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Abstract

Background: Given the considerable geographic overlap in the endemic regions for malaria and tuberculosis, it is probable
that co-infections with Mycobacterium tuberculosis and Plasmodium species are prevalent. Thus, it is quite likely that both
malaria and TB vaccines may be used in the same populations in endemic areas. While novel vaccines are currently being
developed and tested individually against each of these pathogens, the efficacy of these vaccines has not been evaluated in
co-infection models. To further assess the effectiveness of these new immunization strategies, we investigated whether co-
infection with malaria would impact the anti-tuberculosis protection induced by four different types of TB vaccines in a
mouse model of pulmonary tuberculosis.

Principal Findings: Here we show that the anti-tuberculosis protective immunity induced by four different tuberculosis
vaccines was not impacted by a concurrent infection with Plasmodium yoelii NL, a nonlethal form of murine malaria. After an
aerogenic challenge with virulent M. tuberculosis, the lung bacterial burdens of vaccinated animals were not statistically
different in malaria infected and malaria naı̈ve mice. Multi-parameter flow cytometric analysis showed that the frequency
and the median fluorescence intensities (MFI) for specific multifunctional T (MFT) cells expressing IFN-c, TNF-a, and/or IL-2
were suppressed by the presence of malaria parasites at 2 weeks following the malaria infection but was not affected after
parasite clearance at 7 and 10 weeks post-challenge with P. yoelii NL.

Conclusions: Our data indicate that the effectiveness of novel TB vaccines in protecting against tuberculosis was unaffected
by a primary malaria co-infection in a mouse model of pulmonary tuberculosis. While the activities of specific MFT cell
subsets were reduced at elevated levels of malaria parasitemia, the T cell suppression was short-lived. Our findings have
important relevance in developing strategies for the deployment of new TB vaccines in malaria endemic areas.
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Introduction

Plasmodium falciparum and Mycobacterium tuberculosis are among the

world’s most important tropical diseases. Malaria and tuberculosis

are major global causes of morbidity and mortality with each

causing 1–2 million deaths annually. The World Health

Organization has reported that there are 300–500 million new

cases of malaria and 9 million new cases of tuberculosis each year

[1,2]. Moreover, it has been estimated that one-third of the world’s

population is infected with latent TB. Given the substantial

geographic overlap of endemic regions for these diseases and

especially the large number of individuals with latent TB living in

malaria-endemic regions, it is highly probable that co-infections

with M. tuberculosis and Plasmodium species are common [3,4]. This

presumed high rate of malaria-TB co-infections could be

problematic for the development of TB vaccines targeted for

malaria-endemic areas of the world. Malaria parasites are known

to be immunosuppressive and acute malaria infections have

already been associated with decreased immune responses to

meningococcal, Hib conjugate, and Salmonella typhi vaccines [5–9].

Since many potential vaccinees including children in the WHO

Expanded Program for Immunization reside in areas with high

rates of malaria, it is important to understand the effect of malaria

infections on the immunogenicity and effectiveness of vaccines

designed to prevent tuberculosis.

To combat the lethal tuberculosis epidemic, numerous novel

vaccine preparations and immunization strategies are being

created to replace or augment the current TB vaccine, M. bovis

BCG. While BCG does induce protection against disseminated

tuberculous disease in children, it has been relatively ineffective in

preventing the most prevalent form of the disease, adult

pulmonary TB [10,11]. Furthermore, vaccination with live BCG

poses a considerable risk of serious infection when it is given to

infants perinatally infected with HIV [12–14]. Among the new TB

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28164



vaccine types being tested to replace or augment the use of BCG

are live, attenuated M. tuberculosis vaccines, TB fusion proteins

formulated in immunostimulating adjuvants, and viral vectored

vaccines. At least 10 of these new vaccine preparations are

currently being evaluated in clinical trials [15–17]. While the

efficacy of each of these new vaccine formulations have been

assessed in pre-clinical M. tuberculosis vaccination/challenge

models, the new TB vaccines have been only minimally evaluated

in co-infection models. Despite the considerable public health

importance of concomitant infections, the complex issues associ-

ated with developing immunity after immunization in the presence

of co-infecting organisms generally have not been adequately

addressed. To develop more efficacious therapeutic and vaccina-

tion strategies, it is imperative to dissect whether effective

protective immune responses can be generated against deadly

pathogens in individuals co-infected with multiple organisms. In

particular, it is uncertain whether a malaria infection will alter the

effectiveness of new candidate vaccines to protect against a

tuberculous challenge. Given the documented immunsuppressive

capacity of the malaria parasite, the potential inhibitory impact of

malaria infections against the protective immunity induced by new

TB vaccines is a significant concern.

Although concurrent helminth or HIV infections have been

shown to suppress BCG-induced anti-tuberculosis protective

responses, the effect of malaria co-infections on the protective

efficacy of vaccines designed to protect against tuberculosis has not

been thoroughly investigated [18–20]. In this study, we examined

the impact of malaria co-infections on the capacity of BCG and

new TB vaccines to protect against an aerogenic virulent M.

tuberculosis challenge of mice. The P. yoelii 17XNL parasite was

used as a source of malaria infection in mice. The effect of the

malaria infection on the immunity induced by TB vaccines was

assessed in vitro using flow cytometry and in vivo with a standard

mouse model of pulmonary tuberculosis. Although the flow

cytometric data suggest that specific vaccine-induced immune

responses can be suppressed by acute malaria infections, no overall

reduction in pulmonary protection against TB was detected in

vaccinated co-infected mice.

