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ABSTRACT: The problem of virus classification is always a
subject of concern for virology or epidemiology over the decades.
In this regard, a machine learning technique can be used to predict
the novel coronavirus by considering its sequence. Thus, we are
proposing a machine learning-based novel coronavirus prediction
technique, called COVID-Predictor, where 1000 sequences of
SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other viruses are
used to train a Naive Bayes classifier so that it can predict any
unknown sequences of these viruses. The model has been validated
using 10-fold cross-validation in comparison with other machine
learning techniques. The results show the superiority of our
predictor by achieving an average 99.7% accuracy on an unseen
validation set of viruses. The same pre-trained model has been used to design a web-based application where sequences of unknown
viruses can be uploaded to predict the novel coronavirus.

■ INTRODUCTION

On the 31st of December 2019, the World Health
Organization (WHO)1 was informed about a few pneumonia
cases that had been detected in Wuhan City, Hubei Province
of China with unknown etiology. Subsequently, on the 7th of
January 2020, Chinese authorities identified a novel virus as a
cause of this disease. Later, on the 11th of February 2020, the
WHO and International Committee on Taxonomy of Viruses
declared the name of this virus as Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) or novel coronavirus
while the disease is called COVID-2019.1,2 Moreover, the
pandemic was declared on the 11th of March 2020 by the
WHO. As a precautionary measure, the decision of lockdown
was taken around the globe for different time frames. On the
other hand, genetic research shows that the novel coronavirus
belongs to the family of coronavirus. In this family, Severe
Acute Respiratory Syndrome (SARS) and Middle East
Respiratory Syndrome (MERS) are also present. The medical
research community suspects that SARS-CoV-2 is more
transmissible but comparatively less fatal than SARS.
According to a lot of evidence,3,4 the transmission rate of
SARS-CoV-2 from a human to another human seems higher
than SARS and the virus might be of bat or pangolin origin.2,5,6

It is also suggested that mostly the transmission of this virus is
via droplets. It means that once an infected person coughs or
sneezes and emitted droplets come into contact with another
individual over a short distance, the second individual might
get infected.

As of the 30th of April 2022, more than 512 million positive
cases have been registered across the world while more than 6
million people have died.1 Generally, coronavirus can infect
multiple organs in different hosts such as animals and humans.
It mainly attacks the respiratory system in humans like the
other two viruses, SARS-CoV-1 and MERS-CoV, in the same
family. The genetic features like potential etiological agents of
the SARS-CoV-2 have been identified after metagenomic
analysis using next-generation sequencing (NGS)1. Moreover,
another study7 shows that the spike protein receptor-binding
domain (RBD) of SARS-CoV-2 binds with host receptor
angiotensin-converting enzyme 2 (ACE2). It generally helps to
regulate the transmission of COVID-19 in cross-species and
humans. It is now known that the virus can sustain itself by
mutating and creating divergent variants.9−11 Thus, the early
prediction of the disease caused by SARS-CoV-2 is an
important but challenging task8 because SARS-CoV-1,
MERS-CoV, and SARS-CoV-2 belong to the same family.
The similarities in their sequence identities are also high as
found in a study on topological analysis for sequence
variability.12 In this regard, several studies13,14 suggest deep
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learning-based classification models to predict coronavirus
using X-ray and Computed Tomography (CT) scan images. In
most of the cases, the accuracy is achieved in a range of 86% to
98%. Collection of huge medically validated images for such
deep-learning based applications is practically another
challenge.
To address the above urgent requirement, here, we have

developed a machine learning-based technique, called COVID-
Predictor, where DNA sequences of three different coronavi-
ruses and other viruses, such as Ebola and Dengue, are used
from The National Center for Biotechnology Information
(NCBI)2 and Global Initiative on Sharing All Influenza Data
(GISAID)3 to train a well-known machine learning technique,
called the Multinomial Naive Bayes (MNB)15 classifier, so that
it can predict any unknown sequences of these viruses. For this
purpose, the k-mer algorithm16,17 is used to create descriptors
from the virus sequences. Thereafter, the n-gram concept is
used to create a Bag-of-Descriptors (BoDs) in order to have
count vectors. Such a count vector of sequences is then used to
train the MNB. Subsequently, testing is done in the same
fashion with 10-fold cross-validation and unseen sequences of
coronaviruses from aforementioned databases. The model has
also been compared with other two well-known machine
learning techniques such as the kernel-based Gaussian Support
Vector Machine (GSVM)18 and Random Forest (RF).19 The
MNB-based model shows the superior performance to other
ML-based models by achieving an average of 99.8% accuracy
during training using 10-fold cross-validation while 99.7%
average accuracy was achieved on unseen virus datasets. The
same pre-trained model is used to develop a web application so
that scientific and diagnostic communities interested in
coronavirus prediction can get the benefit out of this. It is
important to mention that the virus encoding to fit for machine
learning is the main contribution to this work. Furthermore, to
the best of our knowledge, this is the first work that provides
online service in the form of a website to predict viruses like
SARS-CoV-2, MERS-CoV, SARS-CoV-1, Dengue, and Ebola
from their respective sequence to support the medical
community.

