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More than 1.5 million fungal species are estimated to live in vastly different environmental
niches. Despite each unique host environment, fungal cells sense certain fundamentally
conserved elements, such as nutrients, pheromones and stress, for adaptation to their
niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile
host environment and cause disease. Hence, dissecting the complex extracellular
signal-sensing mechanisms that aid in this is pivotal and may facilitate the development
of new therapeutic approaches to control fungal infections. In this review, we summarize
the current knowledge on how two important pathogenic yeasts, Candida albicans and
Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino
acids, and ammonium, and different stress signals to regulate their morphogenesis
and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces
cerevisiae. The molecular interactions between extracellular signals and their respective
sensory systems are described in detail. The potential implication of analyzing nutrient
and stress-sensing systems in antifungal drug development is also discussed.

Keywords: yeast, nutrient sensing, transceptor, G protein-coupled receptor, Mep2, fungal pathogen, stress
response, Tor

CARBON SENSING IN FUNGAL PATHOGENESIS

Fungal pathogens prefer certain carbon sources for rapid uptake and metabolism to provide energy
for growth and host colonization. The main carbon sources available in a host during fungal
infection are glucose, lactate, and acetate (Ries et al., 2018). In addition, inositol can also be utilized
as a carbon source by some fungi, including Cryptococcus neoformans. Multiple carbon sources and
fungal sensory systems have been reported in pathogenic yeasts (Figure 1).

Sugar Transporter Homologs Functioning as Sugar Sensors:
Transceptors
Glucose is a preferred carbon and major energy source for most cells. The glucose sensing and
signaling networks have been well-characterized in Saccharomyces cerevisiae (Kim and Johnston,
2006; Santangelo, 2006). In S. cerevisiae, two glucose transceptors, Snf3 and Rgt2, sense extracellular
glucose levels and regulate the expression of the hexose transporter gene family, which comprises
more than 20 genes. Snf3 is a high-affinity glucose sensor and is activated by low glucose levels,
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while Rgt2 is a low-affinity glucose sensor that is activated by
high glucose levels. Both Snf3 and Rgt2 have long C-terminal
cytoplasmic tails that interact with casein kinase I (Yck1 and
Yck2) and with two transcription regulator proteins (Mth1
and Std1). Although Snf3 and Rgt2 do not transport glucose
themselves (Ozcan et al., 1998), it is speculated that glucose
binding leads to their conformational changes that activate
casein kinase I. In the absence of glucose, Mth1 and Std1
serve as corepressors with the master transcription repressor
Rgt1. These three proteins form a complex that binds to the
promoter of hexose transporters to repress their expression
(Moriya and Johnston, 2004). When glucose is available, Mth1
and Std1 are phosphorylated by casein kinase I and ubiquitinated
by the SCF (Skp1-Cullin-F-box protein) E3 ubiquitin ligase
Grr1, which leads to their degradation by the 26S proteasome.
Depletion of the corepressors dissociates Rgt1 and relieves
repression of hexose transporter gene transcription (reviewed
in Santangelo, 2006). Hexose transporter genes are the primary
regulatory targets of this glucose sensing mechanism in yeast,
and this regulation optimizes the expression levels of high- and
low-affinity hexose transporters.

The long cytoplasmic tail of Snf3 and Rgt2 plays an important
role in glucose sensing by bringing Mth1 and Std1 to Yck1 in the
membrane. These cytoplasmic tails can be fused to other sugar
transporters and overexpression of these chimeric proteins can
derepress expression of hexose transporter genes (Ozcan et al.,
1998). Furthermore, overexpression of a membrane-targeted
form of the cytoplasmic tail alone leads to constitutive activation
of the glucose sensing pathway (Dlugai et al., 2001). However,
the tails do not seem to be essential for glucose signaling,
because overexpression of an Rgt2 allele lacking the tail also
activates hexose transporter (Hxt1) expression (Moriya and
Johnston, 2004). It is possible that Rgt2 may stimulate Yck1
through an interaction independent of Yck1 binding to the
cytoplasmic tail of Rgt2.

Among over 20 hexose transporter homologs in Candida
albicans (Fan et al., 2002), Hgt4 has been identified as a
high-affinity glucose transceptor (Brown et al., 2006). Hgt4
shares sequence and structure similarity with other hexose
transporters, with the exception of a long C-terminal tail
containing 254 amino acids (aa), similar to Snf3 and Rgt2
in S. cerevisiae. Hgt4 is required for glucose induction of
other hexose transporter genes, including HGT12, HXT10,
and HGT7. Mutagenesis demonstrated that Hgt4 is required
for fungal growth on fermentable sugars, such as fructose,
mannose, and glucose. Hgt4 is also required for the yeast-
to-hyphal morphological switch as well as fungal virulence,
demonstrating that C. albicans cells need to sense and regulate
sugar levels for filamentous growth during infection. The
Hgt4-mediated regulatory mechanism of glucose repression in
C. albicans is conserved with its counterpart in S. cerevisiae,
and involves the casein kinase Yck2, corepressor Std1, and Rgt1
(Kim and Johnston, 2006; Sabina and Brown, 2009).

Despite the importance of glucose sensing and utilization
in fungal development and virulence, glucose sensing is
less well-understood in C. neoformans. There are about 50
transporters that share high sequence similarity with known

hexose transporters (Liu et al., 2013b). Although some of them
may transport sugars other than glucose, it remains elusive how
this large family of hexose transporters is regulated. Among
these hexose transporter homologs, Hxs1 and Hxs2 share the
highest sequence identity with S. cerevisiae Rgt2 and Snf3
glucose transceptors, but neither of them have a long C-terminal
tail (Liu et al., 2013b). The expression of Hxs1 is negatively
regulated by glucose levels, and mutagenesis analysis showed
that Hxs1 is required for efficient glucose uptake and fungal
growth under low glucose conditions. Hxs1 is also required for
fungal virulence in a murine model of systemic cryptococcosis.
However, Hxs1 only modestly regulates the expression of other
hexose transporters and it still has glucose uptake activity (Liu
et al., 2013b). It is possible that Hxs1 has dual functions as both
a glucose sensor and glucose transporter. On the other hand, the
function of Hxs2 remains undefined. The downstream regulatory
mechanism of glucose repression has not been characterized
in detail in C. neoformans, but the function of the two casein
kinase I, Cck1 and Cck2, has been studied. While the function
of Cck2 is unknown, Cck1 is required for cell integrity and stress
response by regulating the phosphorylation of Mpk1 and Hog1
mitogen-activated protein kinases (MAPKs) and also essential for
fungal virulence (Wang et al., 2011b).

GPCRs in Glucose Sensing
The role of GPCRs in glucose sensing has been well-characterized
in S. cerevisiae. The GPCR receptor Gpr1 encodes a protein
containing over 800 aa with a large third cytoplasmic loop and a
long C-terminal tail. Gpr1 and its homologs in other fungi share
limited sequence homology with the other defined GPCR classes
(Attwood and Findlay, 1994; Kolakowski, 1994), and are grouped
as a novel evolutionarily distinct GPCR class. Gpr1 senses glucose
to activate the G-protein α subunit Gpa2 and regulates yeast
cell size and pseudohyphal growth. The binding of glucose with
Gpr1 leads to a conformational change that activates Gpa2, which
in turn activates adenylyl cyclase to convert ATP into cAMP
(Xue et al., 1998; Kraakman et al., 1999; Lorenz et al., 2000b;
Rolland et al., 2002; Lemaire et al., 2004). cAMP then binds to
the regulatory subunit (Bcy1) of protein kinase A (PKA) and
thereby releases the catalytic subunits (Tpk1, 2, 3) of PKA to
phosphorylate downstream target proteins. Interestingly, Gpr1
also senses sucrose to activate the Gpa2-cAMP pathway, and the
affinity of Gpr1 for sucrose is much higher than for glucose. The
half-maximal effective concentration (EC50) for sucrose is around
0.5 mM, compared to approximately 20 to 30 mM for glucose
to activate the Gpa2-cAMP pathway. Meanwhile, mannose acts
as an antagonist for glucose and sucrose in Gpr1 activation
(Versele et al., 2001; Lemaire et al., 2004).

