23 0.23 0.00 Marchaim D.etail(2010) 0.20 0.21 0.23 0.23 0.00 Marconic C.etail(2010) 0.20 0.21 0.23 0.23 0.20 Marconic C.etail(2010) 0.20 0.10 0.13 0.22 0.10 0.11 0.12 0.00 Mulesi M. etail(2010) 0.20 0.10 0.13 0.22 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11		loophism A at al(2000)	0.120	0.101	0.141	-20.017	0.000		
Nithows, Streid(201) 120		Joachistin A. et al(2005)	0.230	0.100	0.201	-0.007	0.000		
numbers is et al (2011) 0:10 0:00 0:14 -0:80 0:00 Lursowikh A. et al (2011) 0:00 0:22 0:18 -23:6 0:00 Marchaim D. et al (2001) 0:19 0:12 0:28 -5:48 0:00 Marconic C. et al (2010) 0:29 0:21 0:28 -5:48 0:00 Marconic C. et al (2010) 0:29 0:21 0:28 0:28 0:00 Marconic C. et al (2010) 0:29 0:21 0:28 0:28 0:00 Marconic C. et al (2010) 0:29 0:21 0:28 0:28 0:00 Mohommad Ali M. et al (2017) 0:14 0:13 0:17 1:40:00 0:00 Martowic A. et al (2017) 0:12 0:28 0:28 0:00 0:00 Martowic A. et al (2017) 0:12 0:13 0:22 0:00 0:00 Rosch et al (2020) 0:14 0:12 0:13 0:22 0:00 0:00 Rosch et al (2020) 0:14 0:128 0:23 0:00		K LOW K. et al(2013)	0.230	0.184	0.283	-8.478	0.000		
Lucomic A. et al (2014) 0.10 0.00 0.47 9.90 0.00 Marchaim D. et al (2001) 0.120 0.09 0.147 1.838 0.000 Marchaim D. et al (2001) 0.220 0.210 0.29 -9.374 0.000 Marchaim D. et al (2001) 0.220 0.210 0.247 -9.374 0.000 Marchaim D. et al (2001) 0.220 0.210 0.317 -7.328 0.000 Matani Ch. Et al (2015) 0.190 0.131 0.226 0.210 0.000 Mukeisi A. et al (2015) 0.190 0.131 0.226 -0.31 0.000 Mukeisi A. et al (2015) 0.130 0.220 -1.31 0.000 0.000 Mukeisi A. et al (2017) 0.130 0.220 -1.31 0.000 0.000 Sabain de Moles S. et al (2017) 0.100 0.011 0.223 -1.32 0.000 Sabain de Moles S. et al (2017) 0.20 0.210 0.232 -1.32 0.000 Sabain de Moles S. et al (2017) 0.20 0.210		Linharos L et al (2011)	0.200	0.250	0.270	-40.288	0.000		
unclosed unclosed unclosed unclosed unclosed Uprakowska unclosed unclosed unclosed unclosed Marcanica unclosed unclosed unclosed unclosed unclosed Marcanica unclosed unclosed unclosed unclosed unclosed unclosed Muclose unclosed unclosed <td></td> <td>Lucovnik M. et al/2014)</td> <td>0.100</td> <td>0.006</td> <td>0.148</td> <td>-32 555</td> <td>0.000</td> <td></td> <td></td>		Lucovnik M. et al/2014)	0.100	0.006	0.148	-32 555	0.000		
upper transmission 0.200 0.200 0.200 0.000 Marchain D. et al (2003) 0.130 0.213 0.224 0.000 Marchain D. et al (2003) 0.200 0.213 0.224 0.000 Marchain D. et al (2003) 0.200 0.225 0.224 0.000 Marchain C. H. Et al (2014) 0.200 0.225 0.224 0.000 Mohammad I.M. et al (2003) 0.200 0.225 0.224 0.000 Mides M. et al (2003) 0.200 0.220 0.235 0.200 0.000 Mules M. et al (2003) 0.200 0.200 0.200 0.200 0.000 Mules M. et al (2003) 0.200 0.200 0.200 0.200 0.000 Rusch A. et al (2003) 0.200 0.200 0.200 0.200 0.200 0.200 Rusch A. et al (2013) 0.200 0.200 0.201 0.201 0.201 0.201 0.201 0.200 0.200 0.201 0.201 0.201 0.201 0.201 0.200 0.201 0.201 0.201 0.201 0.201 0.201 0.200		Lucovnik IVI. et al(2014)	0.170	0.152	0.189	-23.555	0.000		
marchain Disk		Lysakowska M. et al(2011)	0.300	0.220	0.394	-3.979	0.000		
marconic de al(2010) 0.159 0.149 0.428 0.284 0.000 Marconic de al(2010) 0.200 0.210 0.211 0.236 0.000 Mengiti A et al(2010) 0.200 0.210 0.211 0.236 0.000 Mengiti A et al(2010) 0.200 0.210 0.211 0.216 0.000 Mulesi M et al(2010) 0.200 0.220 0.221 0.231 0.220 Nulesi M et al(2010) 0.200 0.230 0.237 0.200 0.000 Rusch et al(2000) 0.200 0.230 0.237 0.200 0.000 Rusch et al(2001) 0.200 0.221 0.231 0.231 0.200 Rusch et al(2010) 0.200 0.221 0.231 0.231 0.200 Santhamar Stal(2017) 0.200 0.232 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 0.231 </td <td></td> <td>Marchaim D. et al(2003)a</td> <td>0.120</td> <td>0.098</td> <td>0.147</td> <td>-10.890</td> <td>0.000</td> <td></td> <td></td>		Marchaim D. et al(2003)a	0.120	0.098	0.147	-10.890	0.000		
matani C. tra en (2010) 0.260 0.267 0.268 0.000 Matani C. St en (2010) 0.000 0.000 0.000 0.000 Mohammad Lih, et al (2010) 0.000 0.251 0.232 0.231 0.231 Mutheri M. et al (2010) 0.200 0.251 0.232 0.231 0.231 Mutheri M. et al (2010) 0.200 0.221 0.231 0.231 0.000 Mutheri M. et al (2010) 0.200 0.231 0.231 0.000 0.000 Mutheri M. et al (2010) 0.200 0.231 0.231 0.000 0.000 Page-Famise S. et al (2011) 0.200 0.201 0.231 0.231 0.000 Rouch A. et al (2007) 0.200 0.201 0.231 0.231 0.000 Stabain de Mols S. et al (2017) 0.200 0.201 0.231 0.231 0.000 Stabain de Mols S. et al (2001) 0.200 0.201 0.232 0.200 0.000 Stabain de Mols S. et al (2017) 0.200 0.201 0.232 0.200<		Marconi C. ot al(2003)b	0.190	0.123	0.283	-5.486	0.000		
memory Cu. L: en (2010) 0.200 0.210 0.211 0.226 0.000 Medigita A. et al (2020) 0.200 0.112 0.200 0.000 Michicova J. et al (2010) 0.200 0.220 0.221 0.000 Mulder vangen (00 A. et al (2010) 0.200 0.220 0.221 0.200 0.000 Nuller vangen (00 A. et al (2010) 0.200 0.220 0.221 0.231 0.517 0.000 Orrett F. A. et al (2003) 0.300 0.220 0.231 1.577 0.000 Base A. et al (2010) 0.200 0.221 1.514 0.200 0.000 Rouge A. et al (2017) 0.200 0.221 1.514 0.200 0.000 Stantharma S. et al (2017) 0.200 0.111 0.222 0.200 0.000 Stantharma S. et al (2017) 0.200 0.121 0.222 0.000 0.000 Stantharma S. et al (2017) 0.200 0.127 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Marconi C. et al(2010)	0.250	0.210	0.294	-9.574	0.000		
more and (AIM. et al (2003) 0.129 0.141 0.028 0.000 Michaim Mad AIM. et al (2003) 0.200 0.225 0.228 0.283 0.000 Mukesi M. et al (2003) 0.200 0.225 0.228 0.283 0.000 Mukesi M. et al (2003) 0.200 0.220 0.131 0.127 1.480 0.000 Orrett F. A. et al (2013) 0.130 0.220 0.177 5.288 0.000 Rusch A. et al (2010) 0.230 0.180 0.235 0.235 0.000 Rusch A. et al (2010) 0.200 0.181 0.231 5.71.50 0.000 Rusch A. et al (2010) 0.200 0.213 0.214 0.186 0.200 Sobalin de Meio S. et al (2017) 0.200 0.213 0.213 0.000 Sabalin de Meio S. et al (2017) 0.200 0.213 0.213 0.000 Sobalin de Meio S. et al (2017) 0.200 0.217 0.200 0.200 Sabalin de Meio S. et al (2017) 0.200 0.216 0.200 0.200 <td></td> <td>Managint A at al(2016)</td> <td>0.260</td> <td>0.210</td> <td>0.317</td> <td>-7.326</td> <td>0.000</td> <td></td> <td></td>		Managint A at al(2016)	0.260	0.210	0.317	-7.326	0.000		
model was 14 model at 12(202) 0.200 0.202 0.203 0.203 Model was 14 at 12(203) 0.200 0.201 0.203 0.201 Multifer variantities A. et al (2003) 0.200 0.201 0.203 0.201 Orrett F. A. et al (2003) 0.200 0.201 0.201 0.201 0.201 Page-Kamies A. et al (2003) 0.200 0.201 0.201 0.201 0.201 Page-Kamies A. et al (2003) 0.200 0.201 0.201 0.201 0.201 Rusch A. et al (2003) 0.200 0.201 0.201 0.201 0.201 0.201 Rusch A. et al (2017) 0.200 0.201 0.201 0.201 0.201 0.201 0.201 0.201 Santhan et el (2017) 0.200 0.201 0.202 0.201 <t< td=""><td></td><td>Mehammad Aliza -t -1(2010)</td><td>0.190</td><td>0.131</td><td>0.268</td><td>-6.385</td><td>0.000</td><td></td><td></td></t<>		Mehammad Aliza -t -1(2010)	0.190	0.131	0.268	-6.385	0.000		
mouses.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.ex.		Monammad All M. et al(2019)	0.160	0.122	0.208	-10.172	0.000		
multer vincet at (2017) 0.400 0.112 0.124 0.430 Multer vingenge A, et al (2016) 0.220 0.224 0.234 0.714 0.000 Namugenge A, et al (2016) 0.230 0.237 0.728 0.000 Orrestt F, A, et al (2007) 0.120 0.130 0.238 0.727 0.000 Ruck A, et al (2017) 0.120 0.127 0.127 0.120 0.000 Rousch A, et al (2017) 0.200 0.221 0.238 -15.77 0.000 Rousch A, et al (2017) 0.200 0.212 0.218 -3.841 0.000 Sabain de Melo S, et al (2017) 0.200 0.221 0.238 -3.841 0.000 Savoia D, et al (2007) 0.100 0.117 0.122 -1.437 0.000 Savoia D, et al (2007) 0.100 0.117 0.122 0.120 0.000 Savoia D, et al (2017) 0.200 0.127 0.291 0.202 0.200 0.000 Savoia D, et al (2017) 0.200 0.127 0.292 0.000 0.000 0.000 0.000 0.000 0.000		Notiova J. et al(2004)	0.290	0.255	0.328	-9.835	0.000		
mumuer-vranges A. et al (2009) 0.200 0.300 5-168 0.000 Orrett F. A. et al (2039) 0.310 0.220 0.377 5-288 0.000 Page-Ramisey S. et al (2011) 0.190 0.180 0.225 7-110 0.000 Rusch A. et al (2001) 0.100 0.180 0.225 7-100 0.000 Rusch A. et al (2017) 0.120 0.140 0.225 7-100 0.000 Rochetti T. et al (2010) 0.240 0.241 0.243 5.481 0.000 Sabini de Melo S. et al (2017) 0.260 0.221 0.232 5.241 0.000 Santhanam S. et al (2017) 0.200 0.110 0.127 7.102 0.000 Santhanam S. et al (2017) 0.200 0.113 0.227 7.277 0.000 Stower M. et al (2014) 0.000 0.030 0.220 0.232 1.437 0.000 Stower M. et al (2011) 0.000 0.020 0.110 0.237 7.268 0.000 Vancemburg-vanden Berg et al (2006) 0.100 0.137 7.225 0.000 Vancemburg-vanden Berg et a		Mukesi M. et al(2019)	0.140	0.113	0.172	-14.501	0.000		
Namugongo A, et al (12016) 0.290 0.242 0.237 7.142 0.000 Orrett F, A, et al (12003) 0.330 0.220 0.377 7.528 0.000 Rusch A, et al (2007) 0.120 0.136 0.229 0.277 7.122 0.000 Rusch A, et al (2007) 0.120 0.130 0.229 0.271 0.230 0.000 Rochechti T, et al (2017) 0.200 0.220 0.221 0.396 -3.571 0.000 Rochechti T, et al (2017) 0.200 0.201 0.396 -3.684 0.000 Sabaini Ge Melo S, et al (2007) 0.100 0.011 0.322 -3.791 0.000 Savoia D, et al (2007) 0.100 0.137 0.127 0.120 0.100 0.000 Savoia D, et al (2007) 0.100 0.101 0.202 0.200 0.000 0.000 Savoia D, et al (2017) 0.200 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Muller-vranjes A. et al(2009)	0.250	0.180	0.336	-5.168	0.000		
Orrett F.A. et al (203) 0.30 0.20 0.277 -5.28 0.000 Page-Hamsey S. et al (2021) 0.19 0.18 0.259 -7.19 0.000 Rusch A. et al (2001) 0.210 0.18 0.235 -5.15 0.000 Rick A. et al (2011) 0.170 0.147 0.186 -5.25 0.000 Rick A. et al (2011) 0.220 0.220 0.221 0.251 0.000 Rick A. et al (2011) 0.220 0.221 <		Namugongo A. et al(2016)	0.290	0.242	0.343	-7.142	0.000		
Drret F.A. et al(2003) Page-Hamsey. st at (2017) Rick A. et al(2017) Rick A. et al(2016) Rick A. et al(2017) Rick A. et al(2017) Rick A. et al(2017) Rick A. et al(2017) Rick A. et al(2016) Rick A. et al(2017) Rick A. et al(2017)		Orrett F.A. et al(1993)	0.310	0.250	0.377	-5.285	0.000		
Page-Ramsey S. et al (201) 0.19 0.13 0.25 7.13 0.000 Rausch A. et al (201) 0.10 0.14 0.19 1.75 0.000 Rick A. et al (201) 0.12 0.14 0.12 1.55 0.000 Rochetti T. et al (2010) 0.220 0.220 0.224 0.221 0.94 9.574 Romanic m. et al (2014) 0.220 0.221 0.244 0.000 0.000 Sachanams et al (2017) 0.100 0.011 0.0127 0.135 0.000 Sachanams et al (2017) 0.100 0.113 0.127 7.191 0.000 0.000 0.000 0.000 Siquera MS. Et al (2019) 0.104 0.127 0.139 0.224 0.200 0.001 0.013 0.127 0.199 0.224 0.000 Tur-Udon S. et al (2017) 0.100 0.103 0.127 0.139 0.224 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		Orrett F.A. et al(2003)	0.330	0.269	0.398	-4.721	0.000		
matrix A. et al (2007) 0.210 0.130 0.231 -13.27 0.000 Rick A. et al (2017) 0.220 0.220 0.224 -3.57 0.000 Roochetti T. et al (2017) 0.200 0.220 0.224 -3.57 0.000 Roomanic m. et al (2017) 0.200 0.220 0.221 0.531 -3.644 0.000 Sabani de Melos. et al (2017) 0.100 0.171 0.132 1.515 0.000 Savoia D. et al (2007) 0.100 0.127 0.127 1.521 0.000 Savoia D. et al (2007) 0.100 0.127 0.123 0.000 0.000 Savoia D. et al (2007) 0.100 0.127 0.123 0.000 0.000 Savoia D. et al (2005) 0.140 0.123 0.127 0.223 0.000 Tor-Udons Et al (2013) 0.100 0.052 1.123 0.000 0.000 Valkemburg-unden Berg et al (2013) 0.100 0.066 0.125 0.113 0.020 Valket A. et al (2014) 0.070 0.66 0.125 0.126 0.000 Vadeta T. et al (2013)		Page-Ramsey S. et al(2011)	0.190	0.136	0.259	-7.150	0.000		
Nick A. et al (2017) 0.170 0.147 0.147 0.196 -1.4229 0.000 Rochett T. et al (2016) 0.210 0.221 0.154 -3.257 0.000 Bromanic m. et al (2011) 0.220 0.221 0.314 0.000 Santhaams S. et al (2017) 0.200 0.210 0.313 1.1512 0.000 Santhaams S. et al (2017) 0.120 0.113 0.127 5.7571 0.000 Santhaams S. et al (2017) 0.120 0.113 0.127 5.757 0.000 Santhaams S. et al (2013) 0.200 0.127 0.127 0.120 0.000 Truit M. et al (2014) 0.100 0.103 0.120 0.126 0.000 Valkenburg-maden Berg et al (2005) 0.100 0.026 0.026 0.000 Vould Z. et al (2011) 0.020 0.150 0.226 1.2395 0.000 Valkenburg-maden Berg et al (2005) 0.100 0.666 0.414 0.020 0.000 Vould Z. et al (2011) 0.200 0.150 0.217 1.838 0.000 Vades T. et al (2013) 0.200		Rausch A. et al(2009)	0.210	0.189	0.233	-19.577	0.000		
Rocchetti T, et al (2016) 0.230 0.220 0.221 0.235 0.200 Rojn-Bezrare B, et al (2017) 0.200 0.201 0.325 0.320 0.000 Sabani de Melo S, et al (2017) 0.100 0.071 0.139 0.151 0.000 Savoia Lo et al (2007) 0.100 0.071 0.139 0.151 0.000 Savoia Lo et al (2017) 0.100 0.012 0.139 1.1512 0.000 Savoia Lo et al (2017) 0.100 0.012 0.137 1.020 0.000 Vinnemeire C.D. et al (2015) 0.140 0.100 0.88 5.204 0.000 Vinnemeire C.D. et al (2014) 0.000 0.88 5.204 0.000 Vinnemeire C.D. et al (2014) 0.020 0.157 1.257 0.000 Vinnemeire C.D. et al (2014) 0.020 0.150 0.213 1.141 0.000 Void Lo et al (2014) 0.020 0.150 0.215 1.257 0.000 Vang B. et al (2011) 0.200 0.206 0.235 1.211 0.000 Mobilami F. et al (2013) 0.200 0.215		Rick A. et al(2017)	0.170	0.147	0.196	-17.829	0.000		
Roje-Jecarez B. et al (2015) 0.140 0.127 0.154 -3.291 0.000 Santhane et al (2014) 0.220 0.202 0.202 0.203 0.203 Santhanes, et al (2017) 0.100 0.071 0.322 0.000 Santhanes, et al (2017) 0.100 0.071 0.322 0.000 Seale A. et al (2017) 0.100 0.071 0.322 0.000 Seale A. et al (2015) 0.100 0.027 0.139 0.120 0.000 Siduerra MS. Et al (2015) 0.100 0.081 0.122 0.000 0.000 Tor-UdomS. et al (2015) 0.100 0.085 0.122 0.000 0.000 Valkenburg-vanden Berg et al (2006) 0.100 0.085 0.126 0.000 0.000 Valkenburg-vanden Berg et al (2005) 0.100 0.086 0.127 0.138 0.000 Valkenburg-vanden Berg et al (2005) 0.100 0.026 0.153 0.100 0.027 0.000 Valeta T. et al (2018) 0.100 0.026 0.153 0.000 0.000 0.000 0.000 0.000 A		Rocchetti T. et al(2010)	0.250	0.210	0.294	-9.574	0.000		
Nomanic M. et al (2017) 0.20 0.20 0.23 -3.44 0.000 Sabain de Meio S. et al (2017) 0.100 0.07 0.132 -1.1512 0.000 Savoia D. et al (2007) 0.100 0.07 0.132 -1.1512 0.000 Savoia D. et al (2001) 0.100 0.137 0.122 5.771 0.000 Savoia D. et al (2001) 0.100 0.187 -1.025 0.000 Tor-Udon S. et al (2005) 0.100 0.83 0.120 2.2264 0.000 Tor-Udon S. et al (2013) 0.100 0.83 0.122 2.2254 0.000 Vinnemeirer C.D. et al (2013) 0.020 0.157 7.258 0.000 Vinde S. et al (2011) 0.020 0.157 7.258 0.000 Vong B. et al (2011) 0.020 0.150 0.235 0.131 0.000 Vades T. et al (2018) 0.140 0.124 0.125 0.000 Vades T. et al (2013) 0.100 0.036 0.41 0.420 0.000 Abcoliani Fard S. et al (2017) 0.120 0.261 0.757 0.800 0.000		Rojo-Bezarez B. et al(2016)	0.140	0.127	0.154	-32.911	0.000		
Santh de Meior S, et al (2017) 0.200 0.242 0.213 9.143 0.000 Santh de Meior S, et al (2017) 0.100 0.445 0.227 5.71.000 0.000 Sevoia D. et al (2007) 0.120 0.117 0.222 1.000 0.000 Siqueira MC, Et al (2015) 0.100 0.020 0.117 0.222 0.000 Siqueira MC, Et al (2015) 0.100 0.033 0.122 0.000 0.000 Valkenburg-vanden Berg et al (2006) 0.100 0.026 0.129 0.000 Wenjing: et al (2017) 0.190 0.126 0.125 0.000 Wollbein: C.et al (2016) 0.100 0.026 0.126 0.000 Wollbein: Set al (2016) 0.100 0.026 0.125 0.000 Vold Z.et al (2011) 0.100 0.066 0.144 0.142 0.000 Valeta T. et al (2015) 0.100 0.056 0.141 0.000 0.000 Abolitahi Fard S. et al (2017) 0.120 0.155 0.151 0.000 0.000 Hadvand Sh. Et al (2017) 0.120 0.157 0.000 0.000 </td <td></td> <td>Romanic m. et al(2014)</td> <td>0.290</td> <td>0.201</td> <td>0.398</td> <td>-3.634</td> <td>0.000</td> <td></td> <td></td>		Romanic m. et al(2014)	0.290	0.201	0.398	-3.634	0.000		
Savoi D. 41 (2007) 0.100 0.071 0.133 1.1512 0.000 Savoi D. 41 (2007) 0.120 0.113 0.122 1.161 0.000 Sele A. et al (2017) 0.120 0.113 0.127 5.7751 0.000 Siqueira MS. Et al (2016) 0.140 0.102 0.222 1.1512 0.000 Tor-Udom S. et al (2006) 0.140 0.102 0.222 0.000 0.000 Vinnemeier C.D. et al (2015) 0.100 0.688 0.102 0.000 0.000 Wold Nz et al (2011) 0.600 0.77 0.486 0.58.240 0.000 Wold Nz et al (2011) 0.600 0.100 0.688 0.102 0.000 Yadeta T. et al (2011) 0.200 0.124 0.157 7.263 0.000 Volk Set et al (2017) 0.100 0.686 0.144 0.420 0.000 Volk Set et al (2015) 0.100 0.666 0.144 0.000 0.000 Al-Sweih N. et al (2015) 0.100 0.150 0.116 0.128 0.000 Hadbulah Fard S. et al (2015) 0.300 0.1		Sabaini de Melo S. et al(2017)	0.280	0.242	0.321	-9.444	0.000		
Sevia D. et al (2007) 0.180 0.445 0.222 1.061 0.000 Sevia D. et al (2013) 0.200 0.17 0.222 5.000 Sique ira M. et al (2013) 0.100 0.087 0.127 0.000 Tor Udom S. et al (2013) 0.100 0.081 0.022 0.000 Tor Udom S. et al (2014) 0.000 0.081 0.022 0.000 Wenjing I. et al (2017) 0.190 0.230 0.227 0.000 Wold Z. et al (2014) 0.070 0.406 0.228 0.000 Wold Z. et al (2014) 0.070 0.406 0.235 0.000 Wold Z. et al (2011) 0.100 0.068 0.235 0.000 Young B. et al (2011) 0.100 0.066 0.241 0.637 0.000 Abdollahi Fard S. et al (2008) 0.101 0.026 0.241 6.376 0.000 Al-Sweih N. et al (2013) 0.103 0.241 6.376 0.000 0.000 Al-Sweih N. et al (2012) 0.050 0.138 1.242 0.000 0.000 Hadayand Sh. Et al (2013) 0.230 0.257		Santhanam S. et al(2017)	0.100	0.071	0.139	-11.512	0.000		
Sele A. et al (2017) 0.120 0.131 0.127 5.7.731 0.000 Sito M. et al (2013) 0.120 0.127 0.222 0.000 Tor-Udon S. et al (2005) 0.140 0.103 0.187 1.022 0.000 Tur M. et al (2014) 0.100 0.088 0.120 0.000 0.000 Valkenburg-vanden Berg et al (2015) 0.001 0.017 0.226 0.000 Wonlping J. et al (2017) 0.080 0.027 0.226 0.000 Wollbeim C. et al (2016) 0.210 0.117 0.239 7.238 0.000 Young B. et al (2011) 0.200 0.166 0.235 1.111 0.000 Abdollahi Fard S. et al (2008) 0.100 0.686 0.44 1.042 0.000 Clouse K. et al (2017) 0.100 0.106 0.117 1.175 1.238 0.000 Habbi Zadeh SH. et al (1208) 0.100 0.116 0.127 1.238 0.000 Hadswand ASh. Et al (2012) 0.600 0.117 1.128 0.000 0.000 Javarnanaesh F. et al (2012) 0.600 0.627 <		Savoia D. et al(2007)	0.180	0.145	0.221	-11.651	0.000		
siguer action 0.200 0.171 0.222 1.43.57 0.000 Siguer action 0.112 0.127 0.129 0.000 Tor-Udom S. et al(2006) 0.160 0.127 0.129 0.000 Tor Udom S. et al(2013) 0.100 0.083 0.122 0.000 Wenjing: et al(2013) 0.100 0.086 0.020 0.000 Wolduz. et al(2014) 0.070 0.066 0.020 0.000 Wolduz. et al(2013) 0.020 0.169 0.225 0.000 Yadeta T. et al(2013) 0.100 0.068 0.144 1.0422 0.000 Abdollahi Fard S. et al(2003) 0.160 0.235 1.311 0.000 0.000 Al-Sweih N. et al(2013) 0.200 0.150 0.217 8.230 0.000 Habbi zadeh SH. et al(2013) 0.100 0.068 0.141 1.0422 0.000 Hassan zadeh P. et al(2011) 0.100 0.061 0.137 1.820 0.000 Javanmanesh F. et al(2012) 0.200 0.527 1.630 0.000 0.001 Javanmanesh F. et al(2017)		Seale A. et al(2017)	0.120	0.113	0.127	-57.791	0.000		
Sigueira MS. Et al (2006) 0.140 0.033 0.167 1.02.15 0.000 Tor-Udons et al (2006) 0.100 0.038 0.120 2.03.66 0.000 Yalkenburg-vanden Berg et al (2015) 0.019 0.230 2.22.64 0.000 Winnemeier C.D. et al (2015) 0.020 0.026 1.239 0.000 Wolkenburg-vanden Berg et al (2013) 0.020 0.026 1.023 0.000 Wolkenburg-vanden Serg et al (2014) 0.000 0.000 0.000 0.000 Wolkenburg-vanden Serg et al (2013) 0.120 0.127 0.233 -13.111 0.000 Valkenburg-vanden Serg et al (2013) 0.100 0.668 0.414 -0.637 0.000 Young B. et al (2017) 0.120 0.681 0.414 -0.637 0.000 Al-Sweith N. et al (2017) 0.120 0.616 0.135 0.118 0.000 Hadbizache SH. et al (2017) 0.120 0.618 0.123 0.000 0.001 Hadbizache SH. et al (2012) 0.200 0.257 1.634 0.000 0.001 Javarmanesh F. et al (2012) 0.200		seto M. et al(2019)	0.200	0.171	0.232	-14.375	0.000		
Tor-Udom S. et al (2016) 0.160 0.127 0.199 1.2.2.49 0.000 Tsui M. et al (2011) 0.100 0.083 0.120 2.0.86 0.000 Valkenburg-vanden Berg et al (2015) 0.190 0.086 0.226 1.2.000 Wenjing J. et al (2011) 0.070 0.046 0.026 1.2.959 0.000 Wollbain C. etal (2016) 0.020 0.159 0.226 1.2.753 0.000 Young B. et al (2011) 0.100 0.046 0.056 1.1.41 0.000 Young B. et al (2011) 0.100 0.046 0.125 1.2.357 0.000 Young B. et al (2011) 0.100 0.686 0.144 1.0.422 0.000 Al-Sweih N. et al (2021) 0.100 0.681 0.7.842 0.000 darabi R. et al (2015) 0.030 0.011 0.064 -8.533 0.000 Hadwand Sh. Et al (2015) 0.030 0.014 0.064 -8.533 0.000 Jahrom B. et al (2012) 0.206 0.257 1.080 0.000 0.075 0.225 0.000 Jahrom B. et al (2017) <t< td=""><td></td><td>Siqueira MS. Et al(2019)</td><td>0.140</td><td>0.103</td><td>0.187</td><td>-10.215</td><td>0.000</td><td></td><td></td></t<>		Siqueira MS. Et al(2019)	0.140	0.103	0.187	-10.215	0.000		
Toti M. et al (2014) 0.100 0.083 0.120 0.206 0.000 Valkenburg-vanden Berg et al (2005) 0.190 0.210 0.195 0.222 0.100 Wenjing L et al (2017) 0.086 0.627 0.686 0.627 0.000 Wonjing L et al (2013) 0.200 0.166 0.777 0.293 7.203 0.000 Yadeta T. et al (2013) 0.200 0.166 0.777 0.293 7.203 0.000 Yadeta T. et al (2013) 0.200 0.166 0.737 0.293 7.203 0.000 Yadeta T. et al (2013) 0.200 0.166 0.737 0.738 0.000 0.000 Al-Sweih N. et al (2024) 0.100 0.068 0.144 1.042 0.000 0.000 Hadbib zadeh SH. et al (1289) 0.120 0.150 0.261 7.784 0.000 0.000 Hadswand Sh. Et al (2013) 0.200 0.118 0.118 0.128 0.000 0.000 Hadswand Sh. Et al (2013) 0.200 0.257 1.63.04 0.000 0.000 0.000 0.000 0.000 0.000		Tor-Udom S. et al(2006)	0.160	0.127	0.199	-12.249	0.000		
Vincender G.D. et al (2015) 0.210 0.139 0.220 0.220 0.000 Winnering J. et al (2017) 0.060 0.074 0.065 58.240 0.000 Wollawin C. et al (2016) 0.200 0.074 0.065 58.240 0.000 Young B. et al (2011) 0.120 0.127 2.233 7.263 0.000 Young B. et al (2011) 0.120 0.126 0.235 1.11 0.000 Abdollahi Fard S. et al (2004) 0.160 0.130 0.241 6.357 6.000 Clouse K. et al (2017) 0.120 0.161 0.103 0.241 6.353 0.000 Habib zack B. H. et al (2015) 0.001 0.014 0.664 -8.593 0.000 Hashbi zack B. M. et al (2012) 0.060 0.024 0.103 -9.241 0.000 Hashbi zack B. M. et al (2012) 0.060 0.024 0.000 0.000 0.000 Javorm Ase F. et al (2012) 0.200 0.205 0.257 1.634 0.000 0.000 Javorm Ase F. et al (2013) 0.200 0.275 0.225 0.000 0.000 <t< td=""><td></td><td>Tsui M. et al(2014)</td><td>0.100</td><td>0.083</td><td>0.120</td><td>-20.866</td><td>0.000</td><td></td><td></td></t<>		Tsui M. et al(2014)	0.100	0.083	0.120	-20.866	0.000		
Wennjner, et al (2015) 0.190 0.195 0.226 1.2399 0.000 Wenjney, et al (2017) 0.080 0.074 0.086 5.236 0.000 Woldhuz, et al (2016) 0.220 0.177 0.233 7.233 7.233 7.233 Young B. et al (2013) 0.200 0.169 0.235 1.131 0.000 Abdollahi Fard S. et al (2004) 0.160 0.686 5.23 1.011 0.000 Al-Sweih N. et al (2004) 0.160 0.686 0.44 1.042 0.000 Clouse K. et al (2017) 0.120 0.611 0.175 -8.80 0.000 Hadbuand Sh. Et al (2011) 0.100 0.066 0.414 1.042 0.000 Hadswand Sh. Et al (2011) 0.100 0.061 0.133 1.135 0.100 Hadswand Sh. Et al (2011) 0.100 0.061 0.133 0.237 1.630 0.000 Javanmanesh F. et al (2011) 0.140 0.156 0.223 0.000 0.000 0.000 Javanmanesh F. et al (2013) 0.230 0.257 0.130 0.000 0.000 0.		Valkenburg-vanden Berg et al(2006)	0.210	0.191	0.230	-22.264	0.000		
Wenjing J. et al (2017) 0.080 0.074 0.086 -58.240 0.000 Wold Z. et al (2013) 0.070 0.066 0.105 -11.41 0.000 Yadeta T. et al (2018) 0.140 0.124 0.157 -25.879 0.000 Abdollahi Fard S. et al (2001) 0.200 0.160 0.135 -15.7 0.000 Abdollahi Fard S. et al (2013) 0.200 0.160 0.130 0.214 -6.375 0.000 Clouxe K. et al (2017) 0.120 0.068 0.414 -10.422 0.000 darabi R. et al (2017) 0.120 0.061 0.135 -12.633 0.000 Hadbizachel SH. et al (2012) 0.030 0.141 0.618 -12.88 0.000 Hadswand Sh. Et al (2011) 0.140 0.046 -8.593 0.000 0.000 Javanmanesh F. et al (2011) 0.140 0.164 -8.593 0.000 0.000 Javanmanesh F. et al (2013) 0.230 0.235 0.257 -16.34 0.000 0.000 Javanmanesh F. et al (2013) 0.230 0.257 -16.34 0.000 0.000		Vinnemeier C.D. et al(2015)	0.190	0.159	0.226	-12.959	0.000		
woldu Z. et al (2014) 0.070 0.066 0.105 1.1.431 0.000 Wollheam C. etal (2016) 0.220 0.177 0.293 7.283 7.283 7.200 Young B. et al (2011) 0.100 0.066 0.144 1.0422 0.000 Abdoliahi Fard S. et al (2003) 0.100 0.066 0.243 1.111 0.000 Clouse K. et al (2017) 0.120 0.161 0.261 7.842 0.000 darabi R. et al (2017) 0.120 0.181 0.175 -8.830 0.000 Hadburand Sh. Et al (2015) 0.030 0.014 0.064 -8.593 0.000 Hasburandeh SH. et al (2012) 0.030 0.014 0.064 -8.593 0.000 Hasburandeh P. et al (2011) 0.140 0.165 0.125 1.080 0.000 Javonnanesh F. et al (2012) 0.200 0.205 0.257 1.634 0.000 Javananesh F. et al (2013) 0.200 0.216 0.227 1.634 0.000 Kabir S. et al (2017) 0.300 0.33 0.237 1.630 0.000 Kabir S. et al		Wenjing J. et al(2017)	0.080	0.074	0.086	-58.240	0.000		
Wollheim C. etal(2016) 0.230 0.177 0.293 -7.263 0.000 Yadeta T. etal(2015) 0.140 0.124 0.157 2.587 0.000 Young B. etal(2011) 0.200 0.668 0.144 -10.422 0.000 Abdollahl Fard S. etal(2003) 0.100 0.068 0.144 -10.422 0.000 Clouse K. etal(2017) 0.200 0.150 0.216 -7.842 0.000 Hadvand Sh. etal(2013) 0.030 0.115 0.115 -1.2633 0.000 Hadvand Sh. etal(2012) 0.050 0.014 0.046 -8.533 0.000 Hassan Zadeh P, etal(2011) 0.060 0.138 -1109 0.000 Jahromi B. etal(2012) 0.050 0.257 -16.34 0.000 Javanmanesh F. etal(2013) 0.230 0.257 -16.34 0.000 Javanmanesh F. etal(2013) 0.230 0.257 -16.34 0.000 Kadanali A. etal(2015) 0.200 0.257 -16.34 0.000 Javanmanesh F. etal(2013) 0.230 0.257 -16.34 0.000 Kadanali A		woldu Z. et al(2014)	0.070	0.046	0.105	-11.431	0.000		
Yaouta T. et al (2013) 0.140 0.127 25.879 0.000 Young E. et al (2011) 0.200 0.169 0.235 0.131 0.000 Abdollahi Fard S. et al (2004) 0.160 0.068 0.441 1.422 0.000 Al-Sweith N. et al (2017) 0.120 0.161 0.757 3.830 0.000 Habib zach SH. et al (2013) 0.020 0.150 0.261 7.7842 0.000 Habib zach SH. et al (2013) 0.030 0.014 0.664 8.593 0.000 Habib zach SH. et al (2012) 0.060 0.014 0.064 8.593 0.000 Hasmand A. et al (2012) 0.060 0.018 0.133 9.224 0.000 Jahrom B. et al (2003) 0.200 0.257 1.634 0.000 0.001 Jahrom B. et al (2013) 0.220 0.257 1.634 0.000 0.001 Jahrom B. et al (2013) 0.200 0.277 1.634 0.000 0.001 Kabiri S. et al (2013) 0.200 0.277 1.634 0.000 0.001 Kabiri S. et al (2017) 0.340 0.390		Wollheim C. etal(2016)	0.230	0.177	0.293	-7.263	0.000		
Young B. et al (2011) 0.200 0.169 0.235 1.1311 0.000 Abdollahi Fard S. et al (2008) 0.100 0.068 0.144 1.042 0.000 Clouse K. et al (2017) 0.120 0.081 0.175 -8.830 0.000 Habbi zadeh SH. et al (1289) 0.130 0.119 0.187 -12.633 0.000 Hadavand Sh. Et al (2015) 0.030 0.014 0.064 -6.353 0.000 Hadavand Sh. Et al (2011) 0.130 0.016 0.081 0.175 -8.830 0.000 Hassan zadeh P. et al (2011) 0.140 0.166 0.183 -12.383 0.000 Javanmanesh F. et al (2012) 0.230 0.205 0.257 -16.304 0.000 Javanmanesh F. et al (2013) 0.230 0.205 0.257 -16.304 0.000 Javanmanesh F. et al (2013) 0.230 0.205 0.257 -16.304 0.000 Javanmanesh F. et al (2013) 0.230 0.237 0.216 0.000 0.000 Kabir J. et al (2017) 0.340 0.330 0.327 0.210 0.000 0.000		Yadeta T. et al(2018)	0.140	0.124	0.157	-25.879	0.000		
Abclolahi Fard S. et al (2008) 0.100 0.068 0.44 + 10.422 0.000 Al-Sweth N. et al (2014) 0.120 0.201 0.211 6.37 Clouse K. et al (2017) 0.120 0.151 0.126 + 7.842 0.000 Habib zadeh SH. et al (1189) 0.100 0.187 1.263 0.000 Hadbi zadeh SH. et al (2015) 0.030 0.014 0.664 -8.533 0.000 Haghshens Mojaveri M. et al (2012) 0.150 0.118 0.122 0.000 Hasman Zadeh P. et al (2011) 0.140 0.168 -12.2908 0.000 Jahrom B. F. et al (2013) 0.220 0.225 0.257 -16.30 0.000 Javanmanesh F. et al (2013) 0.220 0.257 -16.30 0.000 0.000 Kabiri S. et al (2015) 0.200 0.164 0.242 -11.132 0.000 Kabiri S. et al (2015) 0.200 0.164 0.242 -11.132 0.000 Musehs J. et al (2017) 0.340 0.307 0.328 -2.29 0.000 Norozi M. et al (2013) 0.170 0.185 0.212 0.000 0.		Young B. et al(2011)	0.200	0.169	0.235	-13.111	0.000		
Al-Sweih N. et al (2004) 0.160 0.033 0.241 -6.376 0.000 Clouse K. et al (2017) 0.120 0.151 0.261 -7.82 0.000 darabi R. et al (2017) 0.120 0.151 0.175 -8.830 0.000 Hadbizadeh SH. et al (1389) 0.150 0.118 0.185 -12.633 0.000 Hadawand Sh. Et al (2012) 0.060 0.041 -12.633 0.000 Hamedi A. et al (2012) 0.060 0.041 0.064 -8.593 0.000 Jakromasesh F. et al (2011) 0.140 0.166 0.133 1.22.88 0.000 Javanmanesh F. et al (2012) 0.205 0.257 -16.304 0.000 0.000 Javanmanesh F. et al (2013) 0.230 0.205 0.257 -16.304 0.000 Kabiri S. et al (2015) 0.200 0.164 0.242 1.120 0.000 Kabiri S. et al (2015) 0.170 0.118 0.232 -12.00 0.000 Kabiri S. et al (2017) 0.340 0.302 -22.92 0.000 0.000 Medugu N. et al (2017) 0.340		Abdollahi Fard S. et al(2008)	0.100	0.068	0.144	-10.422	0.000		
Clouse K. et al(2019) 0.200 0.150 0.77.84.20 0.000 darabi R. et al(2017) 0.120 0.081 0.157 6.283 0.000 Habib zadeh S.H. et al(1389) 0.150 0.113 0.187 -12.693 0.000 Haghshens Mojaveri M. et al(2014) 0.040 0.044 8.188 -12.88 0.000 Haghshens Mojaveri M. et al(2012) 0.060 0.034 0.103 -9.241 0.000 Hassan zadeh P. et al(2011) 0.140 0.026 0.257 -16.304 0.000 Javanmanesh F. et al(2013) 0.230 0.255 0.257 -16.304 0.000 Kadanali A. et al(2005) 0.170 0.118 0.237 7.255 0.000 Kadanali A. et al(2017) 0.340 0.300 0.238 -11.020 0.000 Museh J. et al(2017) 0.340 0.300 0.238 -12.00 0.000 Museh J. et al(2017) 0.340 0.300 0.238 -12.00 0.000 Nerozi M. et al(1 0.000 0.068 0.222 6.200 0.000 0.000 Najmi N. et al(2017)		Al-Sweih N. et al(2004)	0.160	0.103	0.241	-6.376	0.000		
drabi h. et al(2017) 0.120 0.081 0.175 -8.830 0.000 Habib zach SH. et al(12015) 0.030 0.014 0.064 -8.593 0.000 Hadab zach SH. et al(2012) 0.030 0.014 0.064 -8.593 0.000 Hamed L. et al(2012) 0.000 0.018 0.188 -12.38 0.000 Hassan zadeh P. et al(2011) 0.140 0.160 0.138 -11.120 0.000 Jahrom BL. et al(2005) 0.200 0.257 -16.304 0.000 0.000 Javanmanesh F. et al(2013) 0.200 0.257 -16.304 0.000 0.000 Kabir S. et al(2016) 0.130 0.277 -16.304 0.000 0.000 Kabir S. et al(2017) 0.300 0.307 0.328 -7.025 0.000 Musleh J. et al(2017) 0.300 0.330 0.277 0.229 0.000 Musleh J. et al(2017) 0.300 0.327 0.229 0.000 0.000 Najmi N. et al(2013) 0.170 0.156 0.221 0.000 0.000 0.000 0.000 0.000 0.000 <td></td> <td>Clouse K. et al(2019)</td> <td>0.200</td> <td>0.150</td> <td>0.261</td> <td>-7.842</td> <td>0.000</td> <td></td> <td></td>		Clouse K. et al(2019)	0.200	0.150	0.261	-7.842	0.000		
Hadbizadeh SH. et al (1289) 0.150 0.119 0.187 - 12.033 0.000 Hadavand Sh. Et al (2015) 0.00 0.014 0.064 8.53 0.000 Haghshenas Mojaveri M. et al (2012) 0.050 0.014 0.064 8.53 0.000 Harsban adeh P. et al (2012) 0.060 0.034 0.038 1.109 0.000 Javanmanesh F. et al (2012) 0.200 0.257 1.63.04 0.000 Javanmanesh F. et al (2013) 0.230 0.257 1.63.04 0.000 Kadanali A. et al (2015) 0.200 0.257 1.63.04 0.000 Kadanali A. et al (2013) 0.230 0.257 1.63.04 0.000 Museh, J. et al (2017) 0.340 0.300 0.383 -10.000 Museh, J. et al (2017) 0.340 0.300 0.383 -10.000 Namin N. et al (2013) 0.170 0.118 0.126 0.000 Namin N. et al (2017) 0.340 0.300 0.333 -229 0.000 Nickenbe A. et al (2017) 0.130 0.126 -12.06 0.000 0.000 Sadaka S. et al (2		darabi R. et al(2017)	0.120	0.081	0.175	-8.830	0.000		
Hadavand Sh. Et al (2015) 0.000 0.014 0.064 -8.593 0.000 Haghshens Mojaveri M. et al (2011) 0.100 0.103 -9.241 0.000 Hassan zadeh P. et al (2011) 0.100 0.108 -12.2908 0.000 Jahrom Ib. et al (2020) 0.200 0.205 0.527 -16.304 0.000 Javanmanesh F. et al (2012) 0.200 0.205 0.527 -16.304 0.000 Javanmanesh F. et al (2013) 0.220 0.205 0.527 -16.304 0.000 Kabiri S. et al (2016) 0.130 0.272 0.527 1.504 0.000 Kadanali A. et al (2015) 0.100 0.188 0.239 7.205 0.000 Musehs L etal (2017) 0.340 0.300 0.383 7.205 0.000 Nergis M. et al (2013) 0.170 0.138 0.229 -11.326 0.000 Nergis M. et al (2013) 0.170 0.136 0.210 -11.966 0.000 Nergis M. et al (2013) 0.170 0.138 0.229 -2294 0.000 Nergis M. et al (2017) 0.130 0.127 </td <td></td> <td>Habib zadeh SH. et al(1389)</td> <td>0.150</td> <td>0.119</td> <td>0.187</td> <td>-12.693</td> <td>0.000</td> <td></td> <td></td>		Habib zadeh SH. et al(1389)	0.150	0.119	0.187	-12.693	0.000		
Haghshenas Mojaveri M. et al (2014) 0.150 0.118 0.118 0.128 0.000 Hamedi A. et al (2021) 0.60 0.034 0.103 9.221 0.000 Javanmanesh F. et al (2012) 0.20 0.025 0.225 1.6.304 0.000 Javanmanesh F. et al (2013) 0.20 0.205 0.227 1.6.304 0.000 Javanmanesh F. et al (2013) 0.200 0.118 0.229 0.000 Kabiri S. et al (2016) 0.30 0.229 0.225 1.6.304 0.000 Kabiri S. et al (2016) 0.310 0.227 0.600 0.000 0.000 Kabiri S. et al (2015) 0.310 0.227 1.6.304 0.000 0.000 Medugu N. et al (2017) 0.140 0.300 0.383 -7.025 0.000 Musieh J. et al (2017) 0.140 0.305 0.227 1.216 0.000 Najmi N. et al (2013) 0.170 0.136 0.229 1.200 0.000 Najmi N. et al (2017) 0.180 0.128 1.226 0.000 0.000 Najmi N. et al (2017) 0.130 0.1		Hadavand Sh. Et al(2015)	0.030	0.014	0.064	-8.593	0.000		
Hamedi A. et al (2012) 0.060 0.034 0.103 -9.241 0.000 Hassan zadeh P. et al (2011) 0.140 0.106 0.183 -11.09 0.000 Jahromi B. et al (2012) 0.230 0.205 0.257 -16.304 0.000 Javanmanesh F. et al (2013) 0.230 0.205 0.257 -16.304 0.000 Kadanali A. et al (2013) 0.200 0.257 -16.304 0.000 Kadanali A. et al (2015) 0.200 0.257 -16.304 0.000 Kadanali A. et al (2013) 0.200 0.164 0.242 -11.122 0.000 Musieh J. et al (2017) 0.340 0.300 0.383 -10.00 0.000 Najmi N. et al (2013) 0.170 0.185 0.223 -22.99 0.000 Najmi N. et al (2013) 0.170 0.136 0.212 -12.064 0.000 Nidewabe M. et al (2013) 0.170 0.138 0.223 -6.299 0.000 Nidewabe M. et al (2017) 0.190 0.166 0.144 -10.318 0.000 Saha S et al (2018) 0.130 0.122 <		Haghshenas Mojaveri M. et al(2014)	0.150	0.118	0.188	-12.388	0.000		
Hassan radeh P. et al (2011) 0.140 0.106 0.138 - 11.090 0.000 Jahrom B. et al (2003) 0.000 0.075 0.106 22.08 0.000 Javanmanesh F. et al (2012) 0.230 0.205 0.257 -16.304 0.000 Javanmanesh F. et al (2013) 0.230 0.205 0.257 -16.304 0.000 Kabiri S. et al (2016) 0.130 0.227 1.216 0.000 Kabiri S. et al (2016) 0.130 0.237 1.624 0.000 Musieh J. et al (2017) 0.340 0.300 0.838 -7.026 0.000 Musieh J. et al (2017) 0.340 0.157 0.229 -12.160 0.000 Nkmbe M. et al (2013) 0.170 0.136 0.221 -12.160 0.000 Norozi M. et al (2017) 0.130 0.126 1.226 0.000 0.000 Najmi N. et al (2013) 0.140 0.126 1.226 0.000 0.001 Sadaka S. et al (2018) 0.270 0.213 0.336 6.224 0.000 0.001 Sharifi Y. et al (1350) 0.020 0.055		Hamedi A. et al(2012)	0.060	0.034	0.103	-9.241	0.000	■ _	
Javanmanesh F, et al (2012) 0.230 0.075 0.108 - 22.908 0.000 Javanmanesh F, et al (2012) 0.230 0.257 - 16.304 0.000 Kabiri S, et al (2016) 0.200 0.164 0.242 - 11.132 0.000 Kabiri S, et al (2015) 0.200 0.164 0.242 - 11.132 0.000 Le Doare K, et al (2016) 0.330 0.297 0.364 - 9.120 0.000 Medugu N, et al (2017) 0.136 0.137 0.229 - 12.160 0.000 Najmi N, et al (2017) 0.136 0.137 0.229 - 12.160 0.000 Najmi N, et al (2013) 0.170 0.118 0.216 - 12.96 0.000 Norczi M, et al (2013) 0.170 0.138 0.229 - 6.245 0.000 Nuvafumilo B, et al (2017) 0.130 0.137 0.229 - 12.160 0.000 Nuvafumilo B, et al (2017) 0.130 0.137 0.229 - 12.160 0.000 Nuvafumilo B, et al (2017) 0.130 0.137 0.229 - 12.160 0.000 Nuvafumilo B, et al (2017) 0.130 0.137 0.229 - 12.064 0.000 Oluwafumilo B, et al (2017) 0.130 0.131 0.126 - 12.064 0.000 Sadaka S, et al (2018) 0.070 0.131 0.132 - 21.013 0.000 Sahara S, et al (2017) 0.150 0.131 0.127 - 21.013 0.000 Sharifi Y, et al (1300) 0.060 0.075 0.121 - 15.792 0.000 Yasini M, et al () 0.090 0.065 0.121 - 15.792 0.000 Metury Le t al (2015) 0.090 0.022 0.123 - 12.941 0.000 Steenwinkel F, et al (2008) 0.020 0.055 0.121 - 15.792 0.000 Yasini M, et al () 0.090 0.055 0.121 - 15.792 0.000 Metury Le t al (2015) 0.090 0.042 0.133 - 5.250 0.000 Steenwinkel F, et al (2015) 0.090 0.042 0.123 - 5.240 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 5.240 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 5.240 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.123 - 12.94 0.000 Metury Le t al (2015) 0.090 0.042 0.134 - 0.138 0.000 Metury Le t al (2015) 0.090 0.042 0.134 - 0.139 0.000		Hassan zadeh P. et al(2011)	0.140	0.106	0.183	-11.090	0.000		
Javanmanesh F. et al (2012) 0.230 0.205 0.257 - 16.304 0.000 javanmanesh F. et al (2013) 0.200 0.205 0.257 - 16.304 0.000 Kabiri S. et al (2013) 0.200 0.164 0.242 - 11.132 0.000 Le Doare K. et al (2016) 0.118 0.239 - 7.255 0.000 Medugu N. et al (2017) 0.340 0.300 0.383 - 7.025 0.000 Medugu N. et al (2017) 0.340 0.300 0.383 - 7.025 0.000 Musieh) . et al (2017) 0.340 0.300 0.383 - 7.025 0.000 Najmi N. et al (2013) 0.170 0.136 0.210 - 11.966 0.000 Nkorrosi M. et al (2013) 0.170 0.138 0.210 - 11.966 0.000 Nkorrosi M. et al (2017) 0.180 0.133 0.239 - 8.239 0.000 Oluwafunmilola B. et al (2017) 0.180 0.133 0.326 - 6.245 0.000 Sadaka S. et al (2018) 0.100 0.133 0.326 - 6.245 0.000 Sahara S. et al (2017) 0.150 0.131 0.172 - 21.013 0.000 Sharifi Y. et al (1309) 0.006 0.005 0.071 - 5.752 0.000 Sharifi Y. et al (1309) 0.000 0.005 0.123 - 12.91 0.000 Steenwinkel F. et al (2008) 0.000 0.005 0.123 - 12.91 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Medidugu U. et al (2015) 0.090 0.042 0.128 - 5.540 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.272 0.327 - 6.445 0.000 Jamazami T. et al (2011) 0.320 0.357 - 5.752 0.000		Jahromi B. et al(2008)	0.090	0.075	0.108	-22.908	0.000		
javanmanesh F. et al (2013) 0.200 0.205 0.257 - 16.304 0.000 Kabiri S. et al (2015) 0.200 0.164 0.242 - 11.132 0.000 Le Doare K. et al (2015) 0.300 0.257 0.264 - 9.120 0.000 Medugu N. et al (2017) 0.130 0.257 0.229 - 12.160 0.000 Musieh J. et al (2017) 0.130 0.157 0.229 - 12.160 0.000 Nusieh J. et al (2013) 0.170 0.136 0.210 - 11.966 0.000 Nusieh J. et al (2013) 0.170 0.136 0.229 - 12.160 0.000 Nusieh J. et al (2013) 0.170 0.136 0.229 - 12.160 0.000 Nusieh J. et al (2013) 0.170 0.138 0.229 - 12.160 0.000 Nusieh J. et al (2013) 0.170 0.138 0.229 - 12.160 0.000 Nusieh J. et al (2013) 0.170 0.138 0.229 - 12.160 0.000 Nusieh J. et al (2013) 0.170 0.130 0.229 0.229 0.000 Sadaka S. et al (2017) 0.150 0.131 0.172 - 1.013 0.000 Saha S. et al (2017) 0.150 0.131 0.172 - 21.013 0.000 Saha S. et al (2017) 0.150 0.131 0.172 - 21.013 0.000 Sterenvinkel F. et al (2008) 0.020 0.055 0.121 - 5.792 0.000 Yasini M. et al () 0.090 0.042 0.132 - 5.241 0.000 Juwaranni Le tal (2015) 0.090 0.042 0.132 - 5.240 0.000 Jamazani T. et al (2011) 0.320 0.272 0.372 - 6.445 0.000 Jamazani T. et al (2011) 0.320 0.272 0.372 - 6.445 0.000 Jamazani T. et al (2011) 0.320 0.272 0.372 - 6.445 0.000 Jamazani T. et al (2011) 0.320 0.272 0.372 - 6.445 0.000 Jamazani T. et al (2011) 0.320 0.272 0.372 - 6.445 0.000 Jamazani T. et al (2011) 0.320 0.272 0.372 - 6.445 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042 0.383 - 5.540 0.000 Jamazani T. et al (2015) 0.090 0.042		Javanmanesh F. et al(2012)	0.230	0.205	0.257	-16.304	0.000		
Kadanali A. et al(2005) 0.200 0.646 0.242 - 11.132 0.000 Kadanali A. et al(2005) 0.170 0.118 0.239 7.235 0.000 Le Doare K. et al(2015) 0.330 0.297 0.364 9.120 0.000 Medugu N. et al(2017) 0.340 0.300 0.383 7.026 0.000 Musieh J. et al(2017) 0.340 0.305 0.222 0.229 0.000 Najmi N. et al(2013) 0.170 0.136 0.212 1.269 0.000 Nikembe M. et al(2013) 0.170 0.138 0.223 6.259 0.000 Oluwafunmilola 8. et al(2017) 0.180 0.133 0.229 8.229 0.000 Saha S. et al(2013) 0.170 0.130 0.336 6.245 0.000 Saha S. et al(2017) 0.150 0.131 0.327 2.23 1.204 0.000 Saharae Sh. Et al(2017) 0.150 0.131 0.327 2.23 0.000 0.000 Sharifi Y. et al(1350) 0.400 0.680 0.414 10.318 0.000 0.000 Sharifi Y. et al(201		javanmanesh F. et al(2013)	0.230	0.205	0.257	-16.304	0.000		
Kadanali A. et al (2005) 0.170 0.188 0.292 -7.255 0.000 Le Doare K. et al (2016) 0.330 0.297 0.664 -9.120 0.000 Medugu N. et al (2017) 0.130 0.297 0.646 -9.120 0.000 Musieh J. et al (2017) 0.190 0.157 0.229 -12.160 0.000 Najmi N. et al (2013) 0.107 0.136 0.210 -11.96 0.000 Nkembe M. et al (2013) 0.104 0.025 0.229 -12.160 0.000 Oluwafunmilola B. et al (2017) 0.180 0.126 1.226 0.000 Sadaka S. et al (2017) 0.180 0.131 0.127 2.103 0.000 Sharifi Y. et al (1300) 0.680 0.44 10.318 0.000 0.651 Sharifi Y. et al (1303) 0.020 0.055 0.227 0.237 0.326 0.000 Sthare Sh. Et al (2018) 0.000 0.065 0.124 1.030 0.000 0.661 Sharifi Y. et al (1303) 0.020 0.025 0.272 0.272 0.272 0.272 0.000		Kabiri S. et al(2016)	0.200	0.164	0.242	-11.132	0.000		
Le Doare K. et al (2016) 0.330 0.297 0.364 -9.120 0.000 Medugu N. et al (2017) 0.340 0.300 0.383 -7.026 0.000 Nusleh J. et al (2017) 0.150 0.157 0.229 -12.160 0.000 Najmi N. et al (2013) 0.170 0.136 0.210 -11.986 0.000 Norozi M. et al (2013) 0.170 0.136 0.226 -12.064 0.000 Oluwafunmilola B. et al (2017) 0.180 0.133 0.226 -12.064 0.000 Sadaka S. et al (2017) 0.180 0.131 0.126 -12.064 0.000 Sadaka S. et al (2017) 0.150 0.131 0.132 -21.013 0.000 Sahrae S. ht al (2019) 0.100 0.068 0.144 -10.138 0.000 Sterenwinkel F. et al (2008) 0.020 0.055 0.77 - 5.792 0.000 Yasini M. et al () 0.090 0.065 0.123 -12.941 0.000 Yasini M. et al () 0.090 0.062 0.123 -12.941 0.000 Yasini M. et al () 0.090 0.062 0.123 -12.94 0.000 Yasini M. et al () 0.090 0.062 0.123 -12.94 0.000 Yasini M. et al () 0.990 0.042 0.133 -5.540 0.000 Yasini M. et al () 0.990 0.042 0.133 -5.540 0.000 Yasini M. et al () 0.990 0.042 0.134 -5.540 0.000 Yasini M. et al () 0.990 0.042 0.134 -5.540 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.272 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.274 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.274 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.274 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445 0.000 Yasini M. et al () 0.320 0.273 0.372 -6.445		Kadanali A. et al(2005)	0.170	0.118	0.239	-7.295	0.000		
Medugu N. et al (2017) 0.340 0.300 0.383 -7.026 0.000 Muscha, te al (2017) 0.190 0.157 0.229 -12.10 0.000 Najmi N. et al (2013) 0.170 0.136 0.210 -11.986 0.000 Nkembe M. et al (2013) 0.140 0.065 0.223 -2.12.044 0.000 Olivarfunmilola 8. et al (2017) 0.180 0.133 0.239 -8.239 0.000 Sadaka 5. et al (2017) 0.150 0.131 0.172 -21.013 0.000 Sharif Y. et al (1330) 0.040 0.789 0.880 9.612 0.000 Sharif Y. et al (12030) 0.020 0.005 0.071 -5.792 0.000 Yasini M. et al (2015) 0.090 0.042 0.183 -5.540 0.000 Yasini M. et al (2011) 0.320 0.272 0.213 0.000 0.000 Zamzami T. et al (2011) 0.320 0.272 0.237 6.445 0.000 om 0.181 0.164 0.199 -5.262 0.000 0.000		Le Doare K. et al(2016)	0.330	0.297	0.364	-9.120	0.000		
Majmi N. et al (2017) 0.190 0.157 0.229 -12.160 0.000 Najmi N. et al (2013) 0.170 0.136 0.210 -11.986 0.000 Nkembe M. et al (2013) 0.140 0.085 0.223 -6.299 0.000 Oluva funnilola B. et al (2017) 0.190 0.136 0.216 -12.064 0.000 Sadaka S. et al (2017) 0.150 0.133 0.229 -8.299 0.000 Sadaka S. et al (2017) 0.150 0.131 0.272 2.103 0.000 Sahas S. et al (2017) 0.150 0.131 0.172 21.03 0.000 Saharae S. ht 21 (2019) 0.100 0.066 0.124 1.138 0.000 Stahrae S. ht 21 (2013) 0.020 0.057 0.71 -5.792 0.000 Yasini M. et al () 0.090 0.065 0.123 1.2941 0.000 Yasini M. et al (2015) 0.090 0.422 0.312 -12.941 0.000 om 0.181 0.19 -5.792 0.000 -6.75 -0.38 0.00 0.38		Medugu N. et al(2017)	0.340	0.300	0.383	-7.026	0.000		
Najmi N. et al (2013) 0.170 0.136 0.210 -11.969 0.000 Nkembe M. et al (2018) 0.140 0.085 0.223 6.299 0.000 Norozi M. et al (1) 0.090 0.064 0.126 -12.064 0.000 Oluwafunmilola 8. et al (2017) 0.180 0.336 6.245 5.000 Sadaka S. et al (2018) 0.270 0.213 0.336 6.245 5.000 Sahara S. et al (2017) 0.150 0.134 0.127 2.1.03 0.000 Sharifi Y. et al (1350) 0.640 0.789 0.880 5.612 0.000 Steenwinkel F. et al (2008) 0.020 0.005 0.123 1.241 0.000 Yasini M. et al() 0.090 0.065 0.123 1.241 0.000 Yasini M. et al() 0.090 0.065 0.123 1.241 0.000 Yasini M. et al() 0.320 0.272 0.322 0.000 0.000 Yasini M. et al() 0.320 0.272 0.325 0.000 0.000		Musleh J. et al(2017)	0.190	0.157	0.229	-12.160	0.000		
Nkembe M. et al (2018) 0.104 0.085 0.222 -6.299 0.000 Norozi M. et al () 0.090 0.664 0.126 1-2.064 0.000 Oluwa fummiola B. et al (2017) 0.180 0.133 0.239 -8.239 0.000 Sadaka S. et al (2018) 0.270 0.213 0.326 -6.245 0.000 Sahrae Sh. et al (2017) 0.150 0.131 0.172 -21.013 0.000 Sharae Sh. et al (2017) 0.100 0.668 0.414 -10.318 0.000 Sharae Sh. et al (2012) 0.100 0.668 0.614 -10.318 0.000 Steenwinkel F. et al (2008) 0.020 0.005 0.071 -5.792 0.000 Yasini M. et al () 0.090 0.065 0.122 -12.241 0.000 Yasini M. et al (2015) 0.300 0.320 0.272 0.372 -6.245 0.000 Yasini M. et al (2011) 0.320 0.272 0.372 -6.264 0.000 - Yasini M. et al (2011) 0.3		Najmi N. et al(2013)	0.170	0.136	0.210	-11.986	0.000		
Norczi M. et al() 0.090 0.064 0.125 -12.064 0.000 Oluwafunmilola B. et al(2017) 0.180 0.133 0.239 -8.239 0.000 Sadaka S. et al(2018) 0.270 0.213 0.336 -6.245 0.000 Saha S. et al(2017) 0.150 0.181 0.172 -21.013 0.000 Saha S. et al(2017) 0.150 0.680 9.612 0.000 0.000 Sahara S. ht tal(2019) 0.100 0.680 9.612 0.000 0.000 Sternwinkel F. et al(2008) 0.020 0.025 0.123 1.234 0.000 Yasini M. et al() 0.090 0.650 0.123 1.241 0.000 Zamzami T. et al(2011) 0.320 0.272 0.372 6.445 0.000 Jom 0.810 0.199 -5.262 0.000 -0.75 -0.38 0.00 0.38		Nkembe M. et al(2018)	0.140	0.085	0.223	-6.299	0.000		
Oluwafunmilola 8. et al(2017) 0.180 0.133 0.239 -8.239 0.000 Sadaka S. et al(2018) 0.270 0.213 0.336 -6.245 0.000 Saha S. et al(2017) 0.150 0.131 0.172 -7.1033 0.000 Sharafi Y. et al(1300) 0.680 0.44 -10.318 0.000 Sharafi Y. et al(1300) 0.680 0.680 0.612 0.000 Sharafi Y. et al(1300) 0.600 0.680 0.612 0.000 Steenwinkel F. et al(2008) 0.000 0.005 0.212 1.234 0.000 Yasini M. et al() 0.090 0.652 0.123 0.224 0.000 Zamzami T. et al(2011) 0.320 0.272 0.372 -6.445 0.000 Jom 0.181 0.192 2.52.62 0.000 -0.75 -0.38 0.00 0.38		Norozi M. et al()	0.090	0.064	0.126	-12.064	0.000		
Sadaka S. et al (2018) 0.270 0.213 0.336 -6.245 0.000 Sahaa S. et al (2017) 0.150 0.151 0.172 -21.013 0.000 Sahaa S. et al (2017) 0.150 0.066 0.144 10.138 0.000 Saharae S. ht al (2019) 0.100 0.066 0.144 10.138 0.000 Sharae S. ht al (2019) 0.000 0.065 0.122 12.000 0.000 Steenwinkel F. et al (2008) 0.020 0.005 0.071 -5.792 0.000 Yasini M. et al (1) 0.090 0.065 0.122 -12.941 0.000 Yasini M. et al (2015) 0.090 0.052 0.372 -6.445 0.000 Zamzami T. et al (2011) 0.320 0.272 0.372 -6.445 0.000 Iom 0.181 0.19 -25.262 0.000 -0.38 0.00 0.38		Oluwafunmilola B. et al(2017)	0.180	0.133	0.239	-8.239	0.000		
Saha S, et al(2017) 0.150 0.131 0.172 21.013 0.000 Sahrase Sh. Et al(2019) 0.100 0.068 0.144 1-0.318 0.000 Sharifi Y, et al(1350) 0.840 0.789 0.880 9.612 0.000 Steenwinkel F, et al(2008) 0.020 0.005 0.021 5.752 0.000 Yasini M, et al() 0.090 0.065 0.123 1.294 0.000 Yesildager U, et al(2015) 0.090 0.042 0.183 -5.540 0.000 Zamzami T, et al(2011) 0.320 0.272 0.372 -6.445 0.000 Jom 0.181 0.164 0.199 -25.262 0.000		Sadaka S.et al(2018)	0.270	0.213	0.336	-6.245	0.000		
Sahraee Sh. Et al(2019) 0.100 0.068 0.144 -10.318 0.000 Sharrif V. et al(1390) 0.840 0.789 0.880 9.612 0.000 Steenwinke F. et al(2008) 0.020 0.005 0.71 5.732 0.000 Yasini M. et al() 0.090 0.655 0.123 -12.941 0.000 Yesildager U. et al(2015) 0.090 0.042 0.133 -5.540 0.000 Zamzami T. et al(2011) 0.320 0.272 0.372 6.444 0.000 Iom 0.181 0.164 0.199 -25.262 0.000 -0.75 -0.38 0.00 0.38		Saha S. et al(2017)	0.150	0.131	0.172	-21.013	0.000		
Sharifi Y. et al (1390) 0.840 0.789 0.880 9.612 0.000 Steenwinkel F. et al (2008) 0.020 0.005 0.071 -5.792 0.000 Yasini M. et al () 0.090 0.065 0.123 12.941 0.000 Yesini M. et al () 0.090 0.065 0.123 12.941 0.000 Yesini M. et al () 0.390 0.042 0.133 -5.540 0.000 Zamzami T. et al (2011) 0.320 0.272 0.372 -6.445 0.000 Jom 0.181 0.164 0.199 -5.262 0.000 -0.75 -0.38 0.00 0.38		Sahraee Sh. Et al (2019)	0.100	0.068	0.144	-10.318	0.000		
Steenwinkel F. et al(2008) 0.02 0.005 0.71 -5.792 0.000 Yasini M. et al() 0.090 0.065 0.123 -12.941 0.000 Yesildager U. et al(2015) 0.090 0.042 0.183 -5.540 0.000 Zamzami T. et al(2011) 0.320 0.272 0.372 -6.445 0.000 Iom 0.181 0.164 0.199 -25.262 0.000 -0.75 -0.38 0.00 0.38		Sharifi Y. et al(1390)	0.840	0.789	0.880	9.612	0.000		
Yasini M. et al() 0.090 0.065 0.123 -12.941 0.000 Yesildager U. et al(2015) 0.090 0.042 0.183 -5.540 0.000 Zamzami T. et al(2011) 0.320 0.272 0.372 -6.454 0.000 iom 0.181 0.164 0.199 -25.262 0.000 -0.75 -0.38 0.00 0.38		Steenwinkel F. et al(2008)	0.020	0.005	0.071	-5.792	0.000		
Yesildager U. et al(2015) 0.090 0.042 0.183 -5.540 0.000 Zamzami T. et al(2011) 0.320 0.272 0.372 -6.445 0.000 Jom 0.181 0.164 0.199 -25.262 0.000 -0.75 -0.38 0.00 0.38		Yasini M. et al()	0.090	0.065	0.123	-12.941	0.000		
Zamzami T. et al (2011) 0.320 0.272 0.372 -6.445 0.000 dom 0.181 0.164 0.199 -25.262 0.000 -0.75 -0.38 0.00 0.38		Yesildager U. et al(2015)	0.090	0.042	0.183	-5.540	0.000		
dom 0.181 0.164 0.199 -25.262 0.000 ↓ ↓ ■		Zamzami T. et al(2011)	0.320	0.272	0.372	-6.445	0.000		
-0.75 -0.38 0.00 0.38	dom	,	0.181	0.164	0.199	-25.262	0.000		
-0.75 -0.36 0.00 0.38								-0.75 -0.38 0.00 0.29	
								-0.75 -0.58 0.00 0.38	

Prevalence of GBS in 'vagina-rectum' of pregnants

Fig. 5: Prevalence of GBS in vaginal-rectal region of pregnant women

Antibiotic sensitivity

Among the papers selected, 28 papers had surveyed the rate of antibiotic sensitivity. The sensitivity caused by different antibiotics has been shown in (Table 1). Sensitivity to antibiotics in the conducted meta-analysis was 98.2% (96.5-99.1) to Ampicillin, 99.7% (99.2-99.9) to Vanco-

mycin, 98.9% (97.7-99.5) to Penicillin, 80.9% (64.7-90.7) to Erythromycin, and 78.9% (61.8-85.9) to Clindamycin. In present study antibiotic sensitivity to Ampicillin, Vancomycin and Penicillin reached 98-99% which was meaningfully more than the sensitivity to Erythromycin and Clindamycin.

Table 1: Sensitivity caused by	y different antibiotics
--------------------------------	-------------------------

Model	Effe	95% inter	val	Test (2-1	of null Tail)	Heterogeneity				
	Number	Prevalence	Lower	Upper	Z-	<i>P</i> -	Q-value	df	<i>P</i> -	I-
	Studies		limit	limit	value	value		(Q)	value	squared
Ampicilin	17	0.9828	0.9652	0.9915	11.01	< 0.001	263.91	16	< 0.001	93.93
Penicilin	24	0.9897	0.9773	0.9954	11.08	< 0.001	688.71	23	< 0.001	96.66
Vancomycin	17	0.9977	0.9921	0.9993	9.58	< 0.001	184.53	16	< 0.001	91.32
Erythromycin	16	0.8096	0.6476	0.9077	3.38	0.001	3635.97	15	< 0.001	99.58
Clindamycin	13	0.7590	0.6180	0.8597	3.37	0.001	1738.60	12	< 0.001	99.30

Antibiotic resistance

About 17 studies have considered antibiotic resistance. The rate of Antibiotic resistance was as follows: 82.92% (74-90) to Tetracycline, 28.14% (25-85) to Penicillin, 14.3% (10-19) to Erythromycin and 15.97% (10.5-23) to Clindamycin. In the present study, resistance to Tetracycline was meaningfully more than the resistance to Erythromycin and Clindamycin (Table 2).

Table 2: Resistance caused by different antibiotics

Model	Effe	ect size and s	95% inter	val	Test of T	f null (2- 'ail)	Heterogeneity			
	Number	Prevalence	Lower	Upper	Z-	<i>P</i> -	Q-	df	<i>P</i> -	I-
	Studies		limit	limit	value	value	value	(Q)	value	squared
Tetracyclin	5	0.8392	0.7401	0.9054	5.35	< 0.001	154.709	4	< 0.001	97.41
Erythromycin	15	0.1430	0.1041	0.1933	-9.70	< 0.001	514.730	14	< 0.001	97.28
Clindamycin	14	0.1597	0.1050	0.2354	-6.74	< 0.001	717.800	13	< 0.001	98.19
Penicilin	3	0.2840	0.0253	0.8584	-0.66	0.506	359.704	2	< 0.001	99.44

The survey of serotype distribution

Among the papers surveyed, we found that 22 papers had separated various serotypes of GBS in terms of their prevalence which inducted Ia type 17%, Ib 10%, Ic 2%, II 16%, III 22%, IV 6%, V type 15%, and VI type 1%. In the conducted studies, serotype of kind III was the most prevalent, but kind II and V were in the second and third position respectively. The least prevalence belonged to the kind IV (Table 3).

Prevalence according to the geographical region

Due to the difference in the prevalence of GBS in different geographical regions, we decided to study it in terms of geographical region, so the prevalence of GBS according to the continents was determined separately. Maximum prevalence belonged to Australia and Oceania with 22.54% and minimum prevalence belonged to Asia with 12.86%. The other continents had prevalence as follows: Europe with 16.41%, South American

with 18.63%, North American with 18.6%, and Africa with 19%. Considering Islamic countries such as Iran, Turkey, Saudi Arabia and Jordan which can affect the results, that is, we can see low prevalence in Islamic countries, so we have included the result of analysis for each continent separately in the appendix.

	Ef	fect size and	Test of	null (2-		Heterogeneity				
					Ta	ul)				
	Number	Prevalence	Lower	Upper	Z-value	P-value	Q-value	df (Q)	P-value	I-squared
	Studies		limit	limit						
La	22	0.1700	0.1312	0.2174	-10.20	< 0.001	1507.88	21	< 0.001	98.61
Lb	16	0.1033	0.0879	0.1211	-23.67	< 0.001	197.96	15	< 0.001	92.42
Lc	2	0.0267	0.0022	0.2548	-2.79	< 0.001	13.04	1	< 0.001	92.33
Ii	20	0.1667	0.1280	0.2142	-10.19	< 0.001	872.40	19	< 0.001	97.82
Iii	22	0.2229	0.1607	0.3004	-6.07	< 0.001	3049.76	21	< 0.001	99.31
Iv	9	0.0647	0.0436	0.0952	-12.50	< 0.001	281.41	8	< 0.001	97.16
V	19	0.1521	0.0940	0.2368	-6.15	< 0.001	2192.46	18	< 0.001	99.18
Vi	2	0.0103	0.0026	0.0394	-6.52	< 0.001	10.87	1	0.001	90.80

Table 3: The survey of serotype distribution

The prevalence of GBS in pregnant women of developed and developing countries

About 33 studies had been carried out in developed countries, and heterogeneity among them was meaningful (Q=2457.62, df=32, I²=98.69). In these studies, 55288 individuals were surveyed. According to the results obtained from metaanalysis by using Random Effect Model, the prevalence of GBS in pregnant was 17.74%. (17.74%, CI=95% (14.69-21.27)). The prevalence of GBS in pregnant women of developed countries has been shown in the appendix. About 99 studies had been conducted in developing countries, and the heterogeneity among them was meaningful (Q=2405.46, df=98, I²=95.93). In these studies, 60392 individuals were surveyed. According to the results obtained from metaanalysis with the use of Random Effect Model, the prevalence of GBS in pregnants was 14.92% (p:14.92, CI=95% (13.46-16.561)). The prevalence of GBS in pregnant women of developing countries has been shown in the appendix. According to Ratio Test, the difference between developed and developing countries in the prevalence of GBS in pregnants was meaningful statistically (P<0.001).

Discussion

Streptococcus group B is abundantly colonized in vagina and rectum of pregnant women which is in accordance with the surveyed studies; however, the prevalence of it differs geographically. In the present study, the prevalence of GBS in pregnant was 15.5%. There have been systematic reviews dealing with the prevalence of GBS in pregnant and its geographical distribution, but no up-to-date study has been conducted which could compare the prevalence in Islamic and non-Islamic countries.

The quality of the papers was surveyed by making use of the checklist related to the prevalence studies of JBI. Most of the papers met the requirements needed to enter our study. Out of them 10 papers did not have suitable quality, and we could not survey quality of 6 papers due to its unavailability and abstract use. Thirteen papers did not have a suitable sample size. In most papers, the respective population selection method had taken place without randomization, and the method of sampling and culture had not been extensively stated in 17 papers. Moreover, there had been no reference to the sampling method in 5 papers; however, the other papers had explained the sampling method and the suitable culture media in detail.

In this study, the general prevalence of GBS in Islamic and non-Islamic countries was 14% and 16.3% respectively, but this result should be analyzed in terms of the study restrictions and the effects brought about by defacing variants.

Majority of the studies had been carried out with large sample size in developed countries, yet less developed countries had small sample size, and no study had been conducted to represent the difference between developed and developing countries in this respect. In the present study, the prevalence in developed and less developed countries was 17.74% and 14.92% respectively. Considering the fact that all Islamic countries belong to the less developed group of countries, we cannot rely on the low prevalence of this infection in Islamic countries only because of the repeated wash which is the hypothesis of this study. Another limitation of the studies was concerned with using various culture medias. Through surveying the papers, we noticed that enriched culture media had been used a lot in developed countries, but in less developed countries such as Islamic countries where researchers had utilized culture medias based on Blood Agar. Since culture medias based on Blood Agar bearing less sensitivity in diagnosis cause the prevalence to seem low, making firm judgment about the low prevalence in Islamic countries may lead to ambiguity.

Still another limitation of the surveyed papers was that the sample had been selected in an unrandom manner in the majority of them which causes us to give contradictory judgment about the results of the study.

Another limitation of the studies was related to the time of sampling in pregnant. In the systematic review carried out recently, researchers have come to the conclusion that the prevalence of GBS in pregnant sampled before the 35th week was more than those sampled after 35th week. However, the result of the sampling in the 2nd and 3rd trimesters compared with that of early weeks of pregnancy are more predictable in the case of colonization of pregnant by GBS. Considering the point that the exact date of sampling had not been mentioned in some papers or the date had covered a long period of pregnancy in some others such as 2nd and 3rd trimester, in the present study, analysis and conclusion drawn about the prevalence in terms of sampling time was impossible.

Conclusion

Frequent washing of perineum based on religious instructions in Islamic countries can diminish the rate of GBS colonization in pregnant women.

Ethical considerations

Ethical issues (Including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, redundancy, etc.) have been completely observed by the authors.

Acknowledgements

We would like to thank the deputy of research of the center in which the study was performed.

Conflict of interest

The authors declare that there is no conflict of interest.

References

- Savoia D, Gottimer C, Crocilla C, Zucca M (2008). Streptococcus agalactiae in pregnant women: phenotypic and genotypic characters. *J Infect*, 56(2):120-5.
- Baker CJ, Goroff DK, Alpert S (1977). Vaginal colonization with group B Streptococcus: a study in college women. J Infect Dis, 135 (3):392-397.
- Records K, Tanaka L (2015). 5 Physiology of Pregnancy. Core Curriculum for Maternal-Newborn Nursing E-Book:83.
- 4. López Sastre JB, Fernández Colomer B, Coto Cotallo GD, et al (2005). Trends in the

epidemiology of neonatal sepsis of vertical transmission in the era of group B streptococcal prevention. *Acta Paediatr*, 94 (4):451-457.

- Palmeiro JK, Dalla-Costa LM, Fracalanzza SE, et al (2010). Phenotypic and genotypic characterization of group B streptococcal isolates in southern Brazil. J Clin Microbiol, 48 (12):4397-4403.
- Zangwill KM, Schuchat A, Wenger JD (1992). Group B streptococcal disease in the United States, 1990: report from a multistate active surveillance system. MMWR CDC Surveill Summ, 41(6):25-32.
- Rallu F, Barriga P, Scrivo C, et al (2006). Sensitivities of antigen detection and PCR assays greatly increased compared to that of the standard culture method for screening for group B streptococcus carriage in pregnant women. J Clin Microbiol, 44(3):725-8.
- 8. Fultz-Butts K, Gorwitz RJ, Schuchat A, Schrag S (2002). Prevention of perinatal group B streptococcal disease; revised guidelines from CDC.
- Hamedi A, Akhlaghi F, Seyedi SJ, Kharazmi A (2012). Evaluation of group B streptococci colonization rate in pregnant women and their newborn. *Acta Med Iran*, 50 (12):805-808.
- 10. Zaleznik DF, Rench MA, Hillier S, et al (2000). Invasive disease due to group B Streptococcus in pregnant women and

neonates from diverse population groups. Clin Infect Dis, 30 (2):276-281.

- Wilk K, Sikora J, Bakon I, et al (2003). Significance of group B Streptococcus (GBS) infections in parturient women. *Ginekol Pol*, 74 (6):463-467.
- 12. Goffinet F, Maillard F, Mihoubi N, et al (2003). Bacterial vaginosis: prevalence and predictive value for premature delivery and neonatal infection in women with preterm labour and intact membranes. *Eur J Obstet Gynecol Reprod Biol*, 108 (2):146-151.
- Dechen TC, Sumit K, Ranabir P (2010). Correlates of vaginal colonization with group B streptococci among pregnant women. J Glob Infect Dis, 2 (3):236-41.
- Molnar P, Biringer A, McGeer A, McIsaac W (1997). Can pregnant women obtain their own specimens for group B streptococcus? A comparison of maternal versus physician screening. The Mount Sinai GBS Screening Group. Fam Pract, 14 (5):403-406.
- 15. Russell NJ, Seale AC, O'Driscoll M, et al (2017). Maternal colonization with group B Streptococcus and serotype distribution worldwide: systematic review and metaanalyses. *Clin Infect Dis*, 65 (suppl_2):S100-S111.