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Abstract

Previous studies have evaluated the marginal effect of various factors on the risk of severe

maternal morbidity (SMM) using regression approaches. We add to this literature by utilizing

a Bayesian network (BN) approach to understand the joint effects of clinical, demographic,

and area-level factors. We conducted a retrospective observational study using linked

birth certificate and insurance claims data from the Arkansas All-Payer Claims Database

(APCD), for the years 2013 through 2017. We used various learning algorithms and mea-

sures of arc strength to choose the most robust network structure. We then performed vari-

ous conditional probabilistic queries using Monte Carlo simulation to understand disparities

in SMM. We found that anemia and hypertensive disorder of pregnancy may be important

clinical comorbidities to target in order to reduce SMM overall as well as racial disparities in

SMM.

Introduction

Severe maternal morbidity (SMM) is an unexpected outcome of labor and delivery that results

in short-term or long-term adverse health outcomes [1]. It is defined by the Centers for Dis-

ease Control and Prevention (CDC) to include 21 different indicators [2]. SMM affects

approximately 50,000 women annually with a steadily increasing rate in recent years [3]. Addi-

tionally, SMM is an important predictor of maternal death [4].

Significant racial disparities exist in maternal mortality and SMM. SMM disproportionately

affects women of minority race or ethnicity, especially non-Hispanic Black women, who have

over twice the rates of SMM compared to non-Hispanic White women [5]. Black women are 3

to 4 times more likely to die from pregnancy-related causes compared to Non-Hispanic White

women [6].
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Disparities are defined by the American College of Obstetricians and Gynecologists as “dif-

ferences that result in a particular type of health difference that is closely linked with economic,

social, or environmental disadvantage” [7]. Social determinants of health play an important

role in disparities in maternal morbidity and mortality, including individual factors (e.g.,

socioeconomic status, race and ethnicity, gender), community and neighborhood factors (e.g.,

social networks and built environment, housing), provider factors (e.g., knowledge, implicit

bias, communication), and system factors (e.g., availability of and access to high quality care,

structural racism, social and political policies) [8]. A wide range of factors have been shown to

increase the likelihood of SMM including: increased maternal age, pre-pregnancy obesity, pre-

existing chronic medical conditions and cesarean delivery [9]. Evaluating the complex rela-

tionship between various social determinants of health, maternal clinical characteristics and

risk factors could help identify the potential drivers of racial disparities in rates of SMM.

The most widely used analytical method to study associations between risk factors and

SMM is based on multiple regression models [10–12]. These methods estimate the association

of each input variable with the outcome variable while holding all other input variables con-

stant. The drawback of this approach is that it prevents the discovery of nuanced and complex

relationships between the various input variables. Bayesian networks (BNs) have emerged as a

popular statistical tool for building graphical models that represent stochastic dependence

among random variables. The relationships between predictors are often unknown and must

be learned from the data [13]. Previous research has used BNs to understand factors related to

various health outcomes, and showed that BNs may be superior to classical (frequentist) analy-

ses that use regression models [14].

A BN describes the joint probability distributions of a network of factors using a Directed

Acyclic Graph (DAG), where “directed acyclic” means the directional relationships between

factors cannot be cyclical in nature [15]. Factors that affect the likelihood of an outcome are

represented by nodes, and the relationships among factors are represented using directed arcs.

If the state of one factor (“A”) influences the state of the other factor (“B”), a directed arc is

drawn between the two nodes from “A” to “B” [16]. The parameters and dependencies in the

network can be learned from the data or provided by expert knowledge [17,18]. Additionally,

BNs can be used to query any given node in the network, which allows for estimation of the

probability distribution of the outcome given a specific value on that node (e.g., the probability

of maternal morbidity given the mother lives in a rural area).

