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Abstract: Videofluoroscopic swallowing study (VFSS) is a standard diagnostic tool for dysphagia.
To detect the presence of aspiration during a swallow, a manual search is commonly used to mark the
time intervals of the pharyngeal phase on the corresponding VFSS image. In this study, we present a
novel approach that uses 3D convolutional networks to detect the pharyngeal phase in raw VFSS
videos without manual annotations. For efficient collection of training data, we propose a cascade
framework which no longer requires time intervals of the swallowing process nor the manual
marking of anatomical positions for detection. For video classification, we applied the inflated
3D convolutional network (I3D), one of the state-of-the-art network for action classification, as a
baseline architecture. We also present a modified 3D convolutional network architecture that is
derived from the baseline I3D architecture. The classification and detection performance of these
two architectures were evaluated for comparison. The experimental results show that the proposed
model outperformed the baseline I3D model in the condition where both models are trained with
random weights. We conclude that the proposed method greatly reduces the examination time of the
VFSS images with a low miss rate.

Keywords: action detection; action classification; 3D convolutional networks; pharyngeal phase;
videofluoroscopic swallowing study

1. Introduction

Dysphagia is a common clinical symptom that occurs between the mouth and the stomach where
the patient suffers swallowing difficulty [1]. The prevalence of dysphagia is 30–50% in the elderly
(≥65 years old), 40–80% in patients with stroke, 80% in patients with Alzheimer disease, 60% in
patients with Parkinson disease, and 50% in patients with head and neck cancers [1–3]. Dysphagia is
known to cause severe complications including malnutrition, dehydration, and aspiration pneumonia;
these complications can lead to morbidity and mortality [2,3]. Aspiration pneumonia occurs in 43–50%
of people during their first year of residency at a nursing home, with a mortality rate of up to 45%
among residents with dysphagia [1,4].
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The swallowing process is subdivided into three phases, the oral phase, the pharyngeal phase,
and the esophageal phase, as shown in Figure 1. Swallowing is a rapid and complex function involving
the coordinated contraction or inhibition of musculature in the mouth, tongue, larynx, pharynx,
and esophagus [5,6]. In the oral phase, food is chewed and mixed with the saliva to form a bolus.
The tongue pushes the bolus from anterior to posterior of the oral cavity via squeezing motion.
Then, in the pharyngeal phase, the bolus is propelled from the oral cavity to the pharynx as the soft
palate elevates and presses against the posterior wall of the pharynx. At this point, the hyoid bone
and the larynx elevate and the epiglottis folds downward to protect the airway. This critical step
makes the pharyngeal phase a crucial stage of swallowing as it prevents the transport of the bolus
to the airway system. After the airway is protected, the tail of the bolus exits though opening of the
upper esophageal sphincter. Finally, in the esophageal phase, the bolus passes down the esophagus to
the stomach.

Figure 1. (a) Structural anatomy and normal physiologic swallowing of a thick liquid bolus in (b) the
oral phase; (c) the pharyngeal phase; and (d) the esophageal phase.

The videofluoroscopic swallowing study (VFSS) is the gold standard examination method to
evaluate dysphagia [7]. When VFSS is administered, subjects are asked to swallow solid and liquid
food mixed with radiopaque materials. Then through fluoroscopy, video data of the swallowing
motion is obtained. Clinicians repeatedly examine the recorded video to assess any structural and
functional abnormalities associated with swallowing and to confirm presence of airway protection
during the swallowing process.

Although VFSS is the standard diagnostic tool of dysphagia, the evaluation of VFSS is a subjective
interpretation based on visual inspection. In fact, a previous study reported that frame-by-frame
analysis lacked intra-judge reliability for the assessment of biomechanical aspects of the pharyngeal
phase [8]. Furthermore, clinicians could predict the risk of aspiration pneumonia during an inspection
of abnormality in the pharyngeal phase in VFSS images [9]. However, the pharyngeal phase is a rapid
sequence lasting one second or less in a normal swallowing process, and clinicians waste a lot of time
selecting the time intervals of the pharyngeal phase [10,11].

To objectively assess VFSS image data, researchers have attempted to develop software tools
for the clinicians who analyze VFSS [12–14]. To apply these tools, clinicians are required to provide
specific time intervals of the pharyngeal phase and to annotate the region-of-interest (ROI) defined in a
frame-by-frame analysis [10]. In this study, we aim to improve the labor-intensive procedures involved
in analyzing VFSS images. We propose a novel system that automatically detects the pharyngeal phase
of a swallowing process in raw VFSS video clips.