The Gpr1 protein sequence is conserved in C. albicans.
Similar to S. cerevisiae, the C. albicans Gpr1 receptor binds to
Gpa2 to activate G protein signaling, which in turn activates
the cAMP-PKA signaling pathway (Miwa et al., 2004; Maidan
et al., 2005a). Gpr1 is important for filamentous growth on
solid media, but not in lipid medium (Miwa et al., 2004).
However, the role of C. albicans Gpr1 in glucose sensing remains
unclear. Some studies showed that Gpr1 and Gpa2 do not
have a role in glucose-induced cAMP signaling and may not
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FIGURE 1 | Yeast nutrient receptors that sense external nutrient availability. Nutrient sensing transceptors and G-protein coupled receptors in Saccharomyces
cerevisiae, Cryptococcus neoformans, and Candida albicans are shown. Nutrient sensors for glucose (Glu), amino acids (Aa), ammonium (Am), sulfate (Sul),
phosphate (Pho), zinc (Zn), iron (Fe), methionine (Met), and inositol (Ins) have been identified. Dashed lines group those transceptors that rapidly activate the PKA
pathway by an unknown mechanism. The ammonium transceptors from S. cerevisiae (Mep2), C. albicans (Mep2), and C. neoformans (Amt2) regulate morphology
changes in response to ammonium import.

be involved in glucose sensing (Maidan et al., 2005a). Instead,
deletion mutants of Cdc25 or Ras2 lack glucose-induced cAMP
signaling, suggesting that the Cdc25-Ras2 branch is instead
responsible for glucose sensing in C. albicans. It is possible
that amino acids such as methionine are the ligand for Gpr1
in C. albicans, as methionine can trigger Gpr1 internalization
and methionine induction of hypha formation on solid media
requires a functional Gpr1 (Maidan et al., 2005a). However, the
effect of methionine on hypha formation requires the presence
of a low level of glucose in the medium. Therefore, it remains
possible that Gpr1 may sense methionine, glucose, or both
(Maidan et al., 2005b).

In C. neoformans, glucose sensing and utilization is critical
for its development and virulence. In addition to being utilized
as a preferred energy source for cell growth, glucose is required
for capsule production both as a substrate and a signaling
molecule. Glucose induces capsule enlargement through the
Gpa1-cAMP-PKA signal transduction pathway, which plays a

central role in fungal virulence (Alspaugh et al., 1997; Bahn et al.,
2007). Although the cAMP-regulated PKA pathway is largely
conserved, there is no Gpr1 homolog. Two GPCRs, Gpr4 and
Gpr5, share structural similarity with Gpr1. Similar to Gpr1,
Gpr4 encodes a large protein containing more than 800 aa
with a long third cytoplasmic loop and C-terminal tail, but
is not important for glucose sensing because glucose-mediated
cAMP signaling activation is independent of Gpr4 function (Xue
et al., 2006). Rather, gpr41 mutants exhibit defects related to
methionine-induced morphogenesis, which is similar to what
has been observed in Candida Gpr1. Gpr5 is a smaller protein
that shares high sequence identity with Gpr4, and its mutant
has shown defects in “Titan” cell production (Okagaki et al.,
2011). The gpr41 gpr51 double mutants have even more
pronounced defects in cell size regulation, suggesting these two
GPCRs have overlapping functions. It is possible that Gpr5
may be involved in sensing carbon, including glucose. Gpr4
and Gpr5 have been shown to interact with Gpa1 to activate
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the cAMP-PKA pathway and control cell size and capsule
(Okagaki et al., 2011).

Sensing Other Carbon Sources
Inositol is a small carbohydrate molecule that functions as
an essential structural and signaling molecule in eukaryotes,
including fungi (Fisher et al., 2002; Xue, 2012). The myo-inositol
transporter gene family belongs to the sugar transporter
superfamily and may also play important roles in myo-inositol
sensing in fungi. High sequence similarity within this gene family
suggests that these genes likely evolved from a common ancestor.
There are two myo-insoitol transporters (ITRs) in S. cerevisiae
(Nikawa et al., 1991, 1993) and in C. albicans (Jin and Seyfang,
2003; Chen et al., 2008), but no inositol sensor has been identified
in these yeast organisms.

Inositol seems to play a significant role in C. neoformans
development and pathogenicity. It can be used as a sole carbon
source (Healy et al., 1977) and can also stimulate Cryptococcus
mating (Xue et al., 2007). As one of the most abundant
metabolites in the mammalian brain (Fisher et al., 2002), inositol
utilization is required for C. neoformans virulence in murine
infection models by promoting brain infection (Xue et al.,
2010; Wang et al., 2011a; Liu et al., 2013a, 2014). Therefore,
C. neoformans likely utilizes the abundant inositol available inside
the mammalian brain for its pathogenicity. Inositol can also
stimulate C. neoformans capsule growth, which may contribute
to its role in fungal virulence. The cryptococcal genome reflects
the evolutionary adaptations associated with the expanded role
of inositol in this organism. In particular, C. neoformans contains
an unusually large number of ITRs that consists of more than
10 members (Xue et al., 2007, 2010). Functional analysis of the
ITR gene family demonstrated that two members (Itr1a and
Itr3c) have high inositol uptake activity, while the functions
of the other members remain undefined. Of these, Itr1a could
be a possible inositol transceptor because it does not show
uptake activity in a yeast heterologous system, but it does
regulate other ITR gene expression and the itr1a1 single mutant
exhibits defects in mating, hyphal production, and sporulation
(Xue et al., 2010; Wang et al., 2011a). Therefore, an inositol
transceptor may exist in C. neoformans. Importantly, fungal
inositol transporters are proton-dependent symporters, which
are pharmacokinetically different from the sodium-dependent
human inositol transporters (Jin and Seyfang, 2003). Therefore,
fungal inositol transporters may be developed as a valuable
antifungal drug target.

Two- and three-carbon (C2 and C3) substrates are another
important carbon sources for fungal pathogens. In C. albicans,
non-fermentative carbon assimilation by glyoxylate and
gluconeogenic pathways, which metabolizes C2 and C3
compounds such as acetate and lactate for glucose production, is
critical for its early interaction with host immune cells, in which
preferred carbon source such as glucose is limited (Lorenz and
Fink, 2001; Barelle et al., 2006). For systemic infection, however,
the fermentative glycolysis is the major carbon assimilation
pathway for C. albicans (Barelle et al., 2006). In C. neoformans,
the gluconeogenic pathway, but not the glyoxylate pathway, is
required for the initial establishment of infection in the lungs

(Rude et al., 2002; Panepinto et al., 2005; Price et al., 2011). For
colonization and proliferation of C. neoformans in the central
nervous system, however, glycolysis, but not gluconeogenesis,
is critical (Price et al., 2011). Therefore, coordinated regulation
of non-fermentative and fermentative carbon assimilation
pathways depending on different infection stages appears to be
essential for the pathogenicity of the two pathogenic yeasts.