Materials and Methods

Animals
C57BL/6 female mice that were 6–8 weeks of age were

obtained from the Jackson Laboratories (Bar Harbour, Maine). All

mice used in this study were maintained under appropriate

conditions at the Center for Biologics Evaluation and Research,

Bethesda, MD. This study was done in accordance with the

guidelines for the care and use of laboratory animals specified by

the National Institutes of Health. This protocol was approved by

the Institutional Animal Care and Use Committee of the Center

for Biologics Evaluation and Research under Animal Study

Protocol 1993-09.

Vaccines
The BCG Pasteur vaccine preparation was derived from the

mycobacterial culture collection of the Trudeau Institute. The E6-

85B protein is an ESAT6-antigen 85B M. tuberculosis fusion protein

which was purified by nickel affinity chromatography after cloning

and expressing the ESAT6-antigen 85B fusion gene in the

pET23b vector system (Novagen, SanDiego CA). The protein-

adjuvant formulation was prepared by mixing the fusion protein

(50 mg/ml) with dimethyldioctadecylammonium bromide (DDA;

150 mg/ml; Kodak) and monophosphoryl lipid (MPL; 250 mg/ml;

Avanti Polar Lipids, Alabaster, AL). The MVA-5TB vaccine was

generated by cloning five M. tuberculosis genes (antigen 85A,

antigen 85B, ESAT6, Mtb39 and HSP65) as well as the

interleukin-15 (IL-15) gene into a modified vaccinia virus Ankara

(MVA) vector [21].The double deletion mutant strain (DsecA2-

DlysA) of the H37Rv strain of M. tuberculosis was constructed using

specialized transduction to disrupt the chromosomal copy of the

lysA gene of an unmarked DsecA2 clone, as described previously

[22].

Immunizations
Five female C57BL/6 mice per group were used in the

immunization studies. For live BCG vaccine, 106 CFU was given

once subcutaneously. Five micrograms of the E6-85 protein in the

DDA (15 mg)–MPL (25 mg) adjuvant was administered three

times, 2 weeks apart. For the attenuated strain/protein mixture

vaccine, 106 CFU of the DsecA2DlysA live attenuated M.

tuberculosis strain was mixed with the E6-85/DDA adjuvant

formulation and administered three times, 2 weeks apart. For the

prime boost experiments, one month after the three priming

vaccinations with the E6-85 vaccine preparation, two doses of

56107 PFU of the MVA/IL15/5TB construct were given

subcutaneously 1 month apart.

Plasmodium yoelii NL infections. Frozen stocks of P. yoelii

17XNL-infected erythrocytes were thawed and used to intra-

peritoneally (ip) infect three donor C57BL/6 mice. Percent

parasitemias were then monitored every other day using blood

smears. When ,10 to 20% parasitemias were detected, blood was

collected by cardiac puncture, diluted in PBS and used to infect

experimental animals with 16106 P. yoelii 17XNL parasites in

200 ul of PBS by the ip. route. In these studies, five to fifteen

C57BL/6 mice per group were used.

Evaluation of vaccine-induced protection using a mouse
model of pulmonary tuberculosis

For the vaccination/challenge experiments, five mice were

evaluated for each group. At 2, 6, or 10 weeks following the P. yoelii

infections, vaccinated and control mice were aerogenically

challenged with the M. tuberculosis Erdman suspended in PBS at

a concentration known to deliver 100–200 CFU in the lungs over

a 30-min exposure time in a Middlebrook chamber (GlasCol,

Terre Haute, IN). To assess the level of pulmonary exposure

during the aerosol challenge, the number of CFU in the lung were

measured at 4 h after the M. tuberculosis infection. To determine

the extent of pulmonary bacterial growth, the mice were sacrificed

at 4 weeks post-challenge. The lungs were then removed

aseptically and homogenized separately in PBS using a Seward

Stomacher 80 blender (Tekmar, Cincinnati, OH). The lung

homogenates were diluted serially in 0.4% PBS–Tween 80, and

50-ml aliquots were placed on Middlebrook 7H11 agar (Difco)

plates supplemented with 10% OADC enrichment (BectonDick-

inson, Sparks, MD) medium, 2 mg/ml 2-thiophenecarboxylic acid

hydrazide (TCH) (Sigma), 10 mg/ml ampicillin, and 50 mg/ml

cycloheximide (Sigma). The addition of TCH to the agar plates

inhibits the growth of BCG but not M. tuberculosis. All plates were

incubated at 37uC for 14 to 17 days in sealed plastic bags, and the

colonies were counted to determine the organ bacterial burdens.

Assessment of lung inflammation
To evaluate the level of inflammation in the lungs of mice

infected with M. tuberculosis, lung sections stained with hematoxylin

and eosin (H & E) were photographed using a Nikon Optishot 2

microscope fitted with a camera which was connected to a

computer. Spot Advanced software was used to save the computer
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images. The Image Pro Plus program (Media Cybernetics, Silver

Spring, MD) was utilized to objectively assess the level of

inflammation present in each image. In these images, the inflamed

areas stained a more intense purple than the non-inflamed areas.

For the analyses, colors were assigned as follows: red to represent

the inflamed areas, green to represent non-inflamed areas, and

yellow to represent the background. After the color assignments

were established, the computer software identified inflamed and

non-inflamed sections on each slide. The percentage of the lung

sections staining red, green, or yellow was then determined by the

computer software. To quantitate the percent area inflamed, we

determined the mean percent red area from five lung sections of

each of the different groups.

Flow cytometry
Five BCG vaccinated and control mice (3 mice per group) were

used to determine the frequency of CD4 MFT cells at each time

point post-vaccination. Lung cells were isolated by homogenizing

the lung tissue in a stomacher bag using the end of a 20 cc syringe

in PBS containing 2% FBS (PBS-FBS). The tissue was then

incubated in PBS-FBS containing 4 mg/ml collagenase (final

concentration) at 37uC for one hour. Afterward, the lung tissue

was removed from the cells by placing the suspension in a Filtra-

Bag (Labplas, Quebec, Canada). The resulting single cell

suspension was centrifuged to pellet the cells and treated with

ACK lysing buffer as described above. After washing, the cells

were passed through a 70 mm cell strainer, pelleted and counted.

