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Abstract: In this study, a multiplex detection system was proposed by integrating a localized surface
plasmon resonance (LSPR) sensing array and parallel microfluidic channels. The LSPR sensing
array was fabricated by nanoimprinting and gold sputter on a polycarbonate (PC) substrate. The
polydimethylsiloxane (PDMS) microfluidic channels and PC LSPR sensing array were bound together
through (3-aminopropyl)triethoxysilane (APTES) surface treatment and oxygen plasma treatment.
The resonant spectrum of the LSPR sensing device was obtained by broadband white-light illumi-
nation and polarized wavelength measurements with a spectrometer. The sensitivity of the LSPR
sensing device was measured using various ratios of glycerol to water solutions with different
refractive indices. Multiplex detection was demonstrated using human immunoglobulin G (IgG),
IgA, and IgM. The anti-IgG, anti-IgA, and anti-IgM were separately modified in each sensing region.
Various concentrations of human IgG, IgA, and IgM were prepared to prove the concept that the
parallel sensing device can be used to detect different targets.

Keywords: surface plasmon resonance (SPR); biosensor; nanoimprinting; multiplex detection

1. Introduction

Label-free biosensors generally use a transducer to convert biological signals, received
from a recognition element, into readable information. The transducer is the critical ele-
ment for determining the sensitivity, sensing range, and detection limit of the biosensors.
In the past, several transducers for label-free immunosensing were developed, including
quartz crystal microbalances (QCMs) [1–3], amperometric transducers [4–7], cantilever
beams [8–10], electrochemical impedance spectroscopy (EIS) biosensors [11–14], preconcen-
trated immunosensing [15–17], surface plasmon resonance (SPR) [18–20], and nanobead
Brownian motion [21–23]. Transducer fabrication of most current technologies is expensive,
and they are not easy to mass-produce for rapid screening.

SPR sensors have been widely used in medical diagnostics, environmental monitoring,
and food safety [24–28]. Conventional reflective-type SPR platforms utilize a prism-coupled
gold thin film on a glass substrate to induce an evanescent wave as the resonant wavelength
that can be changed based on the biomolecular binding affinity.
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Recently, transparent-type SPR sensors were proposed by propagating normal inci-
dent light into period gold nanohole arrays or nanoslits to generate SPR for biosensing
applications [29–31]. Compared to the reflective-type SPR, transparent-type SPR sensors
benefit from having a small detection volume that shows the capability to integrate with
multiplex microfluidic devices [18]. They also provide a feasible way to achieve chip-based,
high-throughput, label-free detection for modern DNA and protein microarrays. Moreover,
state-of-the-art transparent-type SPR sensors can be mass-produced by automatic and
large-area nanoimprinting.

A narrower-resonance line width allows higher sensitivity of SPR biosensors. A
strategy to obtain sharp spectral resonance is to develop a distinctly asymmetrically shaped
spectrum, called Fano resonances. Fano-type spectra arise from overlapping between a
broadband resonance and a narrow discrete resonance [32–34]. Recently, a polymer-based
nanoslit capped with gold film was developed that can generate Fano resonance spectra in
a transverse magnetic wave (TM)-polarized wave [35].

Microfluidic systems are widely used in chemical reaction procedures and biolog-
ical applications such as sample separation [36–38], flow cytometry [39–41], and cell
sorters [42–44]. Polydimethylsiloxane (PDMS) is often used for rapid-testing microfluidic
designs. It can be fabricated as a microfluidic device by adding a curing agent and casting
a prepared master mold. PDMS normally binds to PDMS or glass to become a microflu-
idic channel through plasma treatment, which limits applications of PDMS for binding
another substrate.

In this study, we propose a parallel detection method through a nanoplasmonic sensing
array integrated with parallel microfluidic channels that expands one major channel into
four branching channels through two cascades. The nanoplasmonic sensing array can
be mass-produced by automatically nanoimprinting on a polycarbonate (PC) substrate
and sputter gold deposition. The PDMS-based microfluidic channel can be aligned and
bound to a sensing array after chemical surface treatment and oxygen plasma treatment.
The sensing mechanism is shown in Figure 1. The sensing regions were first activated by
surface modification. Subsequently, anti-immunoglobulin G (IgG), anti-IgA, and anti-IgM
were separately modified onto each sensing region as the probes. Because of refractive
index changes at the sensing area’s surface with conjugated antibodies, the resonant spectra
were red-shifted. For sensing analytes in samples, samples were loaded into the device to
the sensing region. When the analytes were conjugated with antibodies, due to changes
in the refractive index, the resonant spectra red-shifted again. The concentration of the
analytes could be quantified by analyzing the red-shift of the peak values of the resonant
spectra. The theoretical peak value of the resonant spectrum is given by