In addition to sugars that are commonly utilized as carbon
sources for energy and substrates, fungi also sense other
carbon compounds as signaling molecules, mainly alcohol
related carbons, to regulate cellular function. Alcohol-related
carbon sensing has been reported mostly in S. cerevisiae
and C. albicans and is less studied in C. neoformans.
S. cerevisiae senses fusel alcohols, such as 1-butanol and
isoamyl alcohol, to regulate differentiation of haploid cells.
This involves binding of the transcription factor Ste12 to
filamentation-specific genes in a Tec1-dependent mechanism
(Dickinson, 1996; Lorenz et al., 2000a; Zeitlinger et al., 2003;
Chen and Fink, 2006). Butanol also induces pseudohyphal
morphology, even in liquid medium, which involves the
Swe1-dependent morphogenesis checkpoint and differs from
nitrogen-limitation-induced pseudohyphal growth (Martinez-
Anaya et al., 2003). Ethanol stimulates hyperfilamentation in
diploid cells in a MAPK-dependent manner (Lorenz et al.,
2000a; Dickinson, 2008). In addition, aromatic alcohols (such
as tryptophol and phenylethanol) secreted by yeast cells
may function as quorum sensing molecules and stimulate
filamentous growth in response to both cell density and
nutritional conditions of the surrounding environment through
a Flo11-dependent mechanism in S. cerevisiae (Chen and
Fink, 2006). These autoregulatory molecules appear to function
in a species-specific manner, because they only trigger the
morphological switch in S. cerevisiae, but not in C. albicans
(Chen and Fink, 2006).

Other alcohol-related quorum sensing molecules, such as
farnesol and tyrosol, have been extensively studied in Candida
species (Zhang and Dong, 2004; Hogan, 2006; Nickerson et al.,
2006). Farnesol accumulation at the early stationary phase
triggers inhibition of both yeast growth and filamentation by
blocking GTPase activation, mitosis, and DNA replication in
C. albicans (Uppuluri et al., 2007). Farnesol is also a virulence
factor and it inhibits macrophage function during fungal-
host interactions (Navarathna et al., 2007). In contrast, tyrosol
stimulates fungal filamentation at all growth stages. Thus, the
quorum-sensing process is under complex positive and negative
regulation in response to environmental conditions (Chen
et al., 2004). Fungal receptors that sense these quorum sensing
molecules are largely unknown, although the Chk1 histidine
kinase has been reported to play a role in sensing farnesol in
C. albicans (Kruppa et al., 2004).

The C3 compound lactate was also shown to be a signaling
molecule in C. albicans. Exposure to L-lactate, but not D-lactate,
triggers β-glucan masking in C. albicans by regulating cell wall
genes, which allows the pathogen to evade host immune detection
(Ballou et al., 2016). Notably, this process is regulated by the
Gpr1 GPCR and the Crz1 transcription factor, but is independent
of lactate metabolism. Although this lactate-induced β-glucan
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masking process is conserved in other Candida clade (Ballou
et al., 2016), it remains unknown in C. neoformans.

NITROGEN SENSING IN FUNGAL
PATHOGENICITY

Fungal pathogens sense nitrogen levels to control their rate of
growth and changes in their morphology, processes that are
important for host infection. The extracellular sensing of nitrogen
containing compounds occurs via transceptors and GPCRs.
Although transceptors are potential antifungal targets due to
their cellular localization and their control of major signaling
pathways, we currently lack an understanding of the molecular
mechanisms involved in transceptor mediated signaling. To
explore their therapeutic and economic potential, the molecular
mechanisms that underpin fungal transceptor signaling need to
be fully characterized.

Transceptors That Control the PKA
Pathway
The PKA pathway regulates processes that are associated with
cell growth in S. cerevisiae. Under nutrient replete conditions
that include a fermentable carbon source, S. cerevisiae grows
quickly and exhibits high PKA activity. However, if an essential
nutrient is missing from the medium, cells are arrested, enter
the stationary phase, and display phenotypes associated with
low PKA activity, including high expression of stress-related
genes and the production of stored carbohydrates. Under these
conditions nutrient replacement results in rapid induction of
PKA activity. The signaling pathway that regulates this response
is known as the fermentable-growth-medium induced pathway
(FGM pathway) (Thevelein, 1994). Activation of the FGM
pathway is dependent on a family of transceptors that import
amino acids (Gap1), ammonium (Mep1 and Mep2), phosphate
(Pho84), sulfate (Sul1 and Sul2), iron (Ftr1), and zinc (Zrt1)
(Figure 1) (Donaton et al., 2003; Giots et al., 2003; Van Nuland
et al., 2006; Kankipati et al., 2015; Schothorst et al., 2017).

A well-studied model of a PKA regulating transceptor is
the general amino acid permease (Gap1) of S. cerevisiae,
which is a low affinity permease that imports a broad
range of amino acids in cells grown under nitrogen-limiting
conditions (Jauniaux and Grenson, 1990; Donaton et al.,
2003). Two sites that are important for amino acid binding
(Ser388 and Val389) have also been identified in Gap1 (Van
Zeebroeck et al., 2009). When ammonium is added to yeast
cells growing with proline as the only nitrogen source,
Gap1 is rapidly internalized and degraded via a pathway
involving the Npi1/Rsp5 ubiquitin ligase (Springael and Andre,
1998). The Ras2/cAMP/PKA pathway may be involved in
the ubiquitin-dependent degradation of Gap1 (Garrett, 2008).
Gap1 biogenesis is coupled to sphingolipid biosynthesis, which
produces a sphingolipid microenvironment essential for the
normal conformation, function, and ubiquitination of Gap1
(Lauwers et al., 2007). The activation of the FGM pathway
by different nutrient transceptors suggests that they utilize a
common signaling mechanism and a number of experimental

findings are consistent with nutrient sensing involving an aspect
of transporter function rather than changes in internal nutrient
metabolism. For example, the FGM pathway is activated in
mutants that are unable to metabolize the signaling nutrient or
by transceptor-mediated uptake of a non-metabolizable nutrient
analog (Donaton et al., 2003; Giots et al., 2003; Van Nuland
et al., 2006). Importantly, amino acid substitutions have been
identified that separate the transport and signaling functions of
transceptors. Mutations of the predicted proton-binding sites
within the Pho84 and the Sul1/2 nutrient/proton symporters
result in a loss of nutrient transport but do not impact signaling,
presumably due to continued substrate binding to the transceptor
(Samyn et al., 2012; Kankipati et al., 2015).

A favored hypothesis is that the PKA-regulating transceptors
act in a way that is analogous to GPCRs (Holsbeeks et al.,
2004; Thevelein and Voordeckers, 2009). This model predicts
that conformational changes within the transceptor following
substrate binding and/or transport alter the interaction between
the transceptor and a signaling partner that regulates the
FGM pathway. This potential mechanism is consistent with
the hypothesis that transceptors represent intermediates in
the evolution of receptors from nutrient transporters and is
supported by the existence of the yeast glucose sensors Snf3
and Rgt2 that have homology with nutrient transporters but
no transport function (Ozcan et al., 1996; Didion et al.,
1998; Thevelein and Voordeckers, 2009). In S. cerevisiae,
another non-transporting transceptor plays an important role
in amino acid sensing (Didion et al., 1998; Klasson et al.,
1999; Forsberg and Ljungdahl, 2001; Wu et al., 2006). In this
system, Ssy1 is a transceptor that senses amino acids without
transporter activity. Ptr3 and Ssy5 function downstream of
Ssy1 and physically interact with Ssy1 to form a signaling
complex (Forsberg and Ljungdahl, 2001). Binding of amino
acids to Ssy1 activates the Ssy5 protease which, in turn,
proteolytically activates the latent transcription factors Stp1
and Stp2 to induce expression of genes encoding amino acid
metabolizing enzymes and amino acid permeases (Andreasson
et al., 2006). Ssy1 senses extracellular amino acids and activates
Ptr3 hyperphosphorylation, which is dependent on SCF (Skp1-
Gullin-F-box)-Grr1 E3 ligase complex function, but independent
of Ssy5 function. Deletion mutations of Grr1, the F-box protein
of this E3 ligase complex, block amino acid-induced Ptr3
hyperphosphorylation (Liu et al., 2008).