■ MATERIALS AND METHODS
In this section, we have discussed about the data preparation,
the parameters, and the metrics that are used for COVID-
Predictor.
Data Preparation. The datasets of SARS-CoV-1, MERS-

CoV, and other kinds of viruses like Ebola and Dengue are
downloaded from NCBI while SARS-CoV-2 is downloaded
from GISAID in fasta format. Although the proposed predictor
does not require sophisticated data prepossessing, it requires
complete or near-complete genomes or sequences of viruses.
As a result, 344, 291, and 2391 sequences of SARS-CoV-1,
MERS-CoV, and SARS-CoV-2, respectively, of length more
than 29 kbp while 600 other viruses such as Ebola and Dengue
of length more than 10 kbp are considered in our experiment
to train and test the proposed predictor. The statistics of the
refined consolidated datasets is shown in Table 1. Additionally,
more sets of sequences are also collected from NCBI and
GISAID for validating the final predictor. The details about
additional data are reported in Table 4.
Parameter Setting and Metrics. The experiments are

performed using Python 3.6 and executed on an Intel Core i5-
2410M CPU at 2.30 GHz with 8GB of RAM and a Windows 7
operating system. The required input parameters are

experimentally set. Such parameters are the number of trees
for RF, which is equal to 100, decision for RF is “gini”, the
alpha value as a smoothing factor of MNB is 0.1, and the kernel
used in GSVM is “rbf”. To evaluate results of COVID-
Predictor, the popular performance metrics such as accuracy,
precision, recall, F1 score, ROC AUC score, and Matthews
Correlation Coefficient (MCC) are used.

COVID-Predictor. The primary objective of the proposed
COVID-Predictor is to correctly identify the sequences of
coronaviruses. In this regard, the complete or near-complete
DNA sequences are split into descriptors using the k-mer
technique. Such descriptors for four classes of viruses are
shown in Figure 1a as a word cloud. Thereafter, the n-gram
technique is applied to create a feature by considering an n
number of descriptors. The top 10 n-grams for different viruses
are shown in Figure 1b. These n-grams/features are used to
call as a Bag-of-Descriptors (BoDs). Such BoDs are further
used to create count vectors for virus sequences. The count
vectorization computes the frequencies of n-grams in a
particular sequence and creates a numeric feature vector that
is then used for subsequent machine learning techniques, such
as Multinomial Naive Bayes (MNB), the kernel based Support
Vector Machine (SVM), and a tree-based technique like
Random Forest (RF) to evaluate their performance. The
choice of selecting these machine learning techniques can be
attributed to their popularity and to accomplishing the task.
Independently, all three machine learning techniques are
evaluated with features generated by count vectorization after
considering different values of the k-mer and n-gram. Based on
the performance of the three machine learning techniques over
10-fold cross-validation on training data, we have finalized
MNB as the underlying technique for building COVID-
Predictor as used in our web application. The pipeline of the
proposed COVID-Predictor is described in Figure 1c.

■ RESULTS AND DISCUSSION
The dataset consisting of all four types of virus sequences
SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other viruses has
been divided into two sets, one for a training set and the other
for testing purposes. A stratified sampling method is applied to
prepare the training dataset to ensure that representatives from
all four types of virus classes are present. As a result, 1000 virus
sequences are used in training. Moreover, data samples are
carefully selected from each category to avoid imbalance class
problems. The testing dataset contains those sequences that
are not present in the training dataset. The training dataset is
used in the three independent machine learning techniques,
viz., MNB, GSVM, and RF. For each machine learning
technique, the descriptors of virus sequences are created using
the k-mer method. Thereafter, such descriptors are combined