Our contribution in this paper is threefold. First, we propose a cascade framework that efficiently
collects video clips of the pharyngeal phase for training the 3D convolutional networks. This framework
no longer requires users to provide manual labels of the time intervals nor anatomical positions in the
swallowing video. Second, we introduce an adaptation of Inflated Inception-V1 network architecture
to improve classification and detection performance in cases in which pre-trained weights are not
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provided. Third, we propose a detection algorithm that integrates classification results from the trained
3D convolutional network, and provide evaluation of both classification and detection performances.

2. Related Work

To make an accurate biomechanical analysis of the swallowing process via VFSS images, some
research groups have extracted the trajectory of the hyoid bone during the swallowing process. The first
study proposed a biomechanical analysis of oral and pharyngeal structures during swallowing using
VFSS images with the following steps: (1) digitizing each frame in a recorded video; (2) identifying
a reference position; (3) drawing the anatomical points of interest in each image; (4) calculating the
relative positions of the target against a reference position; and (5) plotting the movement of the target
point through time [15,16]. However, manual tracking of an anatomical position is expensive in terms
of time and human expertise.

Kellen et al. [12] designed a software program which could provide a 2D moving trajectory
of the hyoid bone or larynx during swallowing in recorded images. A user defines an ROI that
approximately overlays the hyoid bone which is known as the template. The template is tracked
frame-to-frame throughout the image sequence. Similarly, Molfenter et al. [17] tried to analyze
quantitative physiological variables related to the swallowing process using an image processing tool
that is available for free. However, in clinical practice, these semi-automatic methods are still too costly
and fully automatic algorithms are preferred.

Aung et al. [13] introduced a computer aided diagnosis system with minimal user input
that can automatically determine anatomical positions based on several landmarks of the cervical
spine vertebrae using the active shape model. After initializing the landmarks by user interaction,
the registration process is applied to update the coordinates of the landmarks in each frame in order to
compensate for the subject’s movement during the swallowing process. When the bolus passes by
the landmarks such as hyoid bone [13] and epiglottis [11], a spatio-temporal plot can be generated.
However, these methods are needed to demarcate the anatomical boundaries with user input.

Leonard [14] quantified pharyngeal residue on VFSS using the software platform Swallowtail
(Belldev Medical, LLC, Arlington Heights, IL, USA). The algorithms used in Swallowtail are based on
watershed segmentation that uses contours in the image intensity gradient to help define regions of
related pixels. While successfully extracting mechanical measures for VFSS [18], this software platform
is not able to autonomously extract the time intervals of interest.

Other studies applied a combination of VFSS with non-invasive sensors such as a
microphone [19,20], the combination of a electromyography (EMG) with inertial measurement units
(IMU) [21,22], and a piezoelectric sensor [23] to detect swallowing. Golabbakhsh et al. [19] reported that
a non-invasive acoustic recording technique from a microphone located over the laryngopharynx could
detect spontaneous swallowing. When compared to VFSS, the accuracy of this technique at detecting
swallowing was 82%. Dudik et al. [20] proposed the use of cervical auscultation from a microphone
to serve as a classification of swallowing using a multi-layer deep belief network. Imtiaz et al. [21]
presented a wearable sensor system that was combined with both EMG and IMU for monitoring
the movement of the head and neck axes during swallowing. Kalantarian et al. [23] introduced a
wearable necklace which included an embedded piezoelectric sensor. To monitor eating habits for
weight loss, this sensor can capture motion in the throat and transmit digital signals to a mobile
application. These studies used machine-learning techniques to analyze digital signals from various
sensors; however, these were not focused on the analysis of the physiologic swallowing process but on
the detection of swallowing activities.

Recently, with the rapid progression of deep learning research on medical imaging, several deep
learning based VFSS analysis methods have been suggested. Zhang et al. [10] developed a tracking
system for hyoid bone detection using the single shot multibox detector, a state-of-the-art deep learning
method for object detection. This method particularly focused on spatial region detection on a single
image rather than on video data which consists of a sequence of images. Inspired by the recent success



Sensors 2019, 19, 3873 4 of 14

of 3D convolutional networks on action classification and action detection [24,25], researchers began to
adopt these techniques to solve various problems such as understanding hyperspectral imagery [26,27],
inferring the interaction forces between two objects from video [28], and VFSS analysis [29].

