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Motor disorders are a common and age-related problem in the general community.
Therefore, medical rehabilitation often focuses on reducing the burden of motor disorders.
With an aging society, the burden of motor disorders is expected to grow, while the
healthcare capacity is not expected to match this growth. For this reason, there is an urgent
need to optimize medical rehabilitation of motor disorders both in terms of effectiveness
and efficiency.

The rapid innovations in wearable movement sensors in recent years may provide
an opportunity to translate these innovations into the field of motor rehabilitation. Wear-
able movement sensors can provide objective and precise measurements of the quantity
and quality of physical activities, body postures, and movements in clinical as well as
normal daily life environments, thereby providing clinicians with data that can be used to
guide, personalize, and optimize therapy. Since wearable sensors are portable, inexpensive,
unobtrusive, and also have the ability to provide information that is unique and cannot
be obtained otherwise (e.g., by standardized clinical tests or questionnaires), they have
an enormous potential for the tracking of patient functioning and recovery during motor
rehabilitation. In addition, wearables can play a crucial role in the existing tendency to-
wards at-home monitoring and treatment, and in substituting more complex measurement
devices, such as camera systems.

Despite their potential to optimize motor rehabilitation, wearable movement sensors
are relatively scarcely applied in rehabilitation of motor disorders. Important challenges
remain, such as the development of reliable and valid wearable movement sensors in
clinical populations and free-living environments, barriers in the deployment of wearable
movement sensors in clinical care, development and optimization of innovative sensor
configurations and data analysis techniques (such as machine learning-based algorithms
that enable detection of specific activities and movements in free-living conditions), and
the development of disease-specific sensor-based outcome measures that are relevant and
interpretable by patients and clinicians.

This Special Issue, entitled “Wearable Movement Sensors for Rehabilitation: From
Technology to Clinical Practice”, aims to facilitate the application of wearable movement
sensors in clinical practice. It intends to explore the opportunities for the application of
wearable movement sensors in motor rehabilitation.

A total of 17 papers are published in this Special Issue. These papers mainly focus
on the following topics: algorithm development, technical validation, clinical validation,
monitoring of physical behavior in daily life conditions, and implementation in motor
rehabilitation. Hereafter, we provide a brief overview of each paper.

Yang et al. (2020) [1] developed an online gait-planning algorithm based on sensing
signals to enable balance control during exo-skeleton assisted walking with crutches in
spinal cord patients. Results from this pilot study in healthy adults indicate that the
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developed online gait-planning algorithm can plan the landing point of the swing leg
to improve balance control during exo-skeleton assisted walking. The algorithm may be
useful to improve balance control during exoskeleton assisted walking in spinal cord injury
patients and reduce the need of using crutches.

Sy et al. (2020) [2] present a novel Lie group constrained extended Kalman filter to
estimate lower limb kinematics with a minimal sensing solution during different physical
activities (e.g., walking). Healthy adults performed an activity protocol with three inertial
measurement unit (IMU) sensors, placed on the pelvis and on both ankles. Results showed
relatively small errors for the knee and hip joint angles compared to an optimal motion
capture system, indicating the validity of the algorithm. This paper contributes to the
development of a sensor-based method that enables comfortable and long-term monitoring
of lower limb kinematics in rehabilitation patient populations.

Fadel et al. (2020) [3] propose a new algorithm that quantifies the characteristics of
walking based on a hip-worn accelerometer in a more detailed manner than activity counts.
The algorithm uses the fast Fourier Transform to obtain periodic characteristics of walking,
and it reduces the dimensionality of the raw sensor data into a form that retains details
of the original signal while enabling existing statistical methods for analyses. The paper
serves as a proof of concept for how researchers can extract the walking characteristics
from sensor data and investigate the association with relevant health-related outcomes
in rehabilitation. An example is provided of a study that investigates the associations of
walking spectra obtained from the fast-paced 400 m walk with age and BMI in older adults.