λ = a · nd (1)

where a is the period of nanostructure, and nd is the refractive index of the surface of
the nanostructure. The innovation is that through microfluidic channel, multiplex LSPR
sensing at the same time can be achieved.
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Figure 1. Sensing mechanism and operating procedures of the parallel microfluidic integrated na-
noplasmonic sensing array for multiplex detection. (a) Surface modification. The cross linkers will 
flow into branches through main channel. The peak of the resonant wavelength is represented to a·
nd. (b) Antibofy modification. To modifiy antibidies, the anti-IgA, -IgG, and -IgM will flow into 
sensing area through end of branches, separately. The peak of the resonant wavelength is repre-
sented to a·nd’, which is red-shift comparing to initial state (c). 

2. Materials and Methods 
2.1. Device Fabrication 

To fabricate the plasmonic nanostructure on the PC substrate, a nanoslit master was 
made. The photoresist, ZEP520A (ZEON Corp., Tokyo, Japan), was coated on the silicon 
wafer, and the straight line array, at 100 nm in width and with a period of 500 nm, was 
patterned by e-beam lithography. The silicon wafer was etched 50 nm in depth using a 
reactive ion etching (RIE, Oxford Instruments, Yatton, Bristol, UK) machine. After remov-
ing the photoresist, the master mold for nanoimprinting the structure on the PC substrate 
was obtained. The master mold consisted of 1×4 sensing regions, with each region having 
a total area of a 150-µm × 150-µm straight line array. The mold was used for nanoimprint-
ing, and the pattern was transferred onto the PC substrate as Figure 2. Subsequently, a 
shield mask with openings corresponding to the 1×4 sensing regions was made using laser 
cut 3M tape (8003p, 3M, Harbor, MN, USA). Gold was then deposited at 60 nm thick by a 
DC sputter on the straight line array on the PC substrate covered with the shield mask. 
After removing the shield mask, the nanoplasmonic sensing array chip can be obtained. 

The microfluidic system was designed as one inlet channel divided into four chan-
nels with four outlets through two cascades. The designed pattern was realized as an SU-
8 mold on a silicon wafer with a thickness of 25 µm through photolithography. Polydime-
thylsiloxane (PDMS, Dow Corning, Denver, CO, USA ) was used to make the microfluidic 
channel. First, the PDMS was mixed with a curing agent at a 10: 1 volume ratio. After 30 
min of degassing, the PDMS was poured into the SU-8 mold and left on a 65 °C hotplate 
for 2 h. After curing, the consolidated PDMS was peeled off from the mold, and inlet and 
outlet openings were made. 

Figure 1. Sensing mechanism and operating procedures of the parallel microfluidic integrated
nanoplasmonic sensing array for multiplex detection. (a) Surface modification. The cross linkers will
flow into branches through main channel. The peak of the resonant wavelength is represented to
a·nd. (b) Antibofy modification. To modifiy antibidies, the anti-IgA, -IgG, and -IgM will flow into
sensing area through end of branches, separately. The peak of the resonant wavelength is represented
to a·nd’, which is red-shift comparing to initial state (c).

2. Materials and Methods
2.1. Device Fabrication

To fabricate the plasmonic nanostructure on the PC substrate, a nanoslit master was
made. The photoresist, ZEP520A (ZEON Corp., Tokyo, Japan), was coated on the silicon
wafer, and the straight line array, at 100 nm in width and with a period of 500 nm, was
patterned by e-beam lithography. The silicon wafer was etched 50 nm in depth using a
reactive ion etching (RIE, Oxford Instruments, Yatton, Bristol, UK) machine. After removing
the photoresist, the master mold for nanoimprinting the structure on the PC substrate was
obtained. The master mold consisted of 1×4 sensing regions, with each region having a
total area of a 150-µm × 150-µm straight line array. The mold was used for nanoimprinting,
and the pattern was transferred onto the PC substrate as Figure 2. Subsequently, a shield
mask with openings corresponding to the 1 × 4 sensing regions was made using laser cut
3M tape (8003p, 3M, Harbor, MN, USA). Gold was then deposited at 60 nm thick by a DC
sputter on the straight line array on the PC substrate covered with the shield mask. After
removing the shield mask, the nanoplasmonic sensing array chip can be obtained.