Evidence that conformational changes are associated with
transceptor function comes from recent X-ray crystal structures
of the Mep2 ammonium transceptors from S. cerevisiae and
C. albicans (Figure 2) (van den Berg et al., 2016). Mep2 proteins
are evolutionarily conserved members of the Amt/Mep/Rh
family of ammonium transporters. Several structures of this
class of proteins have been determined from bacteria as well
as a structure of a human Rhesus protein (Khademi et al.,
2004; Zheng et al., 2004; Andrade et al., 2005; Javelle et al.,
2006; Gruswitz et al., 2010). They all form stable trimers
with each monomer having an extracellular ammonium-binding
site, a pair of conserved phenylalanine residues that gate a
central narrow hydrophobic pore through which ammonium
is conducted. However, there are structural differences that
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FIGURE 2 | The crystal structure of ammonium transceptor Mep2. Slab views
from the membrane plane, showing E. coli AmtB (A) and S. cerevisiae Mep2
(B). The two-tier channel block in Sc Mep2 is indicated by red arrows. In Sc
Mep2 Tyr53 makes a strong hydrogen bond with His348, which is one of two
histidine residues within the ammonium-conducting channel. The dark areas
represent internal cavities and channels.

distinguish the fungal Mep2 transceptor from other ammonium
transporters, and which may relate to the potential transceptor
signaling mechanism (van den Berg et al., 2016). Fungal
Mep2 transceptors have a closed conformation with a two-tier
block of the central pore whereas all other ammonium
transporters with known structures have an open pore. It
is likely that the closed state of Mep2 prevents ammonium
import, suggesting that the Mep2 transceptor must undergo
significant conformational changes if ammonium conductance
is to occur. Mep2 is activated via the phosphorylation of
a serine residue within the cytoplasmic C-terminal domain
(CTD) by the target of rapamycin complex 1 (TORC1)
regulated Npr1 kinase, and this is hypothesized to open the
ammonium-conducting pore (Boeckstaens et al., 2014; van
den Berg et al., 2016). Conversely, the dephosphorylation of
this site by the Psr phosphatases blocks ammonium transport
(Boeckstaens et al., 2014). The structure of a Mep2 variant
with a phosphomimetic mutation of this regulatory serine
residue shows a large conformational change within the CTD
that includes the formation of a novel 12-residue helix (van
den Berg et al., 2016). This structural change is predicted
to cause a shift of the CTD toward the main body of the
transceptor to open the ammonium channel. It is conceivable
that this conformational change also regulates binding of a
signaling partner to the Mep2 CTD. While there is evidence
that transceptors undergo conformational changes that are linked
to signaling, the identification of transceptor signaling partners
has not been successful. A split-ubiquitin two-hybrid screen
identified proteins that interact with Mep2 and Gap1 and that
are involved in different cellular processes (Van Zeebroeck et al.,
2011). However, no signaling protein that links Mep2 or Gap1
directly to the FGM pathway was identified.

Currently less is known about the role of transceptors in
C. albicans and C. neoformans. Ssy1, Ptr3, and Ssy5 homologs
in C. albicans have been reported to function in a pathway that
senses amino acids and is important for virulence in the host
(Brega et al., 2004; Martinez and Ljungdahl, 2005). There are also

six Gap1 homologs in C. albicans, and three (Gap1, Gap2, and
Gap6) have transceptor activity to sense amino acids because they
can rapidly activate the PKA pathway (Kraidlova et al., 2011). In
C. neoformans eight amino acid permease homologs have been
identified based on genome information, but their potential role
in amino acid sensing has not been analyzed (Fernandes et al.,
2015). Also the expression of CFT1 and CFT2, two C. neoformans
homologs of iron transceptor Ftr1, are also regulated by PKA
activity, and both proteins are required for fungal virulence (Jung
et al., 2008). Yet, it is not clear whether either one functions
as an iron sensor.

Ammonium Transceptors That Regulate
Fungal Morphology
An ammonium transceptor dependent signaling system in
dimorphic yeast regulates a switch in morphology in response to
limiting nitrogen levels (Figure 1) (Lorenz and Heitman, 1998;
Smith et al., 2003; Biswas and Morschhauser, 2005; Rutherford
et al., 2008b). In S. cerevisiae, this regulates a switch to a
filamentous form of growth known as pseudohyphal growth
(Gimeno et al., 1992). Pseudohyphal growth is a Mep2-dependent
process and results in S. cerevisiae forming chains of elongated
cells that allow the yeast to forage for nutrients when
they utilize a poor or limiting nitrogen source (Lorenz and
Heitman, 1998; Boeckstaens et al., 2007). A number of
signal transduction pathways regulate pseudohyphal growth and
include the PKA, MAPK, sucrose non-fermentable, and TORC1
signaling pathways (Cullen and Sprague, 2012). Constitutively
active components of the PKA or MAPK pathways restore
pseudohyphal growth in a mutant lacking Mep2, suggesting
that this transceptor may regulate these pathways during
the dimorphic switch (Lorenz and Heitman, 1998; Biswas
and Morschhauser, 2005; Rutherford et al., 2008a). The
transport and pseudohyphal signaling functions of Mep2
may be linked as a hyperactive transporting and signaling
Mep2 variant has been identified and Mep2 variants that
do not transport ammonium but are correctly expressed
and localized do not induce pseudohyphal growth (Marini
et al., 2006; Boeckstaens et al., 2007; Rutherford et al.,
2008a). Mep2 separation-of-function variants that transport
ammonium but do not induce pseudohyphal growth also
establish that ammonium sensing is not a consequence
of changes in internal nitrogen metabolism (Van Nuland
et al., 2006; Boeckstaens et al., 2008; Rutherford et al.,
2008a). Therefore, ammonium sensing and the consequent
regulation of pseudohyphal growth are dependent on an
aspect of ammonium conductance through Mep2. Mep2
transceptor homologs also regulate morphological changes in
C. albicans and C. neoformans (Smith et al., 2003; Biswas
and Morschhauser, 2005; Rutherford et al., 2008b). Similar
to the transceptor-mediated regulation of the FGM pathway,
two models of Mep2 signaling during pseudohyphal growth
have been proposed. In the first, Mep2-dependent ammonium
transport is predicted to cause changes in cytosolic pH that
is then sensed by an internal pH-responsive mechanism
(Boeckstaens et al., 2008). This model is based on differences
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in the optimal pH for ammonium transport between Mep2
and two paralogous non-signaling ammonium transporters,
Mep1 and Mep3 (Boeckstaens et al., 2008). Furthermore, a link
between pH and polarized growth has been identified in
other fungal systems (Bowman et al., 1997; Martinez-Espinoza
et al., 2004; Vylkova et al., 2011). The second model of Mep2
signaling involves this transceptor acting analogous to GPCRs
by physically interacting with and regulating a signaling partner
as has been proposed for regulation of the FGM pathway
(Lorenz and Heitman, 1998).