Roossien et al. (2021) [4] developed a sensor-based method for the measurement of
lumbar load. The method consists of six IMU sensors on the upper and lower arms, sternum,
and pelvis. Lumbar load is quantified as the net moment around the L5/S1 intervertebral
body, estimated using a method that is based on artificial neural networks. The validity
of the sensor-based method was supported in healthy adults since the differences in the
estimated lumbar load were consistent with the perceived intensity levels and the character
of the work tasks. The method may be used to monitor lumbar load in people with
musculoskeletal disorders such as lower back pain, to assess muscular overload during
rehabilitation, and to help clinicians to tailor treatments.

Bravi et al. (2021) [5] investigated the validity of a sensor-based system for shoulder
range of motion assessment in cervical spinal cord injury patients. The sensor-system
consists of two IMU sensors placed on the wrist and upper arm. Patients and healthy
controls performed four shoulder movements. Every movement was evaluated with a
goniometer and with the IMU system at the same time. The validity of IMU system was
partially confirmed, since relative agreement between the IMU system and goniometer
was high but absolute agreement was relatively low. The proposed IMU system may be
a potential tool for monitoring shoulder range of motion in patients with cervical spinal
cord injury.

Tak et al. (2020) [6] presented a new sensor-based method for the measurement of
knee, hip and spine joint angles during the single leg squat. The sensor system consists
of four IMU sensors placed on the trunk, pelvis, upper leg, and lower leg. In this study,
healthy adults performed single leg squats. Results showed high correlations between the
joint angles measured with the sensor system and an optical reference system, indicating
the validity of the sensor system. The sensor method is potentially relevant for monitoring
and optimizing lower extremity kinematics during rehabilitation interventions.

Ahmadi et al. (2020) [7] investigated the accuracy of group, group-personalized, and
fully-personalized machine learning physical activity classification models in children
with cerebral palsy. Models were trained and tested using accelerometer data from the
hip, wrist, and ankle. To assess the validity, the classification accuracy was evaluated
and compared in a laboratory trial and a simulated free-living trial with 38 children
while wearing a wrist-worn accelerometer. Results showed that group-personalized and
fully-personalized Random Forest activity classification models provide a more accurate
recognition of physical activity in children with CP than “one-size-fits-all” group models.
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Labarierre et al. (2020) [8] performed a systematic review to identify and summarize
studies in which motion sensors and machine learning algorithms have been used to
adapt the behavior of orthotic/prosthetic devices to user locomotion mode (e.g., stair
ascent/descent, walking on flat floor). Results showed that classification accuracies were, in
general, very high in healthy people and people with unilateral transtibial and transfemoral
amputation. These findings support the validity of sensor methods and machine learning
algorithms to recognize locomotion mode.

Yang et al. (2020) [9] developed a sensor-based method to estimate relative 3D orien-
tations between finger tips and the dorsal side of the hand with inertial motion sensors
but without magnetometers to avoid magnetic disturbance. The method consists of one
sensor on the dorsal side of the hand, and one on the most distal finger segment. Results in
three healthy adults show that errors in relative orientation between fingers and hand are
relatively small during hand movements and during a functional water-drinking task. The
sensor method is potentially useful for clinical assessments during stroke rehabilitation.

Prasanth et al. (2021) [10] performed a systematic review of sensor-based methods ap-
plied for real-time gait analysis. Inertial measurement units on the shank and foot are most
often used for gait analysis in combination with threshold or peak identification methods
for gait detection. Less than one third of the sensor-based methods for gait analysis were
validated on pathological gait data. For clinical gait assessments, a combination of inertial
measurement units and rule-based methods are recommended as an optimal solution.