After washing the lung cells with an equal volume of media, the

cells were resuspended in cDMEM-FBS, counted and added to

wells of a 24-well plate at a density of 2.56106 cells per well in

1.0 ml cDMEM-FBS. For measurement of antigen-specific

responses, BCG Pasteur (or BCG+PPD) was added to the wells

at a multiplicity of infection (MOI) of 0.5 bacilli per spleen cell.

Wells which contained only lung cells served as unstimulated

controls. Infections were allowed to proceed overnight followed by

the addition of Golgiplug (BD Biosciences, San Jose CA) (1 ml per

well). After 4–5 hours of incubation, the unbound cells were

removed from the wells and transferred to 12675 mm tubes,

washed with PBS and resuspended in ,50 ml PBS. Live-Dead

stain (Invitrogen, Carlsbad, CA) (10 ml of a 1:100 dilution) was

added to each tube and incubated for 30 min. at room

temperature to allow for gating on viable cells. After washing

the cells with PBS-FBS, antibody against CD16/CD32 (FccIII/II

receptor, clone 2.4G2) (Fc block) was added in a volume of ,50 ml

and incubated at 4uC for 15 min. The cells were then stained for

30 min. at 4uC by adding antibodies against the CD4 (rat anti-

mouse CD4 Alexa Fluor 700 [AF-700] Ab, clone RM4–5), and

CD8 (rat anti-mouse CD8 peridinin chlorophyll protein complex

[PerCP] Ab, clone 53-6.7) proteins at 0.1 and 0.2 mg per tube

respectively. Following the incubation, the cells were washed twice

with PBS and then fixed for 30 min. at 4uC with 2%

paraformaldehyde in PBS. After fixing, the cells were pelleted,

washed twice with PBS-FBS and stored at 4uC. Fixed cells were

washed twice with perm-wash buffer (1% FBS, 0.01 M HEPES,

0.1% saponin in PBS) followed by intracellular staining using the

following antibodies at 0.2 mg per tube: rat anti-mouse IFN-c
allophycocyanin [APC] Ab, clone XMG1.2; rat anti-mouse TNF-

a fluorescein isothiocyanate [FITC] Ab, clone MP6-XT22; rat

anti-mouse IL-2 phycoerythrin [PE] Ab, clone JES6-5H4. The

cells were incubated at 4uC for 30 min., washed twice with perm-

wash buffer and then twice with PBS-FBS. All antibodies were

obtained from BD Biosciences.

The cells were analyzed using a LSRII flow cytometer (Becton

Dickinson) and FlowJo software (Tree Star Inc., Ashland, Oregon).

We acquired 250,000 events per sample and then, using FlowJo,

gated on live, single cell lymphocytes. To determine the frequency

of different populations of MFT cells, we gated on CD4 or CD8 T

cells staining positive for TNF-a and IFN-c, TNF-a and IL-2,

IFN-c and IL-2 or all three cytokines.

Median fluorescence intensity (MFI) assessments
The MFI for IFN-c or TNF-a from monofunctional and

multifunctional CD4 and CD8 T cells was evaluated using the

FlowJo software. For this study, the MFI is the average

fluorescence intensity value for individual T cells secreting only

IFN-c or TNF-a, secreting both IFN-c and TNF-a or cells

secreting IFN-c, TNF-a and IL-2. The data are presented as the

mean 6 the standard error of the individual MFI assessments for 5

groups of mice.

Statistical analyses
The protection, lung inflammation, and flow cytometry data

were evaluated using t test analysis of the GraphPad Prism, version

5, program.

Results

The impact of malaria co-infections on the effectiveness
of BCG vaccine in a mouse model of pulmonary
tuberculosis

To assess the impact of a malaria co-infection on the

effectiveness of vaccines designed to protect against M. tuberculosis,

a murine co-infection immunization model was developed.

Initially, mice were vaccinated subcutaneously with 106 CFU of

BCG Pasteur. Two months after the BCG immunization, the mice

were given 106 P. yoelii blood stage parasites by the intraperitoneal

route. At an appropriate time period following the malaria

infection (2–10 weeks), the mice were aerogenically challenged

with 100–200 CFU of virulent M. tuberculosis Erdman. Four weeks

later, the TB infected mice were sacrificed and pulmonary

mycobacterial burdens and lung pathologies were determined.

For these studies, since extensive splenomegaly was seen after

malaria infections and the lung is the primary site of M. tuberculosis

infections, we concentrated on evaluating the pulmonary impact of

the co-infection on the effectiveness of TB vaccines.

Since our aerosol TB challenge model had been previously

established, our initial efforts for these studies focused on

characterizing the kinetics of the P. yoelii infection. In the

representative data shown in Figure 1, malaria parasitemia in

naı̈ve mice peaked at 20.5% on day 14 and the infection was

cleared by day 20. Consistent with previous studies, moderate

protection against malaria parasitemia was seen in BCG

vaccinated mice [23,24]. In this experiment, the level of

parasitemia was reduced by 41% relative to naives at day 12

and 70% at day 14 in BCG-vaccinated mice but parasite clearance

was again seen by day 20.