Ammonium metabolism can promote fungal infection as its
export can alkalinize the external environment.C. albicans secrets
ammonium to raise external pH and induce its filamentous
form (Vylkova and Lorenz, 2014). Similarly C. neoformans uses
urea as a nitrogen source resulting in the production and
secretion of ammonium, which can have diverse impacts on
the host. Urease positive C. neoformans promote the induction
of a non-protective Type 2 host-immune response (Osterholzer
et al., 2009). Furthermore, urease is required for the ability of
C. neoformans to cross the host blood brain barrier possibly by
disrupting the integrity of the junctions between microvascular
endothelial cells in the brain (Shi et al., 2010; Singh et al., 2013).
Urease also modulates the pH of macrophage phagolysosomes
(Fu et al., 2018). Consistent with these studies urease is required
for the virulence of C. neoformans in a mouse model of infection
(Cox et al., 2000). In the human host, urea is distributed
evenly throughout the body at concentrations in the lower
mM range (Liu et al., 2012; Singh et al., 2013). There is
therefore a sufficient pool of this metabolite within humans
to act as a nutrient source for a fungal pathogen and as a
modulator of host pH.

GPCRs and Amino Acid Sensing in Fungi
Amino acid sensing via GPCRs has not been reported in
S. cerevisiae. In C. albicans, Gpr1 senses methionine to
regulate the yeast-to-hypha transition on solid medium in
the presence of carbon sources such as glucose (Maidan
et al., 2005a). It is currently unclear whether Gpr1
directly senses extracellular methionine, intracellular amino
acids, or both. It is possible that Gpr1 may sense both
methionine and glucose.

Similar to Gpr1 in C. albicans, Gpr4 in C. neoformans
has also been found to sense amino acids and activate
signaling by the Gα protein Gpa1 signaling, which in
turn activates cAMP-PKA signaling (Xue et al., 2006).
Methionine induces the internalization of a Gpr4-DsRED
fusion protein and also induces transient cAMP production
in C. neoformans, and both are blocked by gpr41 mutations.
A low concentration of methionine in the medium stimulates
mating hyphae elongation in a Gpr4-dependent manner, but
the role of methionine at a molecular level remains to be
elucidated. Because Gpr4 contributes to but is not essential
for the production of virulence factors controlled by cAMP
signaling, and is not important for melanin production or
virulence, additional upstream receptors other than Gpr4
may contribute to regulate Gpa1 functions. Activation of
cAMP signaling by glucose and amino acids represents a

nutrient coincidence detection system conserved in other
pathogenic fungi.

The TOR Pathway Is a Globally
Conserved Nutrient Sensor
TOR (target of rapamycin) is a serine/threonine kinase of the
phosphatidylinositol kinase-related kinase family, which shares
conserved motifs (such as HEAT repeats, FAT, and FATC
domains), and is structurally and functionally conserved in
eukaryotes (Abraham, 2004). The TOR pathway is activated by
a variety of environmental signals and acts as a central regulator
of cell growth through the phosphorylation of substrates that
stimulate anabolic processes and inhibit catabolic process such
as autophagy (Wolfson and Sabatini, 2017). The discovery of
the TOR signaling pathways began with studies that sought to
identify the molecular targets for the novel immunosuppressive,
antifungal natural product rapamycin, which was originally
isolated from a strain of Streptomyces hygroscopicus, from the
beaches of Easter Island (Sehgal et al., 1975). This drug had
been discovered in screens for natural products at Wyeth-Ayerst
to identify candidate antifungal agents with activity against
C. albicans (Sehgal, 2003). Despite having very potent antifungal
activity, studies on rapamycin were shelved when it was
discovered that the compound caused bone marrow suppression
(Martel et al., 1977). When FK506 was discovered as a novel
immunosuppressant in a screen at Fujisawa Pharmaceutics for
natural products that would inhibit a mixed lymphocyte response
assay, rapamycin was appreciated to be structurally related to
FK506 and studies began anew to study its immunosuppressive
properties and potential (Kino et al., 1987).

The FK506 binding protein FKBP12 was purified from yeast
and its mutants were found to be resistant to rapamycin and
FK506 (Heitman et al., 1991a,b). Isolation of rapamycin resistant
yeast mutants revealed mutations in three genes, FKBP12 and
two novel genes (Heitman et al., 1991a), which were named TOR1
and TOR2 for Target of Rapamycin (Kunz et al., 1993; Helliwell
et al., 1994), which were later found to form multiprotein
complexes known as TORC1 and TORC2 (Loewith et al., 2002;
Wedaman et al., 2003). The TORC1 complex is sensitive to
rapamycin and involved in a wide range of functions, while the
TORC2 complex regulates polarization of the actin cytoskeleton.
Several years later studies from multiple groups converged to
identify the mammalian ortholog of the yeast TOR proteins
(Brown et al., 1994; Chiu et al., 1994; Sabatini et al., 1994; Sabers
et al., 1995), now known as mTOR.

Rapamycin inhibits yeast cell growth by inhibiting the ability
of yeast cells to appropriately sense and respond to nutrients,
particularly nitrogen sources including ammonia and glutamine,
for example. Three studies converged to reveal that the TOR
pathway functions in nutrient sensing in yeast (Beck and Hall,
1999; Cardenas et al., 1999; Hardwick et al., 1999). These studies
revealed two sets of genes to be profoundly disrupted in cells
exposed to rapamycin. First, the genes encoding ribosomal
proteins, ribosomal RNAs, and many other proteins and enzymes
involved in translation were all found to be repressed by
rapamycin. Concomitantly, a suite of genes that was induced
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in cells exposed to rapamycin including many genes encoding
transporters for a variety of nitrogen sources, and enzymes
and proteins involved in the utilization of alternative nitrogen
sources, the so called nitrogen catabolite repression (NCR)
response. These later genes are known to be regulated by
Ure2 and Gln3, both of which participate in the TOR pathway
governing the control of nutrient responsive gene suites. Thus,
these studies were paradigmatic in showing that the TOR
pathway orchestrates the growth of cells in response to nutrients.
Several years later the mTOR pathway was found to similarly
control nutrient responsive genes in mammalian cells (Peng
et al., 2002). Much more is now known about the intricate
pathways that enable TOR and mTOR to sense the availability
of several different amino acids and nutrients, and to couple
this to appropriate physiological outcomes (reviewed in Jewell
et al., 2013; Goberdhan et al., 2016; Gonzalez and Hall, 2017;
Wolfson and Sabatini, 2017).

The Tor proteins sense nutrient signals, including amino
acids, and regulate a broad range of cell developmental and
signaling processes, including ribosome biosynthesis, protein
translation, starvation-related transcriptional regulation, and
autophagy (Raught et al., 2001; Rohde et al., 2001; Rohde
and Cardenas, 2003). Amino acids are sensed by the TORC1
pathway via a variety of molecular mechanisms including
the GTP/GDP loading status for the Rag GTPases that are
called the Ragulator Rag GTPase in mammals and the EGO
(Ego1-Ego2-Ego3) complex in S. cerevisiae. In S. cerevisiae,
amino acids activate the SEACAT (Seh1-associated complex
subcomplex activating TORC1), which consists of Sec13, Seh1,
Sea2, Sea3, and Sea4. The SEACAT binds and negatively regulates
SEACIT (Seh1-associated subcomplex inhibiting TORC1), which
functions as GTPase-activating proteins (GAPs) for Gtr1, a
RAG family small GTPase that binds with EGO complex to
tether the TORC1 complex to the vacuole membrane (Binda
et al., 2009). The other GTPase Gtr2 is activated by the
GAP protein Lst4 in response to amino acids. Amino acid
sufficiency promotes the active conformation of the RAG GTPase
heterodimer in which Gtr1 is loaded with GTP, while Gtr2
is loaded with GDP (Gong et al., 2011). The active Gtr1GTP-
Gtr2GDP heterodimer binds to Kog1 to activate TORC1 (reviewed
by Gonzalez and Hall, 2017).