Table 1. Statistics of the Refined Datasets of Corona and
Other Viruses

virus
name

source of
sequence

no. of
sequence

max length of
sequence

avg length of
sequence

SARS-
CoV-1

NCBI 340 30,311 29,514

MERS-
CoV

NCBI 291 30,150 29,983

SARS-
CoV-2

GISAID 2391 29,986 29,512

Other
viruses

NCBI 600 19,897 15,316
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using the n-gram technique to create a count vector that is

used to train the classifiers. In our experiments, the value k of

k-mer varies between 2 and 7, while the value of the n-gram

varies between 2 and 5. Each machine learning method is

evaluated with 10-fold cross-validation followed by further

validation on an unseen dataset taken from NCBI and
GISAID.
The performance metrics of each machine learning

technique with 10-fold cross-validation for different values of
the k-mer and n-gram are reported in Tables 2 and 3. Four
quantitative metrics of Table 2 are further consolidated as a

Figure 1. (a) Word cloud of descriptors generated using k-mer techniques from sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other
viruses. (b) Top 10 n-grams of descriptors generated using k-mer techniques from sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other
viruses. (c) Pipeline of the proposed COVID-Predictor. (d) Performance measures for k = 7 and n = 3. (e) Screenshots of the web-based COVID-
Predictor to select a virus sequence file as csv and results after prediction.
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single aggregated score for ease of comparison; however, the
metrics of Table 3 are examined separately. The aggregated
score is computed simply by taking the average of all the scores
following a similar approach to what was used elsewhere.20

The boundary of the aggregated score is [0,1], where a higher

value signifies a better result. It is evident from Table 2 that
MNB-based COVID-Predictor produces a higher aggregated
score, i.e., 0.99953, for the value of the k-mer equal to 7. This is
also depicted in Figure 1d. Similar results are also observed for
MNB-based COVID-Predictor for other values of the k-mer.

Table 2. Prediction Performance of Different Machine Learning Techniques after Performing 10-Fold Cross Validation with
Different Values of k-mer and n-gram on 1000 Genome Sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Other
Virus Sequences

Table 3. ROC AUC Score and MCC of Different Machine Learning Techniques after Performing 10-Fold Cross Validation
with Different Values of k-mer and n-gram on 1000 Genome Sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and Other
Virus Sequences

n-gram = 2 n-gram = 3 n-gram = 4 n-gram = 5

method k-mer ROC-AUC-score MCC ROC-AUC-score MCC ROC-AUC-Score MCC ROC-AUC-Score MCC

NB 2 0.99998 0.99746 0.99810 0.99746 0.99998 0.99746 1.00000 0.98987
GSVM 0.99997 0.93321 0.99994 0.95759 0.99998 0.97610 0.99998 0.98985
RF 0.99795 0.93321 0.99998 0.95761 0.99872 0.97608 0.99940 0.99873

NB 3 0.99810 0.99746 0.99999 0.99746 1.00000 0.99873 0.99872 0.99874
GSVM 0.99994 0.95759 0.99998 0.97610 0.99998 0.98985 1.00000 0.99874
RF 0.99998 0.95760 0.99872 0.97612 0.99940 0.98987 1.00000 0.99746

NB 4 0.99872 0.99746 1.00000 0.99873 1.00000 0.99746 1.00000 0.99946
GSVM 0.99998 0.97610 0.99998 0.98985 1.00000 0.99874 1.00000 0.99874
RF 0.99997 0.97608 0.99940 0.98985 0.99872 0.99874 1.00000 0.99876

NB 5 0.99940 0.99873 0.99872 0.99746 0.99811 0.99874 1.00000 0.99876
GSVM 0.99998 0.98985 1.00000 0.99874 0.99974 0.99495 1.00000 0.99873
RF 1.00000 0.98987 1.00000 0.99875 0.99798 0.99591 1.00000 0.99874

NB 6 0.99872 0.99746 1.00000 0.99897 1.00000 0.99998 0.99938 0.99873
GSVM 1.00000 0.99874 0.99874 0.98885 1.00000 0.99873 1.00000 0.99620
RF 1.00000 0.99876 1.00000 0.98973 1.00000 0.99877 1.00000 0.99624

NB 7 1.00000 0.99877 1.00000 1.00000 0.99938 0.99873 0.99938 0.99873
GSVM 1.00000 0.99873 1.00000 1.00000 1.00000 0.99620 1.00000 0.99493
RF 1.00000 0.99873 1.00000 1.00000 1.00000 0.99623 0.99998 0.99491