BNs have been successfully used as hypothesis-generating tools by elucidating the associa-

tions among variables using DAGs. Noyes et al. (2018) used BN to uncover the associations

between the vaginal microbiome and risk of bacterial vaginosis [19]. The result of their study

found newly documented associations between birth control usage, menstrual hygiene prac-

tices, and specific microbiome members. Their study uses BN as an exploratory data analysis

tool rather than causal inference tool [19]. BNs have also been widely used in medical decision

making due to the ability of BNs to encode uncertain domain knowledge in a natural manner

[20]. Medical informatics has been driving the development of BNs due to the ability of BNs to

intuitively encapsulate the causal links between diagnostic and prognostic factors within large,

complex medical datasets [21,22]. In medicine, causal BNs have been used for clinical decision

making using diagnostic or prognostic disease models [23–25]. The underlying causal models

in diagnostic and prognostic causal models are constructed from the domain literature, expert

knowledge, and statistical data [23]. Furthermore, studies have found that BNs that learn from

relationships in the data (“unsupervised” or “semi-supervised” models) have comparable per-

formance to models based on clinician-knowledge alone (“supervised”) [26]. One caveat of the

causal inference models is the risk of expert knowledge misleading statistical adjustment

which may lead to the occurrence of “paradoxes.” An important example is the “birth weight
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paradox” that occurs when stratifying on the birth weight creates spurious association between

the exposure (maternal smoking) and outcome (infant mortality). In other words, the paradox

occurs when an intermediate variable (birth weight) is on the causal pathway of the exposure

(maternal smoking) and the outcome (infant mortality) and shares common causes with the

outcome (infant mortality) [27]. Therefore, it is essential to clarify the causal question and the

assumptions regarding the causal structure for any analytical approach [27]. It is worth point-

ing out that association mining methods such as BN has a potential risk of runing into paradox

in presence of unobserved confounding variables that could reverse the direction of associa-

tion. However, the BN approach proposed in this study is inductive and does not use DAG to

seek any causal interpretations.

Additionally, unlike structure equation modeling (SEM) that quantifies the slope of the

effect based on a predetermined structure, the proposed BN in this study deploys a data-driven

approach to understand the structure of the associations among the variables [28]. In other

words, the BN structure identifies which variables have a direct effect on developing SMM and

which variables, on the other hand, have their effect on SMM mediated by other input vari-

ables. In this study, our goal is to assess the total effect of race on the occurrence of SMM based

on the learned BN structure. Previously published studies [29] provide further information

related to mediators on the causal pathways. Bayesian learning of BN in this study is an

approach to automatically building BNs from data then revising the BN structure (i.e., remov-

ing the nodes and/or arcs) based on prior knowledge (semi-supervised).

For this study, birth certificate data was linked to the Arkansas All-Payer Claims Database

(APCD), which gave us a rich source of information on maternal demographic and clinical

characteristics, including comorbidities and SMM.

Materials and methods

A major motivation for using BN in this paper was to develop a statistically rigorous and intui-

tively understandable model. The first step was to identify factors associated with SMM, and

the second was to use BN to query various nodes in the network to understand disparities asso-

ciated with SMM. In order to characterize the properties of BN-derived information, the first

task was to choose the most robust network structure. This study was deemed non-human

subjects research by the first author’s institution (#229073), and requirement of written or ver-

bal informed consent was waived.

Data

The primary data source for this study was the Arkansas APCD, years 2013–2017. The APCD,

administered by the Arkansas Center for Health Improvement, contains data from multiple

sources, including Medicaid and commercial insurance claims and Vital Statistics (i.e., Birth

Certificate) data. The APCD includes membership/enrollment information and insurance

claims for beneficiaries of state and federal health plans, the individual market, small and large

employers, and a portion of self-insured employers [30]. Our study excluded claims from

Medicare and from workers’ compensation, and included women with private/commercial

coverage, Medicaid coverage, or coverage in a qualified health plan through the Arkansas

Health Insurance Marketplace. This study was deemed non-human subjects research by the

first author’s institution (#229073).

Females between the age of 12 to 55 with at least one birth between the years 2014 and 2017

were included. Although our data included years 2013 through 2017, births between April 1st,

2014 to November 19th, 2017 were included to ensure each woman had at least a 15-months

look-back period (6 months prior to pregnancy and 9 months pregnancy period) as well as a
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follow-up period (42 days postpartum). As a result, 77,172 births were identified between

April 1st, 2014 and November 19th, 2017.

For each birth, the comorbidities within the 15-months look-back period were identified.