Overall, the core TOR complex is conserved among
eukaryotes, while sensors that regulate the TOR pathway
are likely more diverse. In mammalian cells, multiple amino
acid sensors have been identified, including SLC38A9 as a
putative arginine transceptor that positively regulates the mTOR
pathway, the Sestrins (Sestrin 1 and 2) as a leucine sensor
that functions as a negative regulator of the pathway, and
CASTOR1 as a cytosolic arginine sensor for the pathway in
a mechanism analogous to that of the Sestrins (reviewed by
Saxton et al., 2016). However, similar amino acid sensors have
not been identified in S. cerevisiae and most other fungi. It
is possible that there are similar sensors in fungi, but with
more sequence diversity. In yeast, leucine activates TORC1 via
Gtr1. There is no Sestrin homolog and instead the leucyl-tRNA
synthase has been shown to act as a cytosolic leucine sensor
(Bonfils et al., 2012).

Rapamycin treatment triggers ubiquitination and degradation
of some high-affinity amino acid transporters, such as the
tryptophan permease Tat2 and the histidine permease Hip1,
suggesting that Tor signaling promotes stability of these
high-affinity, specialized transporter systems (Schmidt et al.,
1998; Beck et al., 1999). On the other hand, Tor signaling also
negatively regulates the stability of general amino acid permease
systems like Gap1, and thus inversely regulates these two classes
of amino acid permeases to balance the nutritional requirements
of the cell (Beck et al., 1999). The serine/threonine kinase Npr1
has been recognized to mediate the regulation of these permeases
by Tor (Schmidt et al., 1998; Raught et al., 2001).

Glutamine is a preferred nitrogen source and a key
intermediate in yeast nitrogen metabolism, and its function
is likely regulated by the TOR pathway. Glutamine depletion
in yeast triggers nuclear localization and activation of the
TOR-inhibited transcription factors Gln3, Rtg1, and Rtg3
(Crespo et al., 2002). Glutamine activation of TORC1 in
yeast is independent of Gtr1, and rather requires the vacuolar
membrane-associated phosphatidylinositol 3-phosphate binding
protein Pib2 (Stracka et al., 2014; Kim and Cunningham, 2015).
This nitrogen regulation is also mediated by the PP2A-like
phosphatase Sit4. Many of the non-transcriptional effects of Tor,
such as the initiation of translation and control of the stability of
amino acid permeases, are also regulated via Sit4 (Di Como and
Arndt, 1996; Cardenas et al., 1999; Rohde et al., 2004; Jacinto,
2007). Tor-mediated nutrient signaling also triggers nuclear
translocation of Gln3 and a role of Golgi-to-endosome vesicular
trafficking in TORC1-controlled nuclear translocation has been
described (Puria et al., 2008).

In S. cerevisiae, Tor signaling is part of the complex signaling
network that controls the yeast-to-filament switch in response
to nitrogen limitation (Gimeno et al., 1992; Pan and Heitman,
1999; Cutler et al., 2001). Tor signaling involves the Sit4
protein phosphatase and is independent and parallel to the
well-defined MAPK and cAMP-PKA pathways, but it is possible
that signaling in response to nutrients involves crosstalk between
these pathways (Schmelzle et al., 2004; Zurita-Martinez and
Cardenas, 2005; Chen and Powers, 2006). Future studies are
needed to understand the precise molecular mechanisms by
which Tor regulates nutrient sensing and activation in fungi.

In addition to S. cerevisiae, TOR regulation of nutrient sensing
has also been reported in C. albicans. Tor1 has been implicated
in the negative regulation of filamentous growth in C. albicans.
Inhibition of TORC1 results in the activation of the GATA
transcription factor Brg1, which is involved in the regulation
of hypha-specific genes and blocking the recruitment of the
Nrg1-Tip1 transcriptional repressor complex (Lu et al., 2012;
Su et al., 2013). Tor1 also plays a role in the regulation of
adhesion gene expression in C. albicans (Bastidas et al., 2009).
The Tor pathway in C. albicans has recently also been reported
to regulate phosphate sensing that is dependent on the phosphate
transporter Pho84 and the function of the TOR-activating small
GTPase homologs Gtr1 and Rhb1 in nutrient responses has
been characterized (Flanagan et al., 2017; Liu et al., 2017).
The mechanisms of nutrient sensing by the TOR pathway in
C. neoformans are less studied and remain to be understood.
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STRESS SENSING IN FUNGAL
PATHOGENICITY

Fungal pathogens are confronted with a series of host-derived
stresses during the whole infection process, including
temperature shift, fluctuation of oxygen/carbon dioxide
levels, osmotic stress, and oxidative/nitrosative stress. To cope
with such a variety of environmental stresses, most fungi
employs an evolutionarily conserved stress-activated MAPK
pathway, commonly known as the high-osmolarity glycerol
response (HOG) pathway. Although the HOG pathway was
initially discovered as osmosensing system in S. cerevisiae,
it was subsequently proved to be a general stress-sensing
pathway in most fungi.

Multicomponent Phosphorelay Systems
Fungi utilize phosphorelay systems to sense and respond
to a variety of environmental stresses. These phosphorelay
systems are widely conserved in prokaryotes and generally
consists of two signaling components, sensor histidine kinase
(HK), composed of His kinase A and histidine kinase-
like ATPase domains serving as an autophosphorylation
catalytic core, and its downstream response regulator (RR)
(Zschiedrich et al., 2016; Tiwari et al., 2017). In contrast,
most fungi contain multicomponent phosphorelay systems,
which consist of sensor hybrid histidine kinases (HHKs),
histidine-containing phosphotransfer (HPt) protein, and RRs

(Figure 3) (Santos and Shiozaki, 2001; Matsushita and Janda,
2002; Laub and Goulian, 2007; Bahn, 2008). The HHKs
consist of an HK domain and an aspartate-containing receiver
domain (RD). Upon external cues, the HHK undergoes
autophosphorylation at the histidine residue in the HK domain
and relays its phosphate group to the aspartate residue in the
RD. Subsequently, the phosphate group is relayed to the histidine
residue in the HPt protein, which is then transferred to the
aspartate residue in RRs (Santos and Shiozaki, 2001; Matsushita
and Janda, 2002; Laub and Goulian, 2007; Bahn, 2008). Most
fungi contain two types of RRs: one RR, similar to a bacterial
RR, has a DNA-binding domain and transcriptionally activates
effector genes and the other RR activates another signaling
cascade, including a Hog1 MAPK module. S. cerevisiae also
contains two types of RRs, Ssk1 and Skn7, and the former
localizes to the cytoplasm whereas the latter is enriched in the
nucleus (Lu et al., 2003). The HPt protein, Ypd1, shuttles between
the cytoplasm and nucleus to relay its phosphate group to Ssk1
and Skn7, respectively, depending on the type of eliciting stresses
(Lu et al., 2003).

The most notable feature of the fungal phosphorelay system
is a tremendous diversity of HHKs in both number and domain
structures (Bahn, 2008; Herivaux et al., 2016). S. cerevisiae
contains only a single HHK (Sln1), while some filamentous
fungi contains more than 10 HHKs. Although all HHKs
commonly contain at least a single HK and one RD, their
N-terminal regions contain highly diverse protein domains,
which are proposed to play distinct roles for each HHK in

FIGURE 3 | The proposed yeast HOG pathways. In S. cerevisiae, the Ssk2/22-Pbs2-Hog1 MAPK module is modulated by two main upstream branches: the
Sln1-Ypd1-Ssk1 phosphorelay system and Msb2/Hkr1/Sho1/Opy2 signaling branches. In contrast, the Ssk2-Pbs2-Hog1 MAPK module is mainly regulated by the
multicomponent phosphorelay system in both C. neoformans and C. albicans. In C. neoformans, the Msb2/Sho1 branch pathway plays a minor role in
phosphorylating Hog1 in the absence of Ssk1, and functions in phosphorylating Cpk1 for cell wall biogenesis. Although Msb2 and Sho1 are involved in mating
process of C. neoformans, they are not directly involved in Cpk1 phosphorylation. In C. albicans, there is no evidence that the Sho1/Msb2/Opy2 branch pathway
regulates the Hog1 MAPK module directly.
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sensing different signals and regulating the activity of the
HK and RD domains.