Table 4. Prediction Performance of COVID-Predictor on Validation Data

source data samples accuracy precision recall F1 score
ROC-AUC-

score MCC

NCBI 493 sequences (only SARS-CoV-2) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
NCBI +
GISAID

1090 sequences (90 SARS-CoV-1, 200 MERS-CoV, 200 SARS-CoV-
2, 600 other viruses)

0.99908 0.99908 0.99908 0.99908 0.99912 0.99852

NCBI +
GISAID

2043 sequences (103 SARS-CoV-1, 41 MERS-CoV, 1599 SARS-CoV-
2, 300 other viruses)

0.98217 0.98991 0.98217 0.98602 0.98432 0.98291

NCBI +
GISAID

3143 sequences (90 SARS-CoV-1, 41 MERS-CoV, 2152 SARS-CoV-
2, 860 other viruses)

1.00000 1.00000 1.00000 1.00000 1.00000 1.00000

NCBI +
GISAID

3500 sequences (90 SARS-CoV-1, 250 MERS-CoV, 2410 SARS-CoV-
2, 750 other viruses)

0.99971 0.99971 0.99971 0.99971 0.99952 0.99940

NCBI +
GISAID

4000 sequences (90 SARS-CoV-1, 220 MERS-CoV, 3030 SARS-CoV-
2, 2639 other viruses)

0.99975 0.99975 0.99975 0.99974 0.99949 0.99937

GISAID 4747 sequences (only SARS-CoV-2) 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
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Additionally, ROC-AUC scores and MCC values are reported
in Table 3 for different values of the k-mer and n-gram for
MNB-, GSVM-, and RF-based predictors. It is found that the
ROC-AUC score and MCC value of MNB-based predictor are
1 and 1, respectively, for the k-mer equal to 7 and n-gram equal
to 3. Thus, according to the results, we have prepared the pre-
trained model of COVID-Predictor with 1000 genomic
sequences of four virus classes for values of the k-mer and n-
gram of 7 and 3, respectively. To gain further confidence, we
have used an additional validation set of sequences as reported
in Table 4. While validating with 2043 samples, it is observed
that 3 cases are false positive considering prediction of SARS-
CoV-2 is positive. After further investigation, it has been found
that these 3 sequences are for SARS-CoV-1 and are
misclassified by COVID-Predictor as SARS-CoV-2. As our
primary objective is to predict SARS-CoV-2, we further wanted
to examine the rate of false negatives as well. For this purpose,
an additional two sets of pure SARS-CoV-2 sequences and four
sets of mixed sequences are used separately. One of the pure
SARS-CoV-2 sequence sets with 493 samples and the other
with 4747 samples are collected from NCBI and GISAID,
respectively. Similarly, the sets of mixed sequences are also
collected from NCBI and GISAID. In both the pure SARS-
CoV-2 cases, COVID-Predictor predicted SARS-CoV-2 with
100% accuracy, whereas prediction accuracy of the rest of the
sets is found to be very close to 100%. Moreover, the values of
the ROC AUC score and MCC in all cases are found to be
significantly good and impressive. This experiment establishes
that COVID-Predictor with the proposed feature building
approach has potential to predict SARS-CoV-2 with higher
accuracy. The same pre-trained model is used to build the web-
based application where the unknown sequences can be
uploaded to predict the class of coronavirus. The screenshots
of the web-based predictor are shown in Figure 1e.

■ CONCLUSIONS
In the current context, it has become very much essential to
predict coronavirus as early as possible because SARS-CoV-2
infection has been one of the worst pandemics, where both the
infection and death rate ravaged the entire globe. While
vaccination is a preventive measure, early detection is also
equally important. As a contribution to the society, in this
study, we have proposed COVID-Predictor for predicting the
coronaviruses, viz., SARS-CoV-1, MERS-CoV, and SARS-CoV-
2 based on their sequences. The same is also provided as a web
application so that scientific and diagnostic communities
related to coronavirus prediction can get the benefit out of this.
In order to achieve better performance, we have carefully
performed data preprocessing, paying careful attention to
building efficient feature vectors, leveraging the appropriate
machine learning technique by performing 10-fold cross-
validation. Experimentally, the Multinomial Naive Bayes
technique is finalized for building a web-based predictor as
MNB performed better on different datasets of sequences,
which are collected from NCBI and GISAID. As a further
scope of research, our study will focus on developing an
efficient predictor to detect the particular variant, new
dominant or emerging lineages of SARS-CoV-2.
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