The comorbidities in our study included pre-existing conditions (prior to pregnancy or

acquired during pregnancy) as described by Reid et al. [31] and Mhyre et al. [32]. Additional

conditions previously used in studies on SMM were also included. Comorbidities were defined

based on ICD-9 and ICD-10 diagnosis codes (see S1 Table for full list of codes).

In addition to clinical information from the claim files, several useful data elements were

derived from the birth certificate file for each of the included births in this study. Area level

information was obtained from the Area Health Resources Files based on the mother’s county

of residence [33]. Table 1 also indicates the source of each covariate variable. All continuous

variables were converted into discrete variables for the analysis. The four age categories were

ages 15 to 19, 20 to 34, 35 to 39, and age 40 or older. County level factors, including percent of

African-American, percent owner occupied houses, percent urban population, percent pov-

erty, and number of OBGYN per 1000, were categorized based on quartiles.

In our study, SMM conditions were defined as the 21 indicators outlined by the CDC [2]

and was measured during the period starting from the date of delivery through 42 days

postpartum.

Bayesian network

A BN is a graphical model of associations among a set of random variables that consists of two

components:

1. a network structure depicted as a DAG. Within a DAG, each node represents a variable and

the arc between two nodes represent the stochastic dependency between those two variables

[34].

2. a set of conditional probability distributions for each variable within a DAG according to

the stochastic dependencies represented by the edges (connections between two nodes).

These conditional distributions are specified by the network parameters [35].

If there is an arc (directed edge) from node X1 to node X2 in a DAG, then X1 is said to be a

parent of X2; likewise, X2 is called the child of X1. An important feature of BNs is the concept

of Markov conditions which states that each variable represented by a node is conditionally

independent of its predecessors given the values of its parents. Based on the Markov condition,

the global joint probability of the entire BN can be represented by the product of conditional

probabilities using the graphical structure and the chain rule of probability [34]:

p xjyð Þ ¼
Yn

i¼1
pðxijpa xið Þ; yiÞ ð1Þ

where X = {x1, x2,. . .,xn} and θ = {θ1, θ2,. . ., θn} represent the variables (nodes) and the parame-

ters in the BN, respectively. Each θi is the set of parameters necessary to specify the probability

distribution of each variable (xi) given its parents (pa(xi)) [34].

Given a dataset D = {D1,. . .,DN}, where each data point Di is a vector of values for variables

X, structure learning is the task of finding a network structure that best fits D [36]. If D is dis-

crete and complete then θ is maximized using frequency counts from the data [37]. The pro-

cess of learning the DAG of a BN is a complex task, and the number of DAGs grows super-

exponentially as the number of nodes grow. The process of learning in BN consists of two

main steps: (1) learning the structure of the DAG and (2) parameter learning. Parameter learn-

ing is related to learning the local distributions implied by the structure of DAG learned in
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Table 1. Variables and data resources in the study.