Cryptococcus neoformans and Candida albicans contain seven
and three HHKs, respectively (Bahn, 2008). This varying number
of HHKs may reflect differential host biological niches at which
these two fungal pathogenic yeasts reside during infection.
C. neoformansHHKs were named Tco1 to Tco7 (Two-component
proteins 1–7) (Bahn et al., 2006). Tco1 contains seven HAMP
(Histidine kinases-Adenylyl cyclases-Methyl accepting proteins-
Phosphatases) domains with an extended N-terminal region
(Bahn et al., 2006). Notably, C. neoformans contains two unique
dual HHKs, Tco2 and Tco4, which harbor two HK-RD domains
in a single polypeptide (Bahn et al., 2006; Bahn, 2008). Since
their first discovery in C. neoformans, a recent bioinformatics
analysis showed that the dual HHKs are observed only in certain
basidiomycetous fungi (Lavin et al., 2014). Tco3 contains GAF
(cGMP-specific phosphodiesterases-Adenylyl cyclases-FhlA) and
PHY (phytochrome) domains. Tco5 is the only TM domain-
containing HHK. Both Tco6 and Tco7 are GAF-containing
HHK. In stark contrast to Sln1, which is essential for viability
of S. cerevisiae, none of the Tco HHKs are essential for
C. neoformans (Bahn et al., 2006; Lee et al., 2016). Among these,
Tco1 and Tco2 are two major HHKs in C. neoformans (Bahn
et al., 2006). Both HHKs are involved in recognizing fludioxonil,
a phenylpyrrole class of fungicide (Bahn et al., 2006). However,
Tco1 and Tco2 also have distinct roles. Tco1 is involved in hypoxia
sensing, melanin production, the mating process, and virulence,
whereas Tco2 is involved in response and adaptation to osmotic
and oxidative stress and toxic metabolites (Bahn et al., 2006;
Chun et al., 2007).

Candida albicans has three HHKs: Sln1, Nik1/Cos1, and
Chk1 (Alex et al., 1998; Nagahashi et al., 1998; Yamada-Okabe
et al., 1999). Although C. albicans Sln1 can functionally replace
S. cerevisiae Sln1 and is indeed involved in osmosensing, Sln1
is not essential for viability of C. albicans (Nagahashi et al.,
1998). The most notable function of these HHKs is the regulation
of the morphological transition, which is a crucial virulence
factor for C. albicans (Alex et al., 1998; Nagahashi et al., 1998;
Yamada-Okabe et al., 1999). Deletion of SLN1, NIK1, or CHK1
causes defects in hyphal development and thereby attenuates the
virulence of C. albicans (Yamada-Okabe et al., 1999). However,
CHK1 deletion partially restores filamentation and virulence in
the sln11 and nik11 mutants, suggesting that complex cross-talk
may occur among these HHKs (Yamada-Okabe et al., 1999).

Regardless of the remarkable diversity of HHKs, most fungi
contain only one or two HPt proteins. Therefore, it is still
puzzling how different environmental signals sensed by varying
HHKs are distinguished by such a small number of HPt
proteins. In C. albicans and C. neoformans, a single HPt
(Ypd1) has been discovered. In S. cerevisiae, Ypd1 is essential
because its absence leads to constitutive dephosphorylation
of Ssk1, which overactivates the Ssk2/22-Pbs2-Hog1 MAPK
module (Posas et al., 1996). Ypd1 is similarly essential in
C. neoformans, but YPD1 deletion is feasible in the hog11 mutant
background, suggesting that YPD1 deletion also hyperactivates
Hog1 in the pathogen (Lee et al., 2011). C. albicans YPD1 can
functionally replace S. cerevisiae YPD1. Similar to S. cerevisiae

Ypd1, C. albicans Ypd1 also localizes to both the cytoplasm
and the nucleus (Mavrianos et al., 2014). Notably, however,
Ypd1 is not essential in C. albicans, although its deletion
causes growth defects (Mavrianos et al., 2014). YPD1 deletion
causes constitutive Hog1 phosphorylation even under unstressed
conditions, as expected, and flocculation through enhanced
filamentation (Mavrianos et al., 2014).

Cryptococcus neoformans contains two most conserved classes
of RRs, Skn7, and Ssk1 (Bahn et al., 2006). Ssk1 plays a major
role in relaying the signal from Ypd1 to the Hog1 MAPK module
as shown by the fact that the ssk11 mutant is phenotypically
similar to the hog11 mutant (Bahn et al., 2006). However, Hog1
may have another upstream regulator as it can be phosphorylated
in the absence of Ssk1 (Bahn et al., 2006). In contrast, Skn7,
which contains a heat shock factor-type DNA binding domain
at its N-terminus, plays both redundant and distinct roles with
Hog1, but the Skn7-mediated signaling is largely independent
of the HOG pathway (Bahn et al., 2006). Supporting this, SKN7
deletion does not affect Hog1 phosphorylation and its related
phenotypes, such as capsule production and mating efficiency
(Bahn et al., 2006). In contrast, C. albicans contains three RRs:
Ssk1, Skn7, and Srr1, which are localized to the cytoplasm, the
nucleus, and the mitochondria, respectively (Calera et al., 2000;
Singh et al., 2004; Mavrianos et al., 2013). Ssk1 is involved in
oxidative stress and heat shock response, cell wall biogenesis,
adherence, and filamentous growth, whereas Skn7 is involved
in the morphological transition and oxidative stress response.
Similar to the case in C. neoformans, Skn7 function is largely
Hog1-independent in C. albicans (Singh et al., 2004). Srr1 is
involved in hyphal development, stress resistance and virulence
(Desai et al., 2011).

In S. cerevisiae, the dephosphorylated Ssk1 activates the
autophosphorylation activity of the Ssk2/22 MAPK kinase kinase
(MAPKKK) by interacting with the autoinhibitory domain of
Ssk1 (Posas and Saito, 1998). Activated Ssk2/22 subsequently
phosphorylates the MAPK kinase (MAPKK) Pbs2, which then
phosphorylates the Hog1 MAPK. In contrast to S. cerevisiae that
contains two MAPKKKs, Ssk2 and Ssk22, both C. neoformans
and C. albicans contain a single Ssk2 ortholog. Pbs2 and
Hog1 are also conserved in the two pathogens (Bahn et al.,
2005). Regardless of the conserved Ssk2-Pbs2-Hog1 module, its
regulatory mechanism appears to be divergent. Hog1 is not
normally phosphorylated under unstressed conditions in both
S. cerevisiae and C. albicans, but becomes rapidly phosphorylated
in response to environmental stresses (Brewster et al., 1993; Smith
et al., 2004). In C. neoformans, however, Hog1 is constitutively
phosphorylated under unstressed conditions, but undergoes
dephosphorylation in response to environmental stresses, such as
osmotic shock (Bahn et al., 2005).