Regterschot et al. (2021) [11] investigated to what extent arm use measurements with
wrist-worn accelerometers in stroke patients are affected by whole-body movements, such
as walking. Wrist-worn accelerometers are often applied to measure arm use after stroke.
They measure arm use by recording all arm movements, including non-functional arm
movements due to whole-body movements. Results of the study show that whole-body
movements substantially increase cross-sectional arm use outcomes when not correcting
arm use data for whole-body movements, thereby threatening the validity of arm use
outcomes and measured arm use changes.

Zhou et al. (2020) [12] evaluated a sensor-based method to classify fallers from non-
fallers based on spatial-temporal gait characteristics. Wearable sensors were placed on both
ankles and the lower back. A partial least square discriminant analysis was used to classify
fallers and non-fallers based on gait features derived from the sensor data. Results showed
that fallers differed from non-fallers in gait patterns. The presented sensor-based method
may be useful in rehabilitation to identify persons with a high fall risk and to monitor the
effects of interventions on fall risk.

Mazzarella et al. (2020) [13] investigated in this pilot study whether a 3D motion
capture system can detect changes over time in pre-reaching and reaching behaviors in
infants with perinatal stroke and cerebral palsy. Results showed that spatiotemporal
characteristics of upper extremity movements measured with a 3D motion capture system
change over time in infants with typical development, cerebral palsy and perinatal stroke,
with potential differences between infants with typical development and cerebral palsy.
This study shows the potential of wearable sensors for measuring characteristics of upper
extremity movements in infants with perinatal stroke and cerebral palsy.

Fleiner et al. (2021) [14] investigated the association between physical behavior and
subjectively-rated circadian chronotypes in older adults. Physical activity was measured
in 81 older adults during one week with a motion sensor on the lower back and the wrist.
Results showed that the timing of mobility-related activity is associated with subjectively-
rated chronotypes in older adults. The presented sensor-based method may provide a
useful approach for early detecting and tailoring the treatment of circadian disruptions in
rehabilitation populations.

Hofstad et al. (2020) [15] measured the number of consecutive steps and walking bouts
in persons with a lower limb amputation using three accelerometers: one in each trouser
pocket and one on the sternum. Measurements were performed for two consecutive days
in 20 persons with a lower limb amputation and 10 age-matched controls. Results showed
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that objectively measured mobility was highly affected in persons with an amputation and
that self-reported mobility did not match with the objective sensor-based measurements.
This study recommends the use of accelerometers to measure mobility in persons with a
lower limb amputation.

Lang et al. (2020) [16] discussed the major barriers for the application of wearable
movement sensors in motor rehabilitation and proposed benchmarks for the implementa-
tion of sensors in clinical practice. Barriers in the clinic are the busy clinical environment
and the lack of realization of the value of the information that can be obtained with sensors.
Technology-related barriers include: (1) sensor systems that are inaccurate for many patient
populations; (2) sensor systems that are not user-friendly for clinicians and/or patients; (3)
the lack of published data regarding reliability and clinical validity of sensor systems.

Braakhuis et al. (2021) [17] explored the use, perspectives, and barriers to wearable
activity monitoring in day-to-day stroke care routines amongst physical therapists. Results
of the online survey showed that 27% of the respondents were using activity monitoring,
and the concept of remote activity monitoring was perceived as useful. The identified
barriers to clinical implementation were lack of skills and knowledge of patients, financial
constraints, and not knowing what type of monitor to apply.

This Special Issue shows a range of potential opportunities for the application of wear-
able movement sensors in motor rehabilitation. However, the papers surely do not cover
the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this
Special Issue focused on the technical validation of wearable sensors and the development
of algorithms. Clinical validation studies, studies applying wearable sensors for the moni-
toring of physical behavior in daily life conditions, and papers about the implementation
of wearable sensors in motor rehabilitation are under-represented in this Special Issue.
Studies investigating the usability and feasibility of wearable movement sensors in clinical
populations were lacking. We encourage researchers to investigate the usability, acceptance,
feasibility, reliability, and clinical validity of wearable sensors in clinical populations to
facilitate the application of wearable movement sensors in motor rehabilitation.
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