The microfluidic system was designed as one inlet channel divided into four channels
with four outlets through two cascades. The designed pattern was realized as an SU-8 mold
on a silicon wafer with a thickness of 25 µm through photolithography. Polydimethylsilox-
ane (PDMS, Dow Corning, Denver, CO, USA ) was used to make the microfluidic channel.
First, the PDMS was mixed with a curing agent at a 10: 1 volume ratio. After 30 min of
degassing, the PDMS was poured into the SU-8 mold and left on a 65 ◦C hotplate for 2 h.
After curing, the consolidated PDMS was peeled off from the mold, and inlet and outlet
openings were made.
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Figure 2. Fabrication of the mold for nanoimprinting. 

For the binding of PDMS and PC, PC was first surface-modified by (3-aminopro-
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solution for 20 min. After washing with deionized (DI) water and drying with a nitrogen 
air stream, the APTES-modified PC and PDMS were treated with oxygen plasma at 18 W 
for 35 s. The oxygen plasma-treated PC and PDMS were then aligned, bound, and left on 
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taraldehyde for 1 h, which a allowed the glutaraldehyde to bind to the amine groups of 
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were passed through the device to each sensing region for further detection. 

 
Figure 3. Process of antibody modification of the surface of the sensing device. 
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Figure 2. Fabrication of the mold for nanoimprinting. (a) spinning coating photoresist, (b) e-beam
lithography to pattern photoresist, (c) RIE etching the silicon substrate, (d) remove photoresist and
(e) use the silicon substrate as the mold to hot emboss PC substrate.

For the binding of PDMS and PC, PC was first surface-modified by (3-aminopro
pyl)triethoxysilane (APTES, Sigma Aldrich, St. Louis, MO, USA). Next, the PC substrate
with a nanoplasmonic structure was immersed in a 1% v/v APTES water solution for
20 min. After washing with deionized (DI) water and drying with a nitrogen air stream,
the APTES-modified PC and PDMS were treated with oxygen plasma at 18 W for 35 s.
The oxygen plasma-treated PC and PDMS were then aligned, bound, and left on a 65 ◦C
hotplate for 30 min.

2.2. Surface Modification

To detect IgG, IgM, and IgA in samples, the sensing regions of the device were first
modified with secondary antibodies of IgG, IgM, and IgA separately on each sensing
region. As shown in Figure 3, 100 µg/mL cysteamine was incubated in the sensing
regions for 2 h, which allowed the cysteamine to bind to the gold surface via thiol groups,
and the surface exhibited a net positive surface charge because of amine groups. After
washing with phosphate-buffered saline (PBS), the sensing regions were incubated in 1 mM
glutaraldehyde for 1 h, which a allowed the glutaraldehyde to bind to the amine groups of
cysteamine. After glutaraldehyde modification, the devices were washed three times to
remove any unbound glutaraldehyde. Subsequently, each sensing region was individually
incubated with 1 mg/mL of a secondary antibody of IgG, IgM, or IgA for 2 h, after which
the device was ready to use. For sensing, a mixture of IgG, IgM, and IgA samples were
passed through the device to each sensing region for further detection.
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Figure 3. Process of antibody modification of the surface of the sensing device.

2.3. Optical System

An optical setup for generating plasmon and measuring the resonant spectrum
through the nanoplasmonic structure on the PC substrate was constructed as shown
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in Figure 4 Broadband white light at 100 W passed through the nanostructure chip through
a 10× objective, and the optical signals were collected from the other side through another
10× objective. To filter out the resonant spectrum, a polarizer was used to extract resonant
wavelengths in the transverse magnetic (TM) direction. The collected light signals were
guided into a spectrometer through an optical fiber. The resonant spectrum was recorded,
and the resonant spectrum shifted when the refractive index at the surface of the nanostruc-
ture changed due to protein conjugation, which could be used to estimate the sensitivity of
the sensing chip.
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3. Results and Discussion
3.1. Sensitivity Test