Birth certificate Area Health

Resource File

Medical Claims

Maternal and

birth-related

variables

County-level

variables

Conditions

Age
Less than 20

years

20� age < 35

35� age<40

age� 40

Primary care
coverage

Partial

shortage area

No shortage

area

Whole

shortage area

Multiple gestation Chronic renal disease Excessive weight gain in

pregnancy

Malignancy Spine abnormalities

Race
White-non-

Hispanic

Black-non-

Hispanic

Hispanic

Other

Percent African-
American
quartile

Insufficient prenatal

care

Renal disease

complicating pregnancy

Infections of

genitourinary tract in

pregnancy

Mental health disorders Substance use

Alcohol

Education
At least some

college

Less than high

school

High school

graduate

Unknown

education

Percent owner
occupied houses
quartile

Prior cesarean Chronic respiratory

disease

Habitual aborter currently

pregnant

Mental disorders

complicating

pregnancy

Substance use

Cannabis

Birth Year
2014

2015

2016

2017

Percent urban
population
quartile

Anemia Coagulation defects

complicating pregnancy

Hemorrhage in early

pregnancy

Obesity Substance use

Cocaine

Insurance
Private

insurance

Medicaid

Self-pay

Other

Percent poverty
quartile

Asymptomatic

bacteriuria in

pregnancy

Congenital heart disease Hepatitis C Pregnancy-related

Obesity

Substance use

Opiates

Marital status
Married

Not

married/

Unknown

Number of
OBGYN per 1000
quartile

Bariatric surgery

status

Congenital

cardiovascular disorders

complicating pregnancy

Deep vein thrombosis Other cardiovascular

diseases complicating

pregnancy

Substance use Other

WIC program
participation

Yes

No

Unknown

Bone and joint

disorders

Diabetes mellitus

complicating pregnancy

Hypercoagulable state Peripheral neuritis in

pregnancy

Substance use

Unspecified

Parity
0

1

2 or more

Unknown

Cervical shortening Diabetes mellitus Hypertensive disorder of

pregnancy

Placenta previa Systemic lupus

erythematosus

Chronic heart

disease

Drug dependence

complicating pregnancy

Infectious and parasitic

conditions complicating

pregnancy

Preexisting

hypertension

Tobacco use disorder

complicating

pregnancy

Chronic liver

disease

Epilepsy complicating

pregnancy

Liver and biliary tract

disorders in pregnancy

Sickle cell disease

https://doi.org/10.1371/journal.pone.0259258.t001
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step 1 [38]. Several algorithms have been presented in the literature for structure learning

based on the data which can be categorized in to three types: constraint-based, score-based,

and hybrid techniques [38].

Constraint-based algorithms are based on the Inductive Causation (IC) algorithm devel-

oped by Pearl (1991) which uses conditional independence tests to learn the DAG [39]. The

first step in the IC algorithm is to identify which variables are connected regardless of the

direction of the relationship between the two variables. This step starts with a saturated model

(i.e., a complete graph with all variables), and then the graph is pruned based on statistical tests

for conditional dependence. The second step involves identifying the v-structures among all

non-adjacent nodes A and B with a common neighbor C. A v-structure is the only structure

in which non-adjacent nodes are dependent given a common neighbor in C. At the end of

this step, the skeleton and v-structure of the BN is known. The last step, step 3, is related to

orienting the arcs. Due to the computational costs associated with the IC algorithm, several

improved and efficient algorithms have been developed [38]. Some of these improved algo-

rithms include Grow-Shrink (GS) [40], Incremental Association (IAMB) [41], Fast Incremen-

tal Association (Fast-IAMB) [42] and Interleaved Incremental Association (Inter-IAMB) [41].

All of these algorithms first learn the Markov blanket of each node which simplifies the identi-

fication of neighbors and reduces the computational complexity of the learning algorithm.

The second structured learning approach, the score-based technique, applies the concept of

optimization to the problem of structure learning where each candidate network structure is

given a network score reflecting its goodness of fit, which is then maximized within the process

of optimization [38]. Hill-climbing (HC), simulated annealing, genetic algorithm, tabu search

(TS) are some examples within this class of algorithms [43].

Finally, hybrid algorithms combine constraint-based algorithms and score-based algo-

rithms to compensate the respective weaknesses and produce a reliable network [38]. Max-

Min hill-climbing (MMHC) [44], restricted maximization (rmax2) [45], and hybrid H2PC

[46] are examples of hybrid algorithms.

In this study, in order to learn the structure of the BN, a ‘validation set’ approach was used,

i.e., data was randomly divided into training (70%) and test (30%) sets. The training set was

then used to learn the BN structure, and the test set was used to evaluate the predictive perfor-

mance of the learned structure. Throughout the learning step, we adopted a layering strategy

as implemented in other studies to force the direction of some probabilistic relations [47,48].

In layering strategy, nodes are allowed to have relationship within the layer or with the vari-

ables in the lower layer but cannot have parents in the higher levels [47]. For example, mother’s

race is allowed to be linked to diabetes mellitus complicating pregnancy, but the reverse is not

allowed. Fig 1 summarizes the list of learning algorithms used in this study.