The initial vaccination/challenge studies evaluated the temporal

effect of P. yoelii infections on the effectiveness of BCG vaccine to

protect against an aerogenic M. tuberculosis challenge. Mice were

infected with P. yoelii two months after BCG immunization and

then were challenged with M. tuberculosis at either two, six or ten

weeks following the malaria infection. When mice were challenged

with M. tuberculosis at two weeks after the malaria infection (at peak

parasitemia levels), no significant impact was detected on the

capacity of naı̈ve or BCG vaccinated mice to control the acute

tuberculosis lung infections at 4 weeks post-challenge (Figure 2). In

both malaria infected and non-infected BCG vaccinated mice,

significant anti-tuberculosis protection (.0.95 log10 compared to
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naı̈ve controls) were seen at 4 weeks after the M. tuberculosis

challenge. Similarly, at 6 and 10 weeks following the malaria

infection, the anti-tuberculosis protective responses induced by the

BCG vaccinated mice were not statistically different than the

protection evoked in P. yoelii infected BCG vaccinated animals.

Additionally, the pulmonary mycobacterial burdens were also not

different in the naı̈ve and P. yoelii infected naı̈ve groups at 2, 6 and

10 week post malaria infection time point (data not shown). For

example, the lung CFU levels that were detected when non-

vaccinated mice were challenged with M. tuberculosis at the peak of

malaria parasitemia (6.3660.12) were statistically equivalent to

lung burdens seen in naı̈ve mice infected with M. tuberculosis

(6.2660.18). Overall, the presence of malaria parasites did not

exacerbate the tuberculous pulmonary infection when the M.

tuberculosis challenge occurred either near the peak of parasitemia

or after parasite clearance. Interestingly, nearly identical results

were obtained in co-infection studies of mice that had been

vaccinated with BCG eight months before the P. yoelii blood stage

infection and then were challenged with M. tuberculosis at the peak

of parasitemia. At 8 months after BCG immunization, statistically

equivalent lung CFU levels were detected in the BCG (5.5960.11

log10 CFU) and BCG/P. yoelii (5.5860.22) groups as well as the

naı̈ve (6.4060.30) and naı̈ve/P. yoelii (6.1160.15) animals.

To support these findings, lung pathology was analyzed using

H&E sections from mice that were challenged with M. tuberculosis

two weeks after a P. yoelii infection. Overall, the P. yoelii infections

did not impact lung pathology observed after an aerogenic M.

tuberculosis infection. At 4 weeks post challenge, substantially less

inflammation was observed in lung sections of BCG vaccinated

and the BCG/P. yoelii infected animals relative to naı̈ve controls

(Figure S1). The granulomatous type structures were more

condensed, mature, and lymphocyte-rich in the lungs of both

BCG vaccinated groups compared to the larger, more immature

granulomas seen in the naı̈ve and naı̈ve/P. yoelii mice at this time

point. To quantitate the pathology results, the lung sections were

assessed by computerized scanning using the Image pro analysis

system as described earlier [25]. With this imaging system, the

proportion of lung sections that are inflamed can be quantitatively

defined. This pathology analysis showed no statistical differences

in the inflammatory response values seen in lung sections taken

from the BCG (20.266.4) and BCG/P. yoelii infected mice

(20.969.0). Similarly, the lung pathology values were not different

in naı̈ve (38.6610.6) and naı̈ve/P. yoelii infected (34.963.9)

animals.

The impact of malaria-M. tuberculosis co-infections on the
protective immunity induced by novel TB vaccines

To assess the impact of malaria infection on the effectiveness of

novel TB vaccine candidates, C57BL/6 mice were vaccinated with

three unique immunizing preparations using different vaccination

strategies. In an initial experiment with a novel vaccine, mice were

immunized with the E6-85 TB fusion protein (ESAT6-Antigen

85B) suspended in DDA/MPL adjuvant [26,27]. As controls,

other groups of mice were immunized with BCG. At two weeks

after a P. yoelii infection, mice were aerogenically challenged with a

low dose of M. tuberculosis. Four weeks later, pulmonary bacterial

burdens were evaluated. Again no significant differences in lung

CFU were seen between the malaria-infected and the non-infected

control groups. As seen in Figure 3, the P. yoelii infection clearly

did not increase pulmonary M. tuberculosis CFU levels in non-

vaccinated mice. Moreover, the levels of protection detected in the

vaccinated animals were consistent with previous results and were

unaffected by the P. yoelii infection (1.4 log10 for the BCG and

BCG/P. yoelii groups; 1.2 log10 for the E6-85 and E6-85/P. yoelii

mice) [26]. In a second study of novel TB vaccination strategies,

mice were immunized with either a attenuated M. tuberculosis

DsecADlysA vaccine strain mixed with the E6-85/DDA formulation

or a prime-boost procedure that involved priming with the E6-85

Figure 1. The levels of parasitemias following a P. yoelii
infection of naı̈ve and BCG-vaccinated C57BL/6 mice. The
parasitemia levels were detected in blood smears from 5–10 BCG
vaccinated (closed squares) and naı̈ve (open triangles) mice at a specific
day after the P. yoelii challenge. The parasitemia curves contain data
from a single experiment which is representative of results of the P.
yoelii infections done in this study.
doi:10.1371/journal.pone.0028164.g001

Figure 2. Infection with Plasmodium yoelii NLmalaria does not
reduce the anti-tuberculosis pulmonary protective immunity
induced by immunization with BCG vaccine. C57Bl/6 mice were
vaccinated subcutaneously with BCG and two months later infected
with P. yoelii by the intraperitoneal route. The mice were challenged by
the aerosol route with M. tuberculosis Erdman at 2, 6, or 10 weeks after
the infection with P. yoelii. Mycobacterial CFU in the lung were assessed
at 4 weeks post-challenge. The data are represented as the mean (6 the
standard error of the mean) protection seen in BCG-vaccinated non-
infected (black bars) and BCG-vaccinated P. yoelii infected mice (grey
bars). Protection is defined as the lung CFU (log10) difference between
naı̈ve and BCG-vaccinated mice.
doi:10.1371/journal.pone.0028164.g002
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protein adjuvant mixture followed by boosting with a MVA-based

vaccine which over-expressed 5 M. tuberculosis antigens and IL-15

(MVA/IL-15/5Mtb) [28,29]. As shown in Figure 4, when the M.