In a previous study [29], a system was able to classify whether a short VFSS video clip was
in the pharyngeal phase or not. They used Inflated Inception-V1 from [25] as a pre-trained action
classification architecture; however, this architecture was developed for classifying general human
actions [30]. In this paper, we extend the framework for pharyngeal phase detection in raw VFSS
video clips without the need for any manual annotations by modifying a general video classification
architecture to capture rapid and small motions in the pharyngeal phase. We experiment with short
clips in the order of thousands for classification and long clips in the order of hundreds for detection
to show the robustness of the current framework. The comparison of the results of the current system
with those of the previous version of our system are presented in the results section.

3. Dataset and Methods

We propose a three-stage framework to detect multiple occurrences of the pharyngeal phase in a
long sequence of VFSS video. Figure 2 shows an overview of our framework, consisting of training
clip generation, the video classification network using 3D convolutional layers, and the detection
in raw video. In the first stage, we search all sequences of video frames to find short clips showing
significant motion in the vertical direction. Because the food bolus flow during the pharyngeal phase
is mostly visible in the motion map, the first stage is able to generate pharyngeal phase candidates
with a small ratio of false negatives. As a result, we can efficiently collect most occurrences of the
pharyngeal phase (92.0%). However, this stage suffers from a high quantity of false positives (50.1%)
due to subjects’ other actions, such as coughing and movements involved in preparation to swallow,
being mistaken for the pharyngeal phase. Therefore, in the second stage, we train 3D convolutional
networks to classify such short clips, labelling whether each clip is in the pharyngeal phase or not.
The I3D network [25] as baseline and its modified models are trained to compare the performance of
different network architectures. In the third stage, we integrate the classification results on segmented
clips using a sliding window technique to detect the pharyngeal phase in temporally untrimmed
VFSS videos.

Figure 2. An overview of our framework.
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3.1. Dataset

The VFSS dataset was collected from 144 subjects who complained of subjective difficulties whilst
swallowing and visited the inpatient and outpatient clinic of the Department of Rehabilitation Medicine
at Kyungpook National University Chilgok Hospital from March to December in 2017. Subjects were 20
to 87 years old (mean age 63.2 ± 16.3 years) and included 100 males and 44 females. Subjects suffered
from various medical conditions such as stroke and dementia (N = 52, 36.1%), elderly (N = 36, 25.0%),
neuromuscular disease (N = 31, 21.5%), and cancer (N = 25, 17.4%). This retrospective study was
approved by the Institutional Review Board at the Kyungpook National University Chilgok Hospital
(IRB No. KNUCH 2018-05-006).

The recorded VFSS dataset was created by a clinician who performed the VFSS procedure
according to the standard manual guidelines [7]. During the VFSS procedure, each subject,
seated upright laterally in front of a fluoroscopy, swallowed one of the following eight substances
which were mixed with diluted radio-opaque barium: 3, 6, and 9 mL of thin liquid (milk), thick liquid
(fruit pudding), semi-solid (boiled rice), and solid (rice). Some subjects did not completely swallow
all substances as they indicated severe aspiration or severe delayed swallowing reflex during the
VFSS procedures. The camera recorded a lateral view of head and neck areas during the whole
VFSS procedure.

The characteristics of the dataset are shown in Figure 3. The length of the raw video clips varied
significantly from eight seconds to five minutes with a median value of 24 s. The frame rate of the
videos that we collected is 30 frames per second (FPS), and we sampled frames at 15 FPS for all
processing. The VFSS procedure using the thin liquid substance required the least time, and the VFSS
procedure using the solid substance required the most time. In addition, the procedures involving the
larger amounts of the substances took longer. The number of occurrences of the pharyngeal phase was
fairly uniform. All of the collected 1085 long video sequences contain at least one swallowing event
including the pharyngeal phase, with a variety of types of substances.
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Figure 3. The box-plots of the video length of the raw videofluoroscopic swallowing study (VFSS)
videos, the number of occurrences, and the video length of the pharyngeal phases in each raw VFSS
video (from left to right). On the horizontal axes, n, k, ss, and s indicate thin liquid, thick liquid,
semi-sold, and solid, respectively. The labels 3, 6, 9 indicate the amount of substance used in the
experiment in milliliters.