Handling imbalanced data

A data set is called class-imbalanced if the number of observations in each category of the tar-

get (outcome) variable are significantly different. The dataset in this study is imbalanced as

only 2% of the study population experienced SMM [49]. Such an extreme class imbalance in

the binary response variable could potentially skew the inference and parameter estimates if

not properly accounted for. To handle the extreme class imbalance, structure learning was per-

formed using both balanced data and original data. Sampling is a widely used technique to

mitigate imbalanced data where the distribution of observations is altered so that minority

class is more adequately represented in the data [50]. Common sampling approaches to miti-

gate imbalance include random oversampling (with replacement) of the lesser prevalent class

and random under sampling (without replacement) of the prevalent class [51].
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In order to handle the class imbalance problem, random under sampling was employed on

the training set. Random under sampling is a simple yet effective method that eliminates some

instances of the majority class to create a nearly equal instances in both the minority and

majority class [52]. The sample size of the unbalanced data (train and test sets) and the bal-

anced dataset is given in Table 2.

Selection of robust Bayesian network

There are limited techniques available in the literature for assessing the statistical robustness of

network structures learned from data [53]. One logical approach used to study structural

learning algorithms is to measure differences by using reference datasets. However, this

Fig 1. Procedure of structure learning in this study.

https://doi.org/10.1371/journal.pone.0259258.g001

Table 2. Number of SMMs in different datasets.

SMM No SMM

Original 1,755 75,417

Train 1,193 52,827

Test 562 22,590

Under sampled data 1,193 1,193

https://doi.org/10.1371/journal.pone.0259258.t002
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approach fails when studying real-world datasets due to unknown underlying probability dis-

tributions [54]. One systematic approach to identify significant features in the network is

based on using bootstrap resampling and model averaging [55]. In this approach the propor-

tion of arc presence is used to derive the importance of an arc. In this study, the approach out-

lined by Cugnata et al. [54] is used as the basis to design a robust network. Fig 2 outlines the

summary of the approach.

In the first step, the data is analyzed with eleven different learning structures (Fig 1) using

the “bnlearn” package in R 1.2.5042 [56]. Learning algorithms included two score-based

Fig 2. Procedure employed in this study.

https://doi.org/10.1371/journal.pone.0259258.g002
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algorithms (HC with score functions AIC and BIC and tabu search with score functions AIC

and BIC), four constraint-based algorithms (GS, IAMB, Fast-IAMB, Inter-IAMB), and three

hybrid algorithms (MMHC, rmax2, hybrid H2PC).

Node importance analysis

In step 2, we used a metric called Distance Weighted Influence (DWI) to rank the influence of

query nodes on the SMM based on the network structure [57]. DWI is an influence of X on Y,

DWI(X,Y;w) and is defined as:

DWI X;Y;wð Þ ¼
X

s2S X;Yð Þ
w sj j ð2Þ

where |s| is the length of the simple path s and 0� w� 1. In Eq 2, the sum of coefficients is

the sum of unblocked paths between X and Y, and the smallest power is the smallest length of

an unblocked path between X and Y. DWI depends on the number of paths, and it decreases

as the length of the paths increase [57].

Results

Table 3 shows the occurrence of an arc between any two nodes that occurred more than 70%

of the times in the implementation of each algorithm. In Table 3, a value of 1 indicates that

there existed a directed arc between the two nodes while a value of 0.5 indicates that two nodes

are linked with an undirected arc. The last column shows the sum of the arc strengths across

all the eleven structure learning algorithms, with higher numbers suggesting a more common

relationship between the two variables.

We chose the structure learning algorithms with the greatest number of arcs and arc

strengths greater than 70% across all structure learning algorithms. Therefore, the first three

structure learning algorithms (HC-BIC, HC-AIC, TS-AIC) were selected. Since the choice of the

most robust network does not guarantee that the network predicts efficiently [54], we trained

each of the four algorithms based on 1000 Monte-Carlo replications in the training set and cal-

culated the misclassifications rates using the test set of the original data. HC-BIC, HC-AIC, and

TS-AIC achieved misclassification rates of 25%, 26%, and 27% using the test set. We then gener-

ated 1000 samples with 1000 observations from the original data and calculated the arc strength.

Arc strength equals the proportions of occurrence of each arc for each bootstrapped sample

using the algorithm with lowest misclassification, HC-BIC. Fig 3 shows the BN learned using

HC-BIC and the arc strengths based on the average arc strength in 1000 bootstrapped samples.

Of note is that the BN in Fig 3 is not a causal BN due to the possibility of unobserved variables.