tuberculosis challenge occurred during elevated levels of parasitemia

(2 weeks), the extent of anti-tuberculosis protection induced by the

attenuated M. tuberculosis vaccine/protein mixture and the prime-

boost immunization procedure were not impacted by the malaria

infection. About 1.3 log10 protection was seen in both malaria

infected and non-infected prime-boost groups and 1.6–1.7 log10

protective responses were measured for both the DsecADlysA M.

tuberculosis attenuated vaccine mixture and DsecADlysA vaccine/P.

yoelii infected animals Furthermore, the malaria infection again did

not exacerbate the tuberculous disease because no significant

differences in pulmonary mycobacterial burdens were again

detected between the malaria infected non-vaccinated and naı̈ve

control groups at 4 weeks post challenge.

Flow cytometric analysis of vaccine-induced immune
responses in BCG vaccinated and malaria infected BCG
vaccinated mice

Recent studies have shown that malaria infections can have

immunomodulatory effects on host immune responses and in

particular, malaria can inhibit antigen specific T cell responses [5–

9]. To assess whether pulmonary mycobacterial-specific T cell

responses were influenced by the malaria infection in our model,

multi-parameter flow cytometric analysis was done on lung cells

recovered from experimental animals. For these studies, mice were

infected with P. yoelii two months after BCG vaccination and then

2, 7, or 10 weeks later the mice were sacrificed and the lung cells

were isolated and stimulated with BCG (a surrogate for the M.

tuberculosis challenge). Following intracellular cytokine staining, the

cells were analyzed by flow cytometry. Since the induction of

multifunctional T cells (MFT) by immunization has been shown to

correlate with protection against Leishmania and M. tuberculosis in

animal models, the cells were evaluated for the concurrent

expression of IFN-c TNF-a and/or IL-2 [30–32]. As seen in

Figure 5A and Figure S2, the levels of CD4 cells producing IFN-c,

IFN-c/TNF-a, or IFN-c/TNF-a/IL2 all exceeded 1% in BCG

vaccinated mice at week 2 of the P. yoelii infection (10 weeks post-

BCG immunization) but declined at weeks 7 and 10 post-infection

(15 and 18 weeks post-BCG vaccination). In contrast, the

frequency of IL-2 and TNF-a/IL2 producing cells in BCG

vaccinated animals significantly increased during the 10 week

observation period. In these studies, the frequencies of cells from

naı̈ve controls expressing multiple cytokines were generally less

than 0.01% (data not shown). Although lower overall cell

frequencies were seen, a similar pattern was observed for CD8

T cells taken from BCG vaccinated animals that were not infected

with malaria (Figure 5B). The relative proportions of cells

producing IFN-,c IFN-c/TNF-a and IFN-c/TNF-a/IL2 were

elevated at 10 weeks after the BCG immunization while the

frequencies of these cells declined in the lung 5–7 weeks later.

Consistent with the CD4 data, the frequency of IL-2 and TNF-c/

IL2 producing CD8 T cells increased at the later time points of the

experiment, but the magnitude was higher than that seen for CD4

cells.

Surprisingly, the malaria infection did not generally impact the

frequencies of vaccine-induced CD4 and CD8 cytokine producing

cells at the later stages of this study. At 7 and 10 weeks after the

malaria challenge (15 and 17 weeks post-BCG vaccination),

malaria-related alterations in the cellular frequencies were not

observed in BCG vaccinated animals. However, a negative impact

was seen on the frequencies of cells synthesizing IFN-c/TNF-a/

IL2 in BCG vaccinated mice when malaria parasitemias were

substantially elevated (2 weeks post P. yoelii infection). For the CD4

T cells, the frequencies of triple positive cells were significantly

decreased (BCG = 1.22%, BCG/P. yoelii = 0.29%). Interestingly,

dramatic declines in the triple positive CD8 T cells were also seen

at the peak of P. yoelii infection (BCG = 0.355%, BCG/

P.yoelii = 0.002%).

An important characteristic of MFT cells is their capacity to

express substantially higher levels of cytokines than monofunc-

tional cells. To further evaluate the effect of malaria infections on

the immune responses induced by BCG vaccinated mice, the levels

of cytokine production in pulmonary CD4 and CD8 T cells was

assessed. For this study, the extent of cytokine expression was

determined by evaluating the median fluorescence intensities

(MFI) of the experimental lung cells. In contrast to the cellular

frequencies of pulmonary cells from BCG vaccinated mice, IFN-c
MFI values for CD4 MFT cells remained elevated throughout the

study. As expected, the levels of IFN-c expressed in IFN-c/TNF-a
and triple positive CD4 MFT cells from BCG vaccinated mice

were increased 4–11 fold (relative to monofunctional IFN-c
producing CD4 T cells) during the entire study. Although the IFN-

c MFI values for CD4 MFT cells from BCG immunized mice

were not effected at 7 and 10 weeks after the malaria challenge,

the extent of IFN-c expression in triple-positive CD 4 T cells was

reduced 60% in the malaria infected, BCG vaccinated animals

compared to the BCG vaccinated controls at 2 weeks post P. yoelii

challenge (Figure 6). While the impact of BCG vaccination was

minimal at the later time points, substantially elevated IFN-c MFI

values were detected in CD8 T cells at the 2 week time point.