Transcriptome analysis revealed a plethora of Hog1
downstream effector genes in C. albicans and C. neoformans
(Enjalbert et al., 2006; Ko et al., 2009). Among these, some of
pathogenicity-related effectors are particularly notable. First,
the Na+/ATPase efflux pump Ena1 was shown to be strongly
induced by salt or osmotic stress in a Hog1-depenent manner
and required for pH homeostasis in C. neoformans (Jung
et al., 2012; Meyers et al., 2017). Deletion of ENA1 completely
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abolishes the virulence of C. neoformans (Jung et al., 2012;
Meyers et al., 2017). Second, a number of the genes involved
in oxidative stress response, including a sulfiredoxin gene
(SRX1), are strongly induced by peroxides in a Hog1-dependent
manner (Upadhya et al., 2013). Srx1 is required for recycling of
peroxiredoxin (Tsa1) and its deletion significantly attenuates the
virulence of C. neoformans (Upadhya et al., 2013). Third, several
kinases are regulated by the HOG pathway. These include Hrk1
(Hog1-regulated kinase), which is involved in osmoregulation
(Kim et al., 2011), and Sch9, which is involved in thermotolerance
and oxidative stress response, in C. neoformans (Kim et al., 2009).
The C. albicans Hrk1 ortholog Rck2 was also shown to be induced
by osmotic stress in a Hog1-dependent manner (Enjalbert et al.,
2006). Fourth, Hog1-dependent transcription factors include
Mbs1, which is involved in environmental stress response,
ergosterol biosynthesis, membrane integrity, and virulence
factor production in C. neoformans (Song et al., 2012). In
particular, MBS1 deletion attenuates virulence of C. neoformans.
In C. albicans, the Sko1 transcription factor is transcriptionally
regulated by Hog1 in response to osmotic stress and is also
involved in the cell wall damage response (Enjalbert et al., 2006;
Rauceo et al., 2008).

As hyperactivation of the HOG pathway is lethal to fungal
cells, timely inactivation of the HOG pathway is critical for fungal
cell growth. In S. cerevisiae, two tyrosine phosphatases (PTPs;
Ptp2 and Ptp3) and three type 2C Ser/Thr phosphatases (PP2C;
Ptc1, Ptc2, and Ptc3) are involved in negatively regulation of
Hog1 (Maeda et al., 1994; Jacoby et al., 1997; Wurgler-Murphy
et al., 1997). In C. neoformans, Ptp1 and Ptp2 were found to
be transcriptionally regulated by the HOG pathway as negative
feedback regulators (Lee et al., 2014). Particularly, Ptp2 plays
a major role in regulating Hog1. Unexpectedly, some of the
ptp21 mutant phenotypes, including increased susceptibility to
osmotic, oxidative, and genotoxic stresses, are similar to those
of the hog11 mutant, suggesting that coordinated, balanced
regulation of the HOG pathway is critical for normal fungal
cell physiology. Supporting this, PTP2 deletion also attenuates
the virulence of C. neoformans even more strongly than HOG1
deletion (Lee et al., 2014). Notably, PTP1 deletion exacerbates
the virulence defect of the ptp21 mutant, suggesting that Ptp1 is
also involved in the virulence of C. neoformans (Lee et al., 2014).
In C. albicans, Ptp2 and Ptp3 are known to repress the basal
Hog1 activity in response to Tor1 inhibition, which is required
for hyphal maintenance (Su et al., 2013). However, the role of
Ptp2 and Ptp3 in virulence of C. albicans has not been addressed.
In contrast to PTPs, the role of any PP2Cs in Hog1 regulation
remains unknown in C. neoformans and C. albicans.

The Sho1/Msb2/Hkr1-Signaling Pathway
In addition to the multicomponent phosphorelay system,
another upstream signaling branch has been reported to
regulate the Ssk2-Pbs2-Hog1 MAPK module in S. cerevisiae: the
Sho1/Msb2/Hkr1-signaling pathway. Msb2 and Hkr1 are two
mucin-like transmembrane proteins and Sho1 is a membrane
protein with the SH3 domain (Maeda et al., 1995; O’Rourke
and Herskowitz, 2002; Tatebayashi et al., 2007). Msb2 and Hkr1
are bona fide osmosensors, which can physically interact with

Sho1 through transmembrane domains and generate intracellular
signaling through the cytoplasmic domain of Sho1. Sho1 also
serves as an adaptor for recruiting Pbs2 and the Ste11/Ste50
complex (Maeda et al., 1995; Zarrinpar et al., 2004; Tatebayashi
et al., 2006). In C. neoformans, Sho1 and Msb2 orthologs have
been recently identified and functionally characterized (Kim
et al., 2015; So et al., 2018). SHO1 and MSB2 deletions do
not markedly affect Hog1 phosphorylation patterns in response
to osmotic stress, suggesting that these proteins are not major
Hog1 regulators in C. neoformans. Instead, Sho1 and Msb2
play redundant roles in phosphorylating the Cpk1 MAPK for
cell wall biogenesis. However, deletion of SHO1 or MSB2
reduces Hog1 phosphorylation in the absence of Ssk1 (So et al.,
2018), indicating that the Sho1 and Msb2 pathway may serve
as a back-up signaling circuit for Hog1 activation when the
major multicomponent phosphorelay system is shut down in
C. neoformans. Notably, Msb2 and Sho1 are required for the
early acute and later adaptation of C. neoformans, respectively,
to the pulmonary environment during mammalian host infection
(So et al., 2018).

Surprisingly, however, Ssk1, Sho1, and Msb2 are all
dispensable for Hog1 phosphorylation in response to osmotic
shock in C. albicans (Roman et al., 2009). In the triple ssk11
sho11 msb21 mutant, Hog1 can still be phosphorylated in
response to osmotic shock, like the wild type strain in C. albicans,
suggesting that another signaling branch may operate to activate
Hog1. In C. albicans, the extracellular domain of Msb2 is
cleaved and secreted as a highly glycosylated form during host
infection and serves to protect fungal cells from antimicrobial
peptides (Szafranski-Schneider et al., 2012). As the extracellular
domain is not conserved between C. neoformans and C. albicans
Msb2 orthologs, it remains unclear whether the extracellular
domain of C. neoformans Msb2 is also cleaved and released
during host infection.

RECEPTORS AS POTENTIAL DRUG
TARGETS

Overall, sensing nutrient and stress signals is critical for fungal
pathogens to adapt to the host environment to cause infection.
As eukaryotic pathogens, fungi and the human host share much
similarity in their cellular mechanisms, leading to very few targets
for drug development that have both high potency and low
toxicity. The cell surface sensors are in general more distinct
compared to the intracellular signaling and metabolic pathways,
and their accessible location is favorable for drug binding.
Therefore, nutrient receptors could represent a potentially rich
source of targets for antifungal drug development. Around 40%
of all available drugs target GPCRs, making these receptors
the most important drug target group. Transceptors are often
important for fungal development and virulence, and hence
could be an excellent drug target group as well. Indeed,
receptors that sense different stress responses have been proposed
as a drug targets.

Clinically, the fungal phosphorelay systems have drawn
significant attention from a pharmaceutical standpoint because
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an equivalent system has not been discovered in mammals. In
agriculture, some fungicides, for instance phenylpyrrole agents,
primarily target the HHKs, which subsequently hyperactivates
Hog1 and causes over-accumulation of intracellular glycerols,
resulting in growth arrest (Kojima et al., 2006). Due to this
reason, Ypd1, which is a central negative regulator of Hog1,
has been considered as a prime target for antifungal drug
development, particularly because any Ypd1 ortholog is not
present in mammals. However, a recent report demonstrated
that conditional repression of YPD1 enhances the virulence of
C. albicans, perhaps because reduced YPD1 expression enhances
stress resistance and filamentation (Day et al., 2017), which
raising doubt as to whether Ypd1 is a viable target in C. albicans.
In aggregate, increasing our understanding of nutrient sensing in
fungal development and pathogenicity is critical and will enhance
our ability to develop novel strategies to fight fungal diseases and
antifungal drug resistance.
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