The importance of various variables was analyzed using DWI (Eq 2) based on the estab-

lished BN in Fig 3. The weights in Eq 2 are equal to the product of the strengths of the arcs in

the path [54]. Fig 4 shows the heatmap of BN for the target node SMM (shown in red). The BN

in Fig 4 excludes arcs that were not plausible based on prior knowledge. As shown in Fig 4,

none of the county-level variables have an influence on the probability SMM. Hypertensive

disorder of pregnancy has the highest influence on the likelihood of SMM followed by anemia,

pre-existing hypertension and prior cesarean. Other less influential variables include diabetes

mellitus complicating pregnancy, diabetes mellitus, parity, mother’s race, mother’s age and

obesity complication in pregnancy.

Understanding racial disparities in SMM

In order to understand the racial disparities in SMM, we performed several conditional proba-

bility queries, where the conditions are on the distribution of one or more variables, but the
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Table 3. Arc strengths obtained using different structure learning algorithms.

Arcs HC-BIC HC-AIC TS-BIC TS-AIC GS IAMB Fast-

IAMB

Inter-

IAMB

MMHC hybrid

H2PC

rmax2 arcs

occurrence

Hypertensive disorder of pregnancy!SMM 1 1 1 1 1 1 1 1 1 1 1 11

Parity! Prior_CSec 1 1 1 1 1 1 1 1 1 1 1 11

Mental disorders complicating pregnancy!

Infectious and parasitic conditions

complicating pregnancy

1 1 1 1 0.5 1 1 1 1 1 1 10.5

mother_race!married 1 1 1 1 1 1 0.5 1 1 1 1 10.5

Obesity! Pregnancy-related Obesity 1 1 1 1 0.5 1 1 1 1 1 1 10.5

Anemia!SMM 1 1 1 1 0 1 1 1 1 1 1 10

Other cardiovascular diseases complicating

pregnancy!Chronic heart disease

1 1 1 1 1 1 0 1 1 1 1 10

Preexisting hypertension!Mental health

disorders

1 1 1 1 0 1 1 1 1 1 1 10

Prior cesarean!SMM 1 1 1 1 0 1 1 1 1 1 1 10

Substance use Cannabis!Mental disorders

complicating pregnancy

1 1 1 1 0 1 1 1 1 1 1 10

Substance use Opiates!Substance use Other 1 1 1 1 0.5 1 0.5 1 1 1 1 10

Percent African American!Percent Urban

Population

1 1 1 1 0 1 0.5 1 1 1 1 9.5

Chronic renal disease! Renal disease

complicating pregnancy

1 1 1 1 0.5 0.5 0.5 0.5 1 1 1 9

Infectious and parasitic conditions

complicating pregnancy! Infections of

genitourinary tract in pregnancy

1 1 1 1 0 1 1 1 1 1 0 9

Percent Poverty!Percent Urban Population 1 1 1 1 0 1 0 1 1 1 1 9

Substance Use Opiates!Substance use

Unspecified

1 1 1 1 0 1 0 1 1 1 1 9

Coagulation defects complicating pregnancy

!Hypercoagulable state

1 1 1 1 0.5 0.5 0 0.5 1 1 1 8.5

Hypertensive disorder of pregnancy!

Excessive weight gain in pregnancy

1 1 1 1 0 0.5 0.5 0.5 1 1 1 8.5

Mental health disorders!Mental disorders

complicating pregnancy

1 1 1 1 0.5 0 1 0 1 1 1 8.5

Anemia!Sickle cell 1 1 1 1 0 0.5 0 0.5 1 1 1 8

Diabetes mellitus complicating pregnancy!

Diabetes mellitus

1 1 1 1 0 1 1 1 0 0 1 8

education!payer 1 1 1 1 0 1 0 1 1 1 1 8

Preexisting hypertension! Infections of

genitourinary tract in pregnancy

1 1 0 1 0 1 0 1 1 1 0 8

Infections of genitourinary tract in pregnancy

! Asymptomatic bacteriuria in pregnancy

1 1 1 1 0.5 0 1 0 1 1 0 7.5

Mental health disorders!Chronic respiratory

disease

1 1 1 1 0.5 0 0 0 1 1 1 7.5

Percent African American!Percent Owner

Occupied House

1 1 1 1 0 0 0.5 0 1 1 1 7.5

Percent Owner Occupied House!OBGYN

per 1000

1 1 1 1 0 0 0.5 0 1 1 1 7.5

Percent Urban Population!OBGYN per 1000 1 1 1 1 0 0 0.5 0 1 1 1 7.5

Percent Urban Pop!Percent Owner

Occupied House

1 1 1 1 0 0 0.5 0 1 1 1 7.5

Total Arcs 29 29 28 29 8 20 16.5 20 28 28 26

https://doi.org/10.1371/journal.pone.0259258.t003
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probabilistic relationships in the BN are left intact. This type of BN is not considered a causal

BN, and interpreting BNs in terms of causality is not necessary for extracting meaningful

information learned from the structure [34]. Due to relatively large number of variables in the

BN, we used an approximate method called likelihood weighting that uses Monte Carlo simu-

lations to sample from the global distribution to estimate the marginal posterior distribution

of the event given evidence (i.e., specific values for a node). We used the “cpquery” function in

“bnlearn” to perform the inference required to calculate the conditional probabilities of SMM.

We computed the conditional probability of SMM given that a woman was non-Hispanic

White, non-Hispanic Black, Hispanic, or of another race. Table 4 shows the odds ratio of

SMM across minority groups compared to non-Hispanic White women using BN and a classi-

cal logistic regression approach.

In both models, Black women have elevated odds ratio for SMM compared to White

women. Hispanic and other racial minorities represent slightly higher odds compared to

White women based on the BN model compared to the findings from the logistic regression.

Race was not in the Markov blanket of SMM; however, several important comorbid condi-

tions were in the Markov blanket of the race such as anemia, preexisting hypertension, and

Fig 3. BN learned based on HC-BIC with proportion of occurrence of each arc in the bootstrap replicates.

https://doi.org/10.1371/journal.pone.0259258.g003
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infectious and parasitic conditions complicating pregnancy. Several other variables including

marital status and percent African American population in the county were the children nodes

in the Markov blanket of race. Among the comorbid conditions, we inferenced on the two

conditions that was found in the Markov blanket of SMM (i.e., anemia and hypertensive disor-

der of pregnancy). Anemia and preexisting hypertension (a parent node to hypertensive disor-

der of pregnancy) were also found in the Markov blanket of race. The conditional probability

of anemia and hypertensive disorder of pregnancy for non-Hispanic Black women were 0.14

Fig 4. Heatmap of BN representing nodes influencing SMM.

https://doi.org/10.1371/journal.pone.0259258.g004

Table 4. Comparison of SMM risk using BN approximate inference and logistic regression.

Event Evidence BN Model Logistic Regression

Odds ratio CI Odds ratio CI

SMM Non-Hispanic White 1.00 (Ref) - 1.00 (Ref) -

Non-Hispanic Black 1.15 [1.14 1.17] 1.30 1.13-1.49

Hispanic 1.04 [1.02 1.05] 0.96 0.77-1.18

Other 1.06 [1.05 1.08] 1.14 0.88-1.47

https://doi.org/10.1371/journal.pone.0259258.t004

PLOS ONE Racial disparities in severe maternal morbidity

PLOS ONE | https://doi.org/10.1371/journal.pone.0259258 October 27, 2021 12 / 18

https://doi.org/10.1371/journal.pone.0259258.g004
https://doi.org/10.1371/journal.pone.0259258.t004
https://doi.org/10.1371/journal.pone.0259258


and 0.13, respectively. These probabilities were lower among non-Hispanic White (0.07 and

0.11), Hispanic (0.11 and 0.09), and other races (0.12 and 0.09).

Understanding disparities in prenatal care

Early onset of prenatal care is linked to increased likelihood of healthy pregnancy through

screening and management of risk factors. A few studies have shown an association between

fewer prenatal visits and poor infant outcomes such as low birth weight, preterm birth and

infant mortality [58,59]. However, the relationship between prenatal visits and maternal out-

comes are less established [8]. We found slightly higher odds for SMM among women with

insufficient prenatal care use compared to women with sufficient prenatal care (1.01, 95% CI:

1.00–1.02). We further investigated the disparities in receipt of the prenatal care across race

and ethnicity. The odds of having insufficient prenatal care visits was significantly higher

among non-Hispanic Black women as compared to other races (Table 5).