Relative to monofunctional cells, increased IFN-c MFI values (5–

35 fold) were detected by flow cytometric analysis of IFN-c/TNF-

a and IFN-c/TNF-a/IL2 producing cells at the early time point.

Figure 3. Infection with P. yoelii malaria does not decrease the
acute anti-tuberculosis pulmonary protection induced by
immunization with the M. tuberculosis ESAT6-Antigen 85 fusion
protein formulated in DDA/MPL adjuvant. C57Bl/6 mice were
vaccinated once with BCG or three times two weeks apart the E6-85/
adjuvant vaccine and were infected with P. yoelii two months after the
initial vaccination. The mice were aerogenically challenged with virulent
M. tuberculosis at 2 weeks after the P. yoelii infection and pulmonary
mycobacterial CFU were detemined at 4 weeks post-challenge. The
asterisks show significant CFU differences (p,0.05) relative to naı̈ve
controls.
doi:10.1371/journal.pone.0028164.g003
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Interestingly, significantly suppressed MFI values were seen in

CD8 MFT cells recovered from malaria infected, BCG vaccinated

mice at the peak of the P. yoelii infection. In these mice, the IFN-c
MFI values were decreased by 79% (IFN-c/TNF-a CD8 cells) and

98% (triple positive CD8 cells) by the malaria infection.

Similarly, elevated TNF-a MFI values for CD4 T cells of BCG

vaccinated mice were detected in IFN-c/TNF-a double positive

(increased 5 fold compared to monofunctional cells) and triple

positive MFT cells (22 fold increase) at the two week time point

(Figure 7). In contrast, for the malaria infected, BCG vaccinated

mice, the TNF-a MFI values of CD4 T cells were strikingly reduced

in IFN-c/TNF-a (70% reduction) and triple positive cells (89%)

relative to controls not infected with P. yoelii. While significant 2–3-

fold increases in TNF-a MFI values compared to controls were seen

in CD4 MFT cells at the later time points, the malaria infections did

not impact the lower overall MFI values. For CD8 cells,

substantially elevated TNF-a MFI values relative to monofunctional

cells were observed for the IFN-c/TNF-a (88x) and the triple

positive cells at 2 weeks (44x) after the malaria infection. However,

for the malaria infected, BCG vaccinated mice, dramatic declines in

CD8 TNF-a MFI values of .99% were detected in IFN-c/TNF-a
and triple positive CD8 MFT cells at two weeks after the P. yoelii

infection. At 7 and 10 weeks post-infection, consistently low TNF-a
MFI values were seen in all CD8 T cell subsets.

Discussion

An understated concern about the deployment of new TB

vaccines is the unknown impact that infections with other

pathogens prevalent in the area may have on TB vaccine efficacy.

In many areas endemic for tuberculosis, co-infections with

unrelated pathogens are common and these co-infecting agents

may modulate vaccine-induced immune responses. Earlier studies

have shown that concurrent infections can decrease the anti-

tuberculosis protective responses induced by immunization with

BCG. In animal models, helminth infections have been shown to

reduce the efficacy of BCG vaccine to protect against virulent M.

tuberculosis [18]. Exposure to non-tuberculous mycobacteria can

also inhibit the induction of protective immunity to tuberculosis by

BCG immunization [33,34]. In humans, HIV infection can

severely impair the protective immune responses elicited by

vaccination with BCG [20]. With the considerable geographic

overlap in areas endemic for malaria and tuberculosis and the

recent reports of co-infection of these organisms, it is important to

assess the impact of malaria infections on the effectiveness of

vaccines designed to prevent tuberculosis in pre-clinicalanimal

models. Many different animal species are susceptible to

tuberculous infections and artificially infected mice, guinea pigs,

rabbits, and non-human primates (NHP) have been used as

models of TB [35]. While mice (like humans) are relatively

resistant to TB, can be infected by the aerosol route, and have

been successfully used to elucidate host-pathogen interactions, TB

infections of guinea pigs and rabbits yield more relevant lung

pathology. Although the NHP model has been valaubale for

studying TB latency as well as host immune responses, the cost,

BSL-3 space requirements, and the potential for horizontal

transmission of disease has limited its usefulness. Given that we

had previously established standardized and affordable murine

Figure 4. Infection with P. yoelii malaria does not decrease the acute anti-tuberculosis pulmonary protection induced by
vaccination with the DsecADlysA attenuated M. tuberculosis strain mixed with the E6-85/adjuvant formulation or immunization with
the E6-85/adjuvant followed by boosting with TBMVA/IL-15 vaccine. For the DsecADlysA mixture vaccine, C57Bl/6 mice were vaccinated
three times two weeks apart and then were infected with P. yoelii 4 months after the final vaccination. For the prime/boost protocol, mice were
vaccinated with the E6-85/adjuvant formulation three times two weeks apart, and one month later boosted with the TBMVA/IL-15 vaccine twice one
month apart. The mice that had been primed and boosted were infected with P. yoelii two months after the final booster vaccination. All vaccinated
mice were aerogenically challenged with virulent M. tuberculosis at 2 weeks after a P. yoelii infection and pulmonary mycobacterial CFU were
determined at 4 weeks post-challenge. The asterisks show significant CFU differences (p,0.05) relative to naı̈ve controls.
doi:10.1371/journal.pone.0028164.g004
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models of TB and malaria we decided to develop a mouse TB-

malaria co-infection model. In this study, we showed using this

mouse model that P. yoelii malaria co-infections did not have a

significant impact on the capacity of four different M. tuberculosis

vaccine formulations to control pulmonary growth of an acute

virulent M. tuberculosis infection. In repeated experiments, we

demonstrated that the pulmonary protective responses induced by

vaccination with either BCG, the E6-Ag85 TB fusion protein

formulated in adjuvant, a DsecADlysA M..tuberculosis attenuated

strain/protein mixture or a prime-boost strategy involving the E6-

85 antigen preparation and the MVA/IL15/5Mtb vaccine were

not statistically different in immunized mice that had been infected

with P. yoelii relative to uninfected vaccinated controls. These

findings are consistent with results from a malaria chemoprophy-

laxis trial of Nigerian children where the immunogenicity of BCG

vaccine was not affected by the presence of malaria parasitemia

[6]. Collectively, these data suggest that a primary infection with

malaria parasites will likely not significantly impact the capacity of

new TB vaccines to control acute M. tuberculosis infections in

humans.