3.2. Efficient Training Data Collection by Generating Pharyngeal Phase Candidates Using Optical Flow

In order to train the video classification network, we first needed to collect training video data.
Because of a memory issue related to 3D convolutional networks, it is not feasible to process a raw
video of a large number of frames. Because the pharyngeal phase is usually very short (about one
second), we decided to collect 20 frame short clips. As the pharyngeal phase is only a small part in
a raw VFSS video, it is inefficient to randomly collect from a raw video. Therefore, we propose an
algorithm for pharyngeal phase candidate generation to efficiently collect pharyngeal phase candidates
using optical flow.
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Algorithm 1 shows the pseudo-code of the candidate generation algorithm. First, we applied a
TV-L1 optical flow algorithm [31,32] on gray-scale images. The optical flow values were truncated to
the range −10 to 10, and divided by 10. If the maximum of the absolute values in the Y component in
the center region of the frame was larger than the threshold ( fth = 0.4 is applied in this paper), a vote
was given on the frame and its eight nearest frames. After the voting process, the vote list was sorted
in descending order. We scanned the vote list for all times t until collecting five candidates satisfying
two conditions: the number of the vote at frame t is greater than the threshold (vth = 2.5 is applied in
this paper), and the frame t is not included in other candidates.

Algorithm 1: Pharyngeal phase candidate generation
Input: y-directional optical flow map (Flowy) from images (I(t)t∈(1,T)) in a video
Output: key-frame of pharyngeal phase candidates
for t← 1 to T do

if max
(x,y)

Flowy(x, y, t) > fth then

for t′ ← t− 4 to t + 4 do
vote(t′)← vote(t′) + 1

end
end
mark(t)← False

end
voteindex, votevalue = sort(vote, descend)
Candidates← {}
for t← voteindex(t) to voteindex(T) do

if mark(t) = False and votevalue(t) > vth then
Candidates← Candidates + {t}
for t′ ← t− 10 to t + 10 do

mark(t′)← True
end

end
if len(Candidates) ≥ 5 then

break
end

end
return Candidates

After the selection process, 3354 short clips of pharyngeal phase candidates were generated
from 1085 long video sequences. Each video sequence had at least one pharyngeal phase occurrence.
However, no candidates for pharyngeal phase intervals were generated in 88 out of 1085 video
sequences. A total of 3354 short clips were labeled as being the pharyngeal phase (1674 samples) and
others (1680 samples). As shown in Figure 4, RGB and optical flow visualization of the pharyngeal
phase candidates shows the complexity of the optical flow analysis of subjects’ movements. The data
for the video classification was divided into two sets, 2696 for training and 658 for validation.
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Figure 4. RGB (top) and optical flow (bottom) visualization of (a) positive sample—pharyngeal phase;
and (b) negative sample—other action (e.g., head motions due to coughing).

3.3. Training 3D Convolutional Networks Using Rgb/Optical Flow/Joint

Our baseline network was the Inflated Inception-V1 from the I3D networks [25]. The input video
clip contains 20 frames, each frame being resized to 224 × 224. The number of channels was three
for the RGB input stream and two for the optical flow input stream. While Lee and Park [29] trained
their network with step learning rate decay, we used cosine learning rate decay with warm-start [33]
to stabilize training. The initial learning rate was 0.1 and mini-batch size was 6. The models with
and without pre-trained weights on the Kinetics dataset [30] were trained to compare the effect
of pre-training.

While the Inflated Inception-V1 architecture achieved a state-of-the-art performance in action
classifications such as UCF-101 [34], HMDB-51 [35], and Kinetics [30], we modified the architecture
to improve the performance in classification on the VFSS videos as shown in Table 1. The proposed
architecture is inspired by ResNet50 [36], which used 3, 4, 6, 3 residual blocks to build 50 layers. Instead
of residual blocks, we used the inception module that is the concatenation of [1× 1× 1 conv], [1× 1× 1
conv, 3× 3× 3 conv], [1× 1× 1 conv, 3× 3× 3 conv], and [3× 3× 3 maxpool, 1× 1× 1 conv].

Table 1. The Inflated Inception-V1 architectures and proposed architecture.