Discussion

This study used a BN approach to evaluate the association between different clinical, maternal

demographic, and area-level factors on the probability of SMM. While only 2% of the patient

population in our study experienced SMM, BN highlighted important points regarding the

associations among demographics, maternal and birth-related variables, comorbid conditions,

and SMM. Of significance, we found that comorbid conditions were more likely to be associ-

ated with SMM than other maternal and area-level factors. Anemia and hypertensive disorder

of pregnancy were revealed as being associated with SMM by virtue of its membership in the

Markov blanket. The Markov blanket of a node represents all the variables that can give infor-

mation about the variable represented by a node [34]. The Markov blanket of a node consists

of its parents, children, and its children’s parents (co-parents) [34]. As displayed in Fig 4, ane-

mia, and hypertensive disorder of pregnancy are parents to SMM and can be stratified. In par-

ticular these variables block the effects of other variables. If stratified, these variables (anemia

and hypertensive disorder of pregnancy) will break the link between all other variables and

SMM. We additionally evaluated the importance of the nodes in relation to the target node

(SMM) on the basis of network structure using a DWI index, for which hypertensive disorder

of pregnancy, anemia, and preexisting hypertension were the three highest impacting factors.

While race was not in the Markov blanket of SMM, we found that anemia and preexisting

hypertension were in the Markov blanket of race. Higher conditional probabilities for anemia

and hypertensive disorder given race showed that large disparities exist in anemia prevalence

among non-Hispanic Black women compared to non-Hispanic White. This differential has

been explained among older Black adults [60] as well as younger healthy Blacks compared to

Whites [61]. Several other studies explore these racial differences as well as whether correlates

of anemia differ between Black and White individuals [62–65], and we add to this literature by

quantitively capturing these racial differences among birthing women.

Table 5. Disparities in prenatal care use.

Event Evidence Odds Ratio CI

Insufficient prenatal care visit Non-Hispanic White (Ref) 1.00 (Ref)

Non-Hispanic Black 1.23 [1.22 1.24]

Hispanic 1.04 [1.03 1.05]

Other 1.03 [1.02 1.04]

https://doi.org/10.1371/journal.pone.0259258.t005
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This study had some limitations. First, as previously described, the BN approaches used in

this paper were exploratory in nature and do not suggest causality. Second, there are some

characteristics that are absent from the data that may ultimately impact maternal health, such

as income or access to health foods; however, we utilized variables such as WIC participation

and insurance type (i.e., Medicaid vs private) in order to simulate some aspects of socioeco-

nomic status. Finally, this study uses the CDC’s definition of SMM. While this definition is uti-

lized among dozens of studies, we recognize that many important maternal health outcomes

are not included in this definition, including near miss death due to suicide and self-harm,

accidental drug overdose, interpersonal violence or homicide, and psychological trauma

[66,67]. Additional BN analyses should consider whether there are clinical and demographic

variables that drive disparities in other maternal health outcomes and morbidities.

Conclusions

In this study, we used variables from birth certificates linked with medical claims of women

giving birth between April 1st, 2014 through November 19th, 2017. Variables in the study

include maternal and birth-related variables, county-level risk factors and comorbid condi-

tions. SMM was identified using the surveillance algorithm provided by the CDC for the day

of the delivery through 42 days postpartum. Due to severe imbalance class issue (i.e., only 2%

experienced SMM), we first balanced the dataset and then used various structure learning

algorithms (score-based, constraint-based and hybrid algorithms) to choose the best learning

algorithm. The best network structure was chosen based on the structure with the highest

occurrence of an arc between any two nodes that occurred more than 70% of the time in

implementation of each algorithm. We then measured the arc strengths using 1000 boot-

strapped samples and used DWI index to identify the most influential nodes on the target

node. DWI and the Markov blanket of SMM both identified anemia and hypertensive disorder

of pregnancy as the most relevant conditions associated with SMM and with disparities in

SMM. Our findings suggest the potential for improved care and treatment for women with

anemia and hypertensive disorder of pregnancy during the pregnancy and even prior to preg-

nancy to reduce SMM overall and among women of color.
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