The sensitivity of the nanoplasmonic chip in the microfluidic channel was first investi-
gated. Glycerol solutions with 0, 2.5, 5, 7.5, 10, 12.5, 15, 17.5 and 20 volume ratios to the
total solution were prepared and passed through the microfluidic channels. The resonant
spectra of these samples in the sensing region of the device were recorded and plotted in
Figure 5a. Results indicated that the resonant spectra red-shifted due to an increase in the
percentage of the glycerol solutions, which resulted in an increase in the refractive index.
Subsequently, peak values of the resonant spectra versus the refractive index were plotted
in Figure 5b.
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The measured peak values of the resonant spectra were slightly larger than the theoret-
ical ones, because the resonant spectrum was an asymmetric Fano-type resonant spectrum.
Theoretical values were calculated as the mean of the peak and dip values of the Fano-type
spectrum. In this experiment, peak values of the resonant spectra were measured so that
the peak values differed from theoretical values.

3.2. Sample Test

The four branching channels were separately modified with anti-IgG, anti-IgA, and
anti-IgM with concnetration of 500 µg/mL, with a bare channel as a reference. The modifi-
cation processes are shown in Figure 3. The cysteamine and glutaraldehyde solutions were
sequentially injected into the microfluidic channel through the inlet. After PBS washing,
the anti-IgG, anti-IgA, and anti-IgM at a concentration of 1 mg/mL in PBS with pH of 7.4
were separately injected into each branch channel and incubated for 1 h. Thereafter, the
resonant spectra of the sensing regions were recorded. For measuring wavelength shift, the
temperature should be constant during measuring. We set at room temperature of 25 ◦C in
this study. The red-shifts of the resonant wavepengthes in sensing area corresponding to
IgA, IgG, and IgM were measured when anti-IgA, anti-IgG, and anti-IgM modified onto
the sensing area respectively. It indicates that the antibodies were successfully modified
onto their own sensing area.

Sequentially, 1, 10, and 100 µg/mL of IgG, IgA, and IgM were pumped into the
corresponding branch channels. The resonant spectra of the sensing regions were recorded.
Results are revealed in Figure 6a–c, respectively. The results indicated that with increasing
IgG, IgA, and IgM concentrations, the resonant spectra of the nanoplasmonic sensing
chip red-shifted. The red-shift values were compared to peak values of resonant spectra
with different sample concentrations with only the antibody. The red-shift values for
sensing IgG, IgA, and IgM, were calculated and are respectively plotted in Figure 6d–f.
Higher concentrations of the analytes caused greater red-shifts of the resonant spectra.
This indicated that the developed nanoplasmonic sensing array integrated in parallel
with a microfluidic device could be used for multiplex detection. We further plotted the
averaged red-shifts value in logarithm versus various concentrations of IgA, IgG, and IgM
in logarithm values, separately in Figure 6g–i. All of the results showed good linear ranges.
The sensitivities of 0.3908, 0.3283, and 0.3103, for IgA, IgG, and IgM detection.
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with raito of 1:1:1. 
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Figure 6. Resonant spectra of the different concentration of (a) immunoglobulin A (IgA), (b) IgG, and (c) IgM. Red-shift
values of the different concentration of (d) IgA, (e) IgG, and (f) IgM. Linear regression of sensing results of (g) IgA, (h) IgG,
and (i) IgM.

To prove the concept, 100 µg/mL IgA, IgG, IgM, and their mixed sample with raito of
1:1:1 were flowed into device. With 100 µg/mL IgA, IgG and IgM flowing through, only
their corresponding sensing area hve wavelength shift, respectively. The 100 µg/mL IgA,
IgG, IgM mixed sample with raito of 1:1:1, corresponding to concentration of 33.33 µg/mL
for each analyte, was flowed into device, and all of three sensing area showed resonant
wavelength red-shift in Figure 7.
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Figure 7. Sample test including 100 µg/mL IgA, IgG, IgM, and mixing sample of IgA, IgG, and IgM
with raito of 1:1:1.

The detection limit in this SPR sensor is 1 µg/mL, however, several efforts using
nanoslit SPR sensors showed the detection limit at the level of several hundreds ng/mL.
The reason may be that the sensing area were reduced from several millimeter × millimeter
to 150-µm × 150-µm to achieve multiplex and parallel detection in microfluidic channel.
When the sensing area become smaller, the sensing variