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Application of a combined
radiomics nomogram based on
CE-CT in the preoperative
prediction of thymomas
risk categorization
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and Yingying Qiu1*
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of Nanchang University, Nanchang, China, 3Department of Radiology, The Affiliated Hospital of
Guizhou Medical University, Guiyang, China, 4R&D, Yizhun Medical AI, Beijing, China
Objective: This study aimed to establish a combined radiomics nomogram to

preoperatively predict the risk categorization of thymomas by using contrast-

enhanced computed tomography (CE-CT) images.

Materials and Methods: The clinical, pathological, and CT data of 110 patients

with thymoma (50 patients with low-risk thymomas and 60 patients with high-

risk thymomas) collected in our Hospital from July 2017 to March 2022 were

retrospectively analyzed. The study subjects were randomly divided into the

training set (n = 77) and validation set (n = 33) in a 7:3 ratio. Radiomics features

were extracted from the CT images, and the least absolute shrinkage and

selection operator (LASSO) algorithm was performed to select 13

representative features. Five models, including logistic regression (LR),

support vector machine (SVM), random forest (RF), decision tree (DT), and

gradient boosting decision tree (GBDT) were constructed to predict thymoma

risks based on these features. A combined radiomics nomogram was further

established based on the clinical factors and radiomics scores. The

performance of the models was evaluated using receiver operating

characteristic (ROC) curve, DeLong tests, and decision curve analysis.

Results: Maximum tumor diameter and boundary were selected to build the

clinical factors model. Thirteen features were acquired by LASSO algorithm

screening as the optimal features for machine learning model construction.

The LR model exhibited the highest AUC value (0.819) among the five machine

learning models in the validation set. Furthermore, the radiomics nomogram

combining the selected clinical variables and radiomics signature predicted the

categorization of thymomas at different risks more effectively (the training set,

AUC = 0.923; the validation set, AUC = 0.870). Finally, the calibration curve and
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DCA were utilized to confirm the clinical value of this combined radiomics

nomogram.

Conclusion: We demonstrated the clinical diagnostic value of machine

learning models based on CT semantic features and the selected clinical

variables, providing a non-invasive, appropriate, and accurate method for

preoperative prediction of thymomas risk categorization.
KEYWORDS

thymomas, risk categorization, contrast-enhanced computed tomography, radiomic
nomogram, textural features, DeLong test, calibration curve, decision curve analysis
Introduction

The most common anterior mediastinal tumor is thymomas,

accounting for 47% of anterior mediastinal lesions (1). The

World Health Organization (WHO) classified thymic tumors

in 1999. Thymomas is divided into five types: A, AB, B1, B2, and

B3 according to the morphology of epithelial cells and the ratio

of lymphocytes to epithelial cells (2, 3). Based on previous

research, types B2 and B3 are more aggressive than types A,

AB, and B1, and types B2 and B3 have lower survival rates than

types A, AB, and B1 (4). Compared with types B2 and B3, types

A, AB, and B1 have more chance of complete resection by

operation. Thymomas of type B2 or B3 generally need

neoadjuvant chemoradiotherapy (5–7). Hence, many studies

have classified thymomas into low-risk (types A, AB, and B1)

and high-risk groups (types B2 and B3) (8, 9), preoperative

differentiation between low-risk and high-risk thymomas is

significant for selecting the treatment options.

Chest CT is the preferred examination method for thymic

lesions. Han. et al. (10) examined 159 patients with thymomas

who underwent CT prior to operation and observed that the

volume of high-risk thymomas (B2 and B3) was larger than that of

low-risk thymomas (A, AB, and B1), accompanied by

calcification, irregular contour, and infiltration of vascular and

mediastinal fat. However, the relevant statistical difference was not

significant, and the corresponding area under the curve (AUC)

value was not significantly promising. CT perfusion is widely

applicable in the field of oncology, which is related to the

characteristics, prognosis, and therapeutic response of tumors.

Yu C. et al. (11) performed an energy spectrum CT and perfusion

scan on 51 patients with thymomas of different WHO subtypes

and observed that the spectral parameters and perfusion of types

A and AB were higher than those of other subtypes. However, the

sample size of this experiment was excessively small, and the

reliability of the experimental results was questioned. In recent

years, positron emission tomography (PET)/CT has become
02
increasingly important in the diagnosis of thymic malignant

tumors. MFK Benveniste et al. (12) demonstrated that B3

thymoma had higher fluorodeoxyglucose uptake than other

subtypes, however, PET/CT costs were higher. Owing to its

efficient soft-tissue contrast resolution, magnetic resonance

imaging (MRI) is more advantageous than CT in differentiating

solid and cystic thymic lesions and evaluating tumor envelope and

vascular, pleural, and pericardium infiltration (13, 14). However, it

is still difficult to assess the type of thymoma risk. Invasive

procedures, such as endoscopic biopsy, are risky owing to the

proximity of anterior mediastinal tumors to the great mediastinal

vessels and heart (15, 16). Therefore, preoperative acquisition of a

method that can predict different risk categories of thymomas will

have clinical application value.

Radiomics is a new branch of radiology that has recently

emerged as an alternative to traditional qualitative diagnostic

methods (17, 18). The purpose of radiomics is to identify subtle

differences in radiographs that are imperceptible to the human

eye. Several previous studies have suggested this novel technique

for predicting thymoma risk types to overcome the limitations of

CT and MRI qualitative interpretation. This study investigated

the feasibility and application value of combined radiomics

nomogram based on contrast-enhanced CT (CE-CT) in

predicting the risk categorization of thymomas.
Materials and methods

Setting and participants

It was a retrospective study in which we reviewed relevant

clinical features and radiological data collected from 2017 to

2022. The data were subject to rigorous review and formal

acceptance by the hospital’s ethics committee. We formally

obtained informed consent from all concerned individuals,

especially the patient. All relevant norms and regulations
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agreed upon worldwide were applied in this study. Patients

enrolled in this study met the following criteria: (1) No

previous or current history of other malignancies except

thymomas; (2) No relevant treatment was performed before

preoperative mediastinal CE-CT scan; (3) The quality of the

image was good without respiratory artifacts. Finally, 110

patients were considered in our study.
Examination methods

CT images were obtained by the SOMATOM Definition CT

scanner. We used these scan parameters for automatic

modulation: Tube voltage, 120 kV; tube current, 150 mAs;

slice thickness, 5 mm; reconstruction interval, 1 mm; slice gap,

1 mm. The CE-CT images of the arterial phase and venous phase

were collected 20 and 40 seconds following the injection,

respectively. The obtained CT images were uploaded to the

image archiving and communication system and exported in

DICOM format.
ROI segmentation

The CE-CT venous phase images were manually segmented.

Areas of interest were delineated through the DARWIN

scientific research platform https://arxiv.org/abs/2009.00908

(Beijing Yizhun Intelligent Technology Co., LTD., China,

https://www.yizhun-ai.com). The 3D-ROI was manually

segmented by a 5-year veteran radiologist who was blinded to
Frontiers in Oncology 03
the risk categorization of the tumor, and the ROI was traced

along the edges of the lesion, including calcification. Finally, all

profiles were reviewed by another senior radiologist with >15

years of experience. If an ROI segmented by two radiologists

were inconsistent, i.e., Intersection over Union (IoU) <=95%, the

lesion boundary was determined by the senior radiologist.
Feature extraction and selection
in radiomics

A total of 558 radiomics features were extracted using the

above-mentioned platform, including first-order statistical

features, texture features, and shape-based 3D features

(Figure 1). For the classification, normalized minimum and

maximum values were used to linearly stretch the properties

of each dimension to an interval (1). To make the algorithm

converge faster and receive a more reasonable model, we

preprocessed the data. The computer-generated data set was

randomly assigned, of which 70% of the data set was assigned to

the training set (35 low-risk groups and 42 high-risk groups) and

30% to the validation set (15 low-risk groups and 18 high-risk

groups). We used feature selection in classifier training, which

plays a very important role. The linear correlation between the

category label and each feature was assessed by an optimal

feature filter (i.e., sample variance F value) (19), and the 101

most relevant features were selected from 558 features. To

further select the optimal prediction feature from the above-

mentioned features, we used the LASSO algorithm (Figure 2),

and 13 of the most relevant features for thymomas typing were
FIGURE 1

Radiomics workflow.
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obtained, including three first-order statistical features and ten

textures (Figure 3).
Radiomics signature construction

The optimal subset was selected by reducing the proportion.

Five machine learning models, including logistic regression (LR),

support vector machine (SVM), random forest (RF), decision

tree (DT), and gradient boosting decision tree (GBDT) were

constructed. Using the same threshold set in the training set, the

prediction performance of the five models in the independent

validation set was further tested. The accuracy of the model was

verified by the 10-fold cross-validation method. Receiver

operating characteristics (ROC) and its corresponding AUC

were applied to evaluate the performance of the above-
Frontiers in Oncology 04
mentioned models, and the sensitivity, specificity, and

accuracy of these models were also calculated. The optimal

efficient model was selected from the five machine

learning models.
Development and assessment of
combined radiomics nomogram

To screen for independent predictors of thymoma in the

low-risk and high-risk groups, we used multivariate logistic

regression analysis that included potential predictors such as

clinical risk factors and imaging features. To distinguish low-risk

thymomas from high-risk thymomas, a combined radiomics

nomogram was constructed based on the selected variables. A

quantified combined radiomics nomogram was identified using
FIGURE 3

The final selected 13 features (3 first-order statistical features and 10 textures).
FIGURE 2

ASSO algorithm for feature selection. LASSO path (left); MSE path (right).
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a formula derived from the training set to calculate the radiomics

score for each patient in the validation set. In addition to the

AUC calculations, DeLong tests and calibration curves were

performed. Finally, the clinical value of this combined radiomics

nomogram was evaluated by DCA.
Statistical analysis

R statistical tool (Version 3.4.4) and SPSS 19.0 software were

used for analysis. Statistical data were compared among the two

groups by the c2 test. T-test (normal distribution) and Mann

−Whitney U test (skewness distribution) were used to

statistically compare the probability scores between low-risk

and high-risk thymomas. AUC value, accuracy, sensitivity, and

specificity were calculated to evaluate the predictive performance

of the model (20).
Results

Patient characteristics

There were no significant differences in age, sex, myasthenia

gravis, maximum tumor diameter, calcification, boundary, and

pleural effusion factors between patients in the training set and
Frontiers in Oncology 05
the validation set, as indicated in Table 1 (P*-value > 0.05 for all).

Nevertheless, for patients with low-risk and high-risk

thymomas, significant statistical differences were observed in

maximum tumor diameter and boundary (P-value < 0.05), as

presented the results of the multivariate logistic regression

analysis in Table 2, other differences were not significant.
Prediction performance of machine
learning models

As demonstrated in Table 3, the AUC of LR, SVM, RF, DT,

and GBDT were 0.910, 0.897, 1.000, 1.000, and 1.000 in the

training set, respectively. The AUC of LR, SVM, RF, DT, and

GBDT were 0.819, 0.770, 0.733, 0.706, and 0.811 in the

validation set, respectively. The ROC curves of the five

machine learning models and clinical model are exhibited in

Figure 4. DT and RF have poor prediction effects on thymomas

risk categorization whereas the other machine learning models

had relatively high prediction effects. The LR was the best

radiomics model that performed most efficiently in the

validation set. The AUC, accuracy, sensitivity, and specificity

were 0.819 (95% CI: 0.670–0.960), 0.788, 0.778, and 0.800,

respectively. Cross-validation was performed within the

training set to get a set of best hyperparameters. During

training and testing, radiomics scores of both low-risk and
TABLE 1 Demographic characteristics in the training and validation set.

Training set (n=77) P-value Validation set (n = 33) P*-value

Low-risk high-risk

Age 37.97 ± 13.15 49.43 ± 14.24 <0.001 43.21 ± 11.95 0.730

Sex 0.833 1.000

female 15(19.48%) 17(22.08%) 14(42.4%)

male 20(25.97%) 25(32.47%) 19(57.6%)

MG 0.864 0.899

No 21(27.27%) 26(33.77%) 19(57.6%)

Yes 14(18.18%) 16(20.78%) 14(42.4%)

MTD 34.37 ± 14.62 51.73 ± 15.72 <0.001 41.51 ± 15.02 0.506

Calcification 0.006 0.738

No 26(33.76%) 18(23.38%) 17(51.5%)

Yes 9(11.69%) 24(31.17%) 16(48.5%)

Boundary <0.001 0.672

clear 24(31.17%) 9(11.69%) 12(36.4%)

obscure 11(14.29%) 33(42.85%) 21(63.6%)

Pleural effusion <0.001 1.000

No 29(37.66%) 18(23.38%) 20(60.6%)

Yes 6(7.79%) 24(31.17%) 13(39.1%)

Rad-score 0.31 ± 0.17 0.71 ± 0.23 <0.001 0.62 ± 0.28 0.138
fron
MG, Myasthenia gravis; MTD, Maximum tumor diameter (mm, x¯ ± s).
P-value < 0.05: significant difference between low-risk and high-risk group in the training set.
P*-value < 0.05: significant difference between training and validation set.
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high-risk samples demonstrated significant statistical

differences, as presented in Figure 5. This indicated the

radiomics signature was closely related to thymomas

risk categorization.
Combined radiomics nomogram

Regarding clinical variables, after multivariate logistic

regression analysis, only maximum tumor diameter and

boundary represented independent predictive variables of low-

risk and high-risk thymomas. Then, the clinical model was

developed based on the above independent variables and

validated in the validation set. The AUC in the training and

validation sets was 0.835 and 0.763, respectively. To develop a

more precise and clinically applicable model to predict

thymomas risk categorization, we used the LR algorithm to

construct a combined radiomics nomogram incorporating CE-

CT radiomic features, maximum tumor diameter and boundary

as presented in Figure 6.

The discriminating efficacy of the combined radiomics

nomogram was confirmed in the ROC analysis with an AUC

of 0.923 for the training set and 0.870 for the validation set,

respectively (Figure 7). The AUC value of the training and

validation sets was higher than that of clinical and radiomics

model. According to the DeLong test, although p value between

combined model and clinical model was not less than 0.05 in the

validation set, it was already the smallest among several models,
Frontiers in Oncology 06
it indicated the combined radiomics nomogram has the

strongest significance compared with other models in the risk

type assessment of thymoma (Table 4). Excellent consistency

among the predicted and actual thymomas risk categorization

was presented using the calibration curves of the combined

radiomics nomogram, clinical, and radiomics models (Figure 8).

DCA exhibited that the combined radiomics nomogram had the

greatest clinical utility, with a threshold probability of >5%,

suggesting that the combined radiomics nomogram was a

reliable clinical tool for predicting the thymomas risk

categorization (Figure 9).
Discussion

To overcome the limitations of qualitative interpretation of

CT and MRI studies, some recent studies have explored the

application of radiomics in diagnosing thymic lesions. Gang

Xiao et al. (21) reported that the combined radiomics nomogram

can be used for individual diagnosis of thymomas and subtype

prediction, however, only the LR machine learning model was

used to develop a combined radiomics nomogram and the

possibility of other learning models was not analyzed.

Kayicangir A et al. (22) selected four radiomics models to

distinguish low-risk thymomas from high-risk thymomas but

did not further explore the value of the combined radiomics

nomogram. Therefore, based on five machine learning models,

this study selected the best model combined with relevant
TABLE 3 Predictive performance of training and validation sets for five machine learning models.

Training set Validation set

ACC SEN SPE AUC ACC SEN SPE AUC

LR
SVM
RF
DT
GBDT

0.857
0.818
1.000
1.000
1.000

0.809
0.809
1.000
1.000
1.000

0.914
0.829
1.000
1.000
1.000

0.910
0.897
1.000
1.000
1.000

0.788
0.697
0.788
0.697
0.727

0.778
0.611
0.944
0.611
0.611

0.800
0.800
0.600
0.800
0.867

0.819
0.770
0.733
0.706
0.811
frontiers
TABLE 2 Results of univariate and multivariate logistic regression for predicting the risk categorization of thymomas.

Variable Univariate regression Multivariate regression

Odds ratio (95% CI) P-value Odds ratio (95% CI) P-value

Age 0.93 [0.90;0.96] <0.001 0.98 [0.94;1.03] 0.523

Sex 0.99 [0.46;2.11] 0.972 NA NA NA

MG 1.16 [0.54;2.51] 0.696 NA NA NA

MTD 0.95 [0.92;0.97] <0.001 0.96 [0.93;0.99] 0.016

Calcification 0.28 [0.12;0.62] 0.002 0.98 [0.34;2.83] 0.965

Boundary 0.12 [0.05;0.28] <0.001 0.24 [0.07;0.80] 0.020

Pleural effusion 0.17 [0.07;0.41] <0.001 0.70 [0.20;2.42] 0.573
MG, Myasthenia gravis; MTD, Maximum tumor diameter (mm, x¯ ± s).
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clinical features and made a combined radiomics nomogram to

better predict the risk type of thymomas. We demonstrated the

classification efficiency of the radiomics model can be further

improved by adding clinical features. The radiomics signature

could only reflect the information presented in CE-CT images,

while the clinical features provided other clues identifying the
Frontiers in Oncology 07
risk of the disease. A combination of both factors yielding the

best performance in our experiments.

The relevant clinical features selected in this study were the

maximum tumor diameter and boundary, which were revealed

through multivariate logistic regression analysis; however, other

features did not exhibit statistically significant differences to
FIGURE 5

Comparison of radiomics score between low-risk and high-risk thymomas in the training and validation sets (left, training set; right,
validation set).
FIGURE 4

ROC curves of the five machine learning models and clinical model in the validation set.
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predict the risk categorization of thymomas (Table 2). The

reason for this is that low-risk thymomas masses are usually

small, regular, or superficial lobulated, with uniform density,

small cystic changes, septum and margin calcification, intact

capsule, and clear fat stranding. When the mass is large, it can

compress but does not invade surrounding structures, thus, the

boundary is clear. In contrast, high-risk thymomas are usually

large masses with lobulated shapes, irregular edges, and uneven

internal density or signals. Specular calcification, cystic

degeneration, and necrosis are common in tumors. The

surrounding fat space may be partially narrowed or

disappeared, accompanied by ipsilateral pleural implantation
Frontiers in Oncology 08
metastasis and invasion or progression of the pericardium and

great vessels (10, 23). Pleural effusion can occur in both low-risk

and high-risk thymomas, it is common in patients with invasive

thymomas. However, as presented the results of the multivariate

logistic regression analysis in Table 2, pleural effusion was not a

predictive risk type for thymomas. This result is the same as

Gang Xiao et al. (21). The reason may be the relatively small

number of cases.

In this study, a combined radiomics nomogram based on

CE-CT was established and validated to quantify the probability

of a differential diagnosis of low-risk and high-risk thymomas.

This is a noninvasive, fast, and convenient method. Venous CE-
FIGURE 7

The AUC values for combined radiomics nomogram, clinical and radiomics were used to differentiate between low-risk and high-risk thymomas
(Left, training set; right, validation set).
FIGURE 6

A combined radiomics nomogram for predicting thymomas risk categorization.
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CT images were selected for feature extraction, and CE-CT in

the venous phase reflects a larger number of new dysfunctional

vessels. The density and permeability of these vessels are higher,

which makes a higher number of contrast agents stay in the

interstitial space of tumor cells, and the enhancement of lesions

is more abundant, comprehensively highlighting the

heterogeneity and biological characteristics of the tumor. Chen

et al. (24) also confirmed this. Feature extraction was sketched

using 3D-ROI, and 13 radiomics features were selected for

identification (Figure 3). The best prediction radiomics model

was obtained by LR, presenting an AUC value of 0.819 in the

dependent validation set (Table 3. Figure 4). This was different

from the results provided by Feng et al. (25). The results of their

experiments revealed that the SVMmodel has the best predictive

performance for the simplified thymoma risk categorization, and

this performance was better than the radiologist’s assessment.

The reason may be that they used 2D-ROI segmentation to

extract features whereas we used 3D-ROI segmentation. We

provided 3D texture information about the tumor, and the LR

model is better at capturing this (26). The combined radiomics

nomogram was constructed by incorporating the radiomics
Frontiers in Oncology 09
score and relevant clinical features, whose AUC value is 0.923

for the training set and 0.870 for the validation set, higher than

clinical and radiomics model (Figure 7). The combined

radiomics nomogram has better ability than clinical risk

factors and radiomics features alone in predicting the risk type

of thymomas. This suggests that a combined radiomics

nomogram, based on the limited sample information, can seek

an optimal compromise solution between model complexity and

learning ability to obtain the optimal generalization ability. It has

a unique advantage in resolving small sample sizes, high

dimensions, and nonlinearity (27). The nomogram prediction

model has been broadly applied in clinical medicine recently

(28). Risk scores are used to represent risk factors that predict

prognosis for various diseases. The model is concise and easy to

comprehend and operate, which is beneficial for doctor-

patient communication.

Our combined radiomics nomogram based on the radiomics

and clinical features of CE-CT can accurately predict thymomas

of different risk categorizations. LASSO algorithm was applied to

finally select 13 types of radiomics feature parameters in this

study, which contained simple morphological and more
FIGURE 8

The calibration curve analysis of combined radiomics nomogram, clinical, and radiomics models (left, training set; right, validation set). The 45°
line represents a perfect match between the actual (Y-axis) and the probability of differential diagnosis combined with combined radiomics
nomogram, clinical, and radiomics prediction (X-axis). The closer the distance between the two curves, the higher the accuracy of prediction
and actual observation of thymomas risk categorization. .
TABLE 4 Comparison of the prediction with the combined radiomics nomogram, clinical, and radiomics model.

Group Model 1 Model 2 P-value

Training Combined Clinical 0.024

Combined Radiomics 0.482

Clinical Radiomics 0.157

Validation Combined Clinical 0.142

Combined Radiomics 0.365

Clinical Radiomics 0.632
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comprehensive higher-order features (29). Gray Level

Dependence Matrix (GLDM) had the highest Maximum

Relevance Minimum Redundancy score in differentiating low-

risk from high-risk thymomas. GLDM presents higher-order

texture features, and its extended method can obtain the second-

order or higher-order statistics of the relationship between the

gray values of pixel pairs or pixel sets to estimate their

probability-density function. Its effectiveness has been

confirmed by many studies (30–32). However, most of the

radiomics features are not well-combined with physiology and

pathology in the current research. Although the machine

learning model established by the above-mentioned partial

radiomics features can achieve the desired research purpose

well, only a few studies have clarified the role of these features in

the model and the biological mechanism behind them. Its

potential significance should be further studied in the future.

There are some limitations to our study. First, only one

medical center participated in the study, and the number of cases

was relatively small. The multi-center collaborative study is still

needed, with additional cases to reduce sample selection bias and

regional differences. Second, manual lesion delineation may lead

to errors, thus, losing partial image information. Therefore,

more accurate lesion contour delineation methods, such as

semi-automatic segmentation, are needed to extract the

characteristic values of the lesion.

Conclusively, the LR model based on radiomics feature

extraction from CE-CT data is a non-invasive tool with well

predictive accuracy and stability, which can help predict the risk

classification of thymomas prior to operation. The combined

radiomics nomogram model can improve the ability to predict

thymomas risk categorization. This method can be used as a
Frontiers in Oncology 10
preoperative technique to determine the surgical approach

for thymomas.
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