Although malaria infections in a murine model did not reduce

the overall protection in the lung induced by vaccination against

TB, BCG vaccine-induced pulmonary immune responses were

impacted by elevated malaria parasitemia levels. Published reports

in humans and mice have shown that CD4 and CD8 T cell

responses against malaria or non-malaria antigens can be inhibited

by malaria infections [9,36–39]. In our study, malaria infections

were shown to significantly decrease the frequency of CD4 and

CD8 triple positive MFT cells expressing IFN-c, TNF-a, and IL-2

in lung cells of BCG vaccinated mice when high levels of

parasitemia were present. Moreover, substantial reductions in

cytokine expression (as measured by the median fluorescence

intensity) was seen in lung MFT cells from P. yoelii infected BCG

vaccinated mice relative to uninfected BCG immunized animals.

For example, the IFN-c MFI values decreased by 60% in CD4

triple positive T cells (compared to controls) while a dramatic 98%

reduction in MFI values was detected for the CD8 triple positive

MFT cells recovered from the lungs of P. yoelii infected and BCG

vaccinated mice. Additionally, the TNF-a MFI values for CD8

MFT cells was dramatically decreased by 99%. While a substantial

suppression of specific T cell responses at 2 weeks after the malaria

infection were clearly seen, the mechanisms by which the P. yoelii

infections reduce the activity of these specific T cell subsets are

uncertain. During acute blood stage malaria infections, regulatory

Figure 5. The frequency of CD4 (A) and CD8 (B) MFT cells recovered form the lungs of BCG vaccinated (black bars) and BCG
vaccinated, malaria infected (grey bars) mice at 2, 7, and 10 weeks following the P. yoelii challenge. Lung cells were removed and
pooled from 3 mice per group, stimulated overnight with BCG, and analyzed by multi-parameter flow cytometry to determine the frequency of cells
producing either IFN-c and TNF-a (IFN/TNF), IFN-c and IL-2 (IFN/IL2), TNF-a and IL-2 (TNF/IL2), and IFN-c, TNF-a, and IL-2 (Triple Positive, TP). The data
are presented as the mean frequency 6 SEM for 5 groups of mice. #, Significant differences between the cellular frequencies of the BCG vaccinated
and the BCG vaccinated, malaria infected groups.
doi:10.1371/journal.pone.0028164.g005
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T cells producing IL-10 and dendritic cells secreting TGF-b and

prostaglandin E2 have been identified [9,40]. IL-10, TGF-b, and

PGE2 have been shown to down-regulate general pro-inflamma-

tory T cell responses, especially CD8 T cell responses. Whether

these immune mediators specifically target vaccine-induced MFT

cells is currently unclear. Importantly, the activity of MFT cells

was not substantially impacted by the P. yoelii infection at 7 and 10

weeks after the malaria challenge. At these time points, when the

malaria parasitemia in the blood was undetectable, both the

cellular frequencies and the MFI values of CD4 and CD8 T cell

subsets of the BCG vaccinated and the BCG vaccinated, malaria

infected mice were not significantly different. Our data are

consistent with the results of an earlier study which showed a

substantial recovery of CD8 T cell function at one month after a P.

yoelii infection [9]. Taken together, these data suggest that the

suppression of BCG-induced T cell function by a P. yoelii infection

is short-lived and the malaria-induced suppressive activity wanes

after parasite clearance. It should be noted that a temporal decline

in the frequency of IFN-c, IFN-c/TNF-a, and triple positive

pulmonary T cells was generally observed in BCG vaccinated mice

with or without concurrent P. yoelii infections. These reduced T

cell frequencies seen at 7 and 10 weeks likely resulted because of

the declining numbers of BCG organisms in the lung at 4–5

months after the BCG immunizations [41].

The reduction in CD4 and CD8 triple positive MFT responses

seen in malaria infected animals at 2 weeks after the P. yoelii

infection was surprising because of the previously reported

correlation between vaccine-induced triple-positive cells and

protective immunity. In animal models of Leishmania and M.

tuberculosis, vaccine-induced immune responses from triple positive

MFT cells have correlated with in vivo protection against an

infectious challenge [30–32]. While CD8 T cells are probably not

critical for controlling an acute tuberculous infection in mice, CD4

T cells are clearly essential for limiting the proliferation of the

pathogen in the lung after an aerogenic M. tuberculosis challenge

[42,43]. If there is a linear correlation between the early induction

of triple positive CD4 MFT cells by vaccines and anti-tuberculosis

protection, then the decreased frequencies and intensities of CD4

MFT triple positive cells observed in the flow cytometric studies of

BCG vaccinated malaria infected mice at 2 weeks post-infection

should have resulted in decreased protection. The apparent lack of

correlation between the early levels of vaccine-induced triple

Figure 6. The Median Fluorescent Intensities (MFI) for IFN-c of CD4 (A) and CD8 (B) T cells recovered from the lungs of BCG-
vaccinated (black bars) and BCG vaccinated, malaria infected (grey bars) mice at 2, 7, and 10 weeks following a P. yoelii challenge.
The lung cells were pooled from 3 mice per group, stimulated overnight with BCG, and analyzed by flow cytometry. The MFIs are presented as the
mean MFI 6 SEM for 5 groups. IFN = monofunctional IFN-c producing T cells, IFN/TNF = multifunctional IFN-c and TNF-a expressing T cells, Triple
Positive (TP) = IFN-c, TNF-a, and IL-2 producing T cells. * MFI values for IFN-c that are significantly higher than the monofunctional cells. # IFN-c MFI
responses which are significantly lower in the BCG vaccinated, malaria-infected mice compared to BCG vaccinated controls.
doi:10.1371/journal.pone.0028164.g006
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positive responses and anti-tuberculosis protection could have