Layer Name Inflated Inception-V1 Proposed

conv1 [7× 7× 7] stride: 2, 2, 2 [7× 7× 7] stride: 2, 2, 2
maxpool1 [1× 3× 3] stride: 1, 2, 2 [1× 3× 3] stride: 1, 2, 2

conv2 [1× 1× 1], [3× 3× 3] [Inception Module] ×3
maxpool2 [1× 3× 3] stride: 1, 2, 2 [1× 3× 3] stride: 1, 2, 2

conv3 [Inception Module] ×2 [Inception Module] ×4
maxpool3 [3× 3× 3] stride: 2, 2, 2 [3× 3× 3] stride: 2, 2, 2

conv4 [Inception Module] ×5 [Inception Module] ×6
maxpool4 [3× 3× 3] stride: 2, 2, 2 [3× 3× 3] stride: 2, 2, 2

conv5 [Inception Module] ×2 [Inception Module] ×3
avgpool [2× 7× 7] stride: 2, 2, 2 [2× 7× 7] stride: 1, 1, 1

# of parameters 1.228 M 1.422 M

Unlike human behavior, the bolus flow in the VFSS videos is a small part of the entire image and
is fast in motion. For this reason, we added more inception modules at the early stage of the video
classification to watch such small changes more closely. As a result, the number of parameters
and the training time of the proposed architecture increased by 15.8% and 19.0%, respectively.
However, the classification and detection performance significantly improved, as shown in Section 4.2.
The training performances of the pre-trained model and the model with random weights were saturated
near 8 K and 20 K iterations, respectively.
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3.4. Detection Algorithm for Raw Video Sequences Using Trained 3D Convolutional Networks

To detect the pharyngeal phase in the raw VFSS video sequences, we integrated the classification
results from 3D convolutional networks in consecutive frames using a sliding window technique.
The window and stride sizes were set to 20 and 5 frames, respectively. This setup allowed for a dense
search of the pharyngeal phase with the moderate inference time of 3D convolutional classifiers. For all
215 test video clips (1 h 50 min duration), the inference time for the sliding window technique was
only 21 min.

The details of the proposed detection algorithm are presented in Algorithm 2. Firstly, a smoothing
filter is applied on the classification results to reduce noise and mis-classification. Then, all frames are
scanned, a frame being marked if the score of the frame is higher than the threshold, scoreth, as long
as that frame has not yet been marked. When the score of one of the following frames is no longer
higher than the threshold, scoreth, and the number of the frame is larger than the threshold, f rameth,
the start frame index, end frame index, and confidence score are calculated. Finally, the detection
results are saved and searching continues until the end of a video. There are three hyper-parameters
in Algorithm 2, [scoreth, f rameth, λ], and we found that [scoreth = 0.5, f rameth = 5, λ = 0.001]
functioned properly.

Algorithm 2: Sliding window technique-based pharyngeal phase detection
Input: video classification score at frame [i, j], s[i,j]
Output: detection results with frame index of start and end, and confidence score, Detections
Detections← {}
for all s[i,j] in [0, T] do

for t← i to j do
Count(t)← Count(t) + 1, Score(t)← Score(t) + s[i,j]

end
end
Start← f alse
for t← 1 to T do

Score(t)← Score(t)/Count(t)
if Score(t) > scoreth then

if Start = f alse then
Start← true, FrameLength← 1

else
FrameLength← FrameLength + 1

end
else

if Start = true and FrameLength > f rameth then
Con f idence← meank(Score(k)) + λ · FrameLength, k ∈ [t− FrameLength, t]

FrameStart← t− FrameLength, FrameEnd← t
Start← f alse, Detections← Detections + {(FrameStart, FrameEnd, Con f idence)}

end
end

end
return Detections
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4. Experiments and Results

4.1. Evaluation Metrics and Ground Truth Generation

In order to evaluate the performance of the pharyngeal phase detection methods, we measured the
detection F1-score and the detection time error. The performance measurement in terms of detection
with the factors of time and space is more complex than that of object detection in an image. For object
detection in an image, intersection over union (IOU) is measured to evaluate the overlap between
two bounding boxes (one is from predicted detections and the other is from ground-truth detections).
For phase detection in a video, IOU is similarly measured by evaluating the frame overlap between two
time-predicates. True-positive (TP) is considered as a correct detection when the IOU of a predicted
detection and the true detection are larger than the threshold (set to 0.3 in this experiment). The IOU
of two time-predicates can be calculated by the number of overlapping frames between two predicates
divided by the number of union frames between them.

Each predicted detection will only be a TP for one true detection with the lowest detection time
error. Each true detection will only be a TP for one predicted detection with the highest confidence
and IOU larger than the threshold. The predicated detection will be ignored if there are true detections
with IOU > threshold but all the true detections are considered as TPs by other predicted detections
with higher confidence. A false-positive (FP) is a predicted detection if there is no true detection with
IOU > threshold. Finally, a false-negative (FN) is a true detection that was not predicted.

Precision is the proportion of TPs out of all predicted detections, and recall is the proportion
of TPs out of all true detections as in Equations (1) and (2). The F1-score is the harmonic mean of
the precision and recall, as shown in Equation (3). Finally, the detection time error is calculated as
the average of the absolute time error of the start, middle, and end position of the detected phase
occurrences from the ground truth.

precision =
TP

TP + FP
=

TP
predicted detections

(1)

recall =
TP

TP + FN
=

TP
true detections

(2)

F1 =
2 · precision · recall
precision + recall

(3)

A sample evaluation process is shown in Figure 5. There are three occurrences of the pharyngeal
phase in the ground truth, and our algorithm predicted three occurrences with confidence score.
In the evaluation process, the detection with the highest confidence score searches the ground truth
time predicate which has not yet been chosen by another detection and has the highest IOU value
(>threshold). Any ground truth which is not predicted by the algorithm is counted as an FN, and a
predicted detection which could not find an unmatched ground truth is counted as an FP. For all TPs,
we measured errors at the start, middle, and end of the time predicates.

Figure 5. An evaluation of the sample detection results.
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Two expert clinicians validated in the pharyngeal phase were employed; they annotated the class
of the short VFSS clips (for classification) and the start and end frames of all the occurrences of the
pharyngeal phase in the raw VFSS clips (for detection) without any prior knowledge. The beginning
of the pharyngeal phase is defined as the point when the head of bolus is propelled to the pharynx,
when the soft palate elevates and presses against the posterior wall of the pharynx [6,37]. The end of
the pharyngeal phase is defined as the point when the tail of bolus exits through the opening of upper
esophageal sphincter [6,37]. For classification, the ground truth label (pharyngeal phase or not) was
finally determined by the employed clinicians reviewing their results and coming to an agreement
if the annotation mismatched. For detection, the ground truth label (start frame and end frame) was
simply determined by averaging the two results.

4.2. Results

We evaluated the performance of the baseline I3D network with pre-trained weights, baseline I3D
network without pre-trained weights and the proposed network without pre-trained weights.
In addition, we also compared the performance of the networks that use RGB against networks
that use optical flow stream, as shown in Table 2. First, the training time with the minimum training
error was measured. The networks using RGB required 50–100% more training time than the networks
that use optical flow. Furthermore, the pre-trained models required about 40% of the training time of
the models with random weights.

Table 2. Accuracy rates of inflated inception-V1 with/without pre-trained weights and the proposed
architecture using RGB and optical flow. The proposed architecture using the RGB stream (in bold)
showed the best performance among all the networks using random weights, and the pre-trained
model with the RGB stream (in italics) showed the best performance among all the tested models.

Method Training Time Classification Accuracy Detection F-1 Score Detection Time Error

Inception-V1/RGB/random 5.8 h 95.05% 63.05% 2.40 s
Inception-V1/Flow/random 3.1 h 92.21% 45.73% 3.82 s
Proposed/RGB/random 6.9 h 95.98% 73.21% 2.01 s
Proposed/Flow/random 3.5 h 93.19% 49.51% 3.43 s
Inception-V1/RGB/pre-trained 2.1 h 96.74% 84.25% 1.42 s
Inception-V1/Flow/pre-trained 1.3 h 96.20% 80.25% 1.99 s

Although the training time for the optical flow network was shorter than the training time of the
RGB network, the classification accuracy was higher in the RGB network than that of the optical flow
network. While optical flow is very informative and effective at providing distinctive directions, it can
also be inherently noisy due to it capturing subjects’ movement as well as external noise factors in the
video recording process. Considering the computational cost of calculating optical flow, RGB stream
would be the favorable choice for both accuracy and speed. As shown in Table 2, the detection error is
typically much higher than the classification error. We also report that the detection error becomes
significantly larger with a small increase in the error in classification.

The proposed architecture that uses RGB stream (bold in Table 2) showed the best performance
among the networks that use random initial weights. This model performed with 73.21% in detection
F-1 score, with 71.69% in precision and 74.80% in recall. The detection time error of the proposed
model using RGB was 2.01 s, which is shorter than the error of the baseline networks. In addition,
the proposed model outperformed the baseline model in both cases using RGB and optical flow.

The pre-trained model that used RGB stream (italics in Table 2) showed the best performance
among all the tested models. Training from pre-trained weights rather than from random
weights was advantageous for training time, accuracy in classification and accuracy in detection.
However, because training models with large datasets such as the Kinetics dataset [30] require a high
computational cost, the proposed model is most advantageous when resources are limited and only
moderate performance is required.
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Figure 6 shows an example of the detection results by our system on raw VFSS videos. The frame
number is shown in the left bottom corner of each image. A selection of sample frames are presented
as the number of total frames is over 4000. The red boxes on the images are determined by the
detection confidence score. In the presented four-minute video, our system found two occurrences of
the pharyngeal phase. The two occurrences last for a total of three seconds, and both of them were
correctly detected within a 0.27 s time error.

Figure 6. Detection results on a raw VFSS video. The detected occurrences of the pharyngeal phase
are indicated by the red colored right angle bracket. From a total of 4103 frames, 160 frames are
selectively displayed.

5. Discussion

We propose a novel framework that consists of three stages: (1) generation of pharyngeal phase
candidates using optical flow; (2) training of the candidates using a 3D convolutional network;
and (3) application of a sliding window technique to detect the pharyngeal phase during a swallow
in VFSS images. This study aims to present a system that identifies the pharyngeal phase in VFSS
video clips without the need for spatial or temporal annotations. This model was validated on a large
clinical dataset.

Our framework with the proposed architecture predicted 466 true positive occurrences of the
pharyngeal phase with 157 false negatives and 184 false positives from 215 raw VFSS videos. With the
use of our proposed framework, the total video length for the VFSS analysis significantly reduced
from 110 min to 10 min. To compensate for the time error in detection task, we extended the time
window of the detected time window by 10 frames from both the start and end of the time predicates.
Because detection time error results in this extended time cost for the VFSS analysis, our focus for the
future work will be on the reduction of the detection time error. In 18 out of the 215 videos, the system
missed all the occurrences of the pharyngeal phase in the raw videos. The miss rate was as low as
8.4%, however, this result increased the analysis time for the VFSS by eight minutes.

An aspiration event is defined as the instance where material passes below the vocal cord and
enters the airway during the pharyngeal phase. Because the automatic aspiration detection is beyond
the scope of this paper, we compared the performance of aspiration detection by expert clinicians with
the pharyngeal phase detection results of our framework and ground truth. The number of detected
aspiration events from 215 raw videos was 23 by expert clinicians and 20 by the proposed algorithm.

The pharyngeal phase is a rapid and complex motion. As food bolus movement from the oral
cavity to the esophagus triggers the swallowing reflex or swallowing response, the coordinated
physiological events occur in rapid overlapping sequence [5]. To prevent the food bolus from entering
the airway, a coordinated movement of laryngeal elevation by suprahyoid muscles and closure of the
larynx by epiglottic inversion occur in the pharyngeal phase [5]. Our framework automatically trained
these complex swallowing movements without spatial annotations such as anatomical structures in
the VFSS images.
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Automatic detection of the pharyngeal phase could be useful for clinical examination of VFSS
images. The pharyngeal phase is a critical stage of the swallowing process as abnormality in it
can cause serious medical complications such as aspiration pneumonia or asphyxia [5]. To assess
the pharyngeal phase in VFSS images, clinicians manually search for the pharyngeal phase in the
VFSS images through visual inspection. Previously developed software applications and computer
assisted analysis programs of VFSS images require manual annotations to select the time intervals
of interest during the swallowing process [10–13,15,16,29]. These preparations related to the specific
time intervals are costly. In contrast, our novel framework provides clinicians with clips of interest,
specifically, the pharyngeal phase, taken from a complete VFSS image without the need for temporal
annotations. Our framework is expected to reduce time expenses for VFSS analysis for clinicians who
need to search for the presence of aspiration in the pharyngeal phase.

There are some limitations to this study. First, we did not detect the oral and esophageal phases in
the swallowing process. Further studies are needed to modify our framework to detect the oral
and esophageal phases in VFSS images. Second, our method does not capture pre-swallow or
post-swallow aspiration, as the pharyngeal phase is the only phase of interest in this framework.
Further investigations are needed to more effectively identify the presence of aspiration during the
swallowing process.

6. Conclusions

This study presents a novel framework which can detect the pharyngeal phase during the complex
process of swallowing without any manual adjustments. This framework could play a crucial role in
terms of developing fully automatic applications for the analysis of VFSS images.
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