been caused by the absence of malaria-induced suppression seen at

later time points in the study when pulmonary bacterial burdens

were evaluated. Alternatively, the association between vaccine-

induced MFT cell responses and anti-microbe protection may be

more complex than has been anticipated. Using a SIV macaque

model, Sui et al recently reported that the levels of antigen-specific

CD8 MFT cells correlated with protection but the correlation was

non-linear and involved a threshold-like effect [44]. In studies of

M. tuberculosis vaccines, our group recently showed that the anti-

tuberculosis protective responses evoked by immunization were

also related to the induction of double-positive IFN-c/TNF-a
expressing CD4 T cells [32]. In the current study, the activity of

double-positive CD4 MFT cells (which were not suppressed by the

malaria infection) could have partially compensated for the

reduction of triple-positive CD4 MFT cells seen at two weeks

after the malaria challenge. Clearly more studies including well

designed longitudinal experiments are needed to delineate the role

of vaccine-induced MFT cells in protecting against tuberculous

disease. Improved strategies to efficiently purify MFT cells would

facilitate studies focusing on the function of these vaccine-induced

MFT cells.

An important concern relevant to malaria and tuberculosis co-

infections is whether cellular immunosuppression often associated

with malaria parasitemia could result in increased cases of

clinically detectable tuberculosis. In this study, primary P. yoelii

infections did not exacerbate acute M. tuberculosis lung disease in

non-vaccinated mice. In repeated experiments, no statistical

differences were seen in pulmonary mycobacterial burdens or

lung pathology at one month post-challenge in infected mice

relative to naı̈ve controls. In earlier studies, Scott et al and Hawkes

et al had reported that malaria exacerbates mycobacterial disease

in acute and latent infection models [45,46]. However, in both

studies only modest increases in organ CFU levels and/or survival

rates were detected. To further examine the impact of P. yoelii

parasitemia on tuberculous disease, we are currently evaluating

whether malaria infections increase the reactivation rate of mice

with low level latent-like TB infections. The results of this study

could be helpful for delineating whether malaria infections can

contribute to the reactivation of latent tuberculosis.

Figure 7. The Median Fluorescent Intensities (MFI) for TNF-a of CD4 (A) and CD8 (B) T cells recovered from the lungs of BCG-
vaccinated (black bars) and BCG vaccinated, malaria infected (grey bars) mice at 2, 7, and 10 weeks following a P. yoelii challenge.
The lung cells were pooled from 3 mice per group, stimulated overnight with BCG, and analyzed by flow cytometry. The MFIs are presented as the
mean MFI 6 SEM for 4 groups. TNF = monofunctional TNF-a producing T cells, IFN/TNF = multifunctional IFN-c and TNF-a expressing T cells, TP (Triple
Positive) = IFN-c, TNF-a, and IL-2 producing T cells. * MFI values for TNF-a that are significantly higher than the monofunctional cells. # TNF-a MFI
responses which are significantly lower in the BCG vaccinated, malaria-infected mice compared to BCG vaccinated controls.
doi:10.1371/journal.pone.0028164.g007
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Overall, our studies in the mouse model of pulmonary

tuberculosis suggest that primary malaria co-infections should

not significantly impact the efficacy of novel immunization

strategies against tuberculosis. However, to confirm these findings,

well-designed studies are needed in humans to better understand

the complex interactions between these co-infecting organisms.

The results of these studies should facilitate the design of more

effective immunization and therapeutic procedures against

tuberculosis for use in regions with high rates of concomitant

infections.

Supporting Information

Figure S1 H & E stained lung sections from BCG
vaccinated and malaria infected mice after a M.
tuberculosis challenge by the aerosol route. Sections were

obtained from naı̈ve, BCG vaccinated, non-immunized-malaria

infected and BCG vaccinated-malaria infected mice at 4 weeks

after an aerogenic challenge with M. tuberculosis and analyzed by

computer scanning using an Image pro analysis system. This

analaysis showed no statistical diiferences in the inflammatory

responses for BCG (20.266.4) and BCG/P. yoelii infected mice

(20.969.32). Similarly, significant differences were not seen

between the lung pathology values for naı̈ve (38.6610.6) and

naı̈ve/P. yoelii infected (34.963.9) animals.

(TIF)

Figure S2 The frequency of CD4 (A) and CD8 (B)
monofunctional cells recovered form the lungs of BCG
vaccinated (black bars) and BCG vaccinated, malaria
infected (grey bars) mice at 2, 7, and 10 weeks following
the P. yoelii challenge. Lung cells were removed and pooled

form 3 mice per group, stimulated overnight with BCG, and

analyzed by multi-parameter flow cytometry to determine the

frequency of cells producing either IFN-c, TNF-a, or IL-2. The

data are presented as the mean frequency 6 SEM for 4 groups of

mice. #, Significant differences between the cellular frequencies of

the BCG vaccinated and the BCG vaccinated, malaria infected

groups.

(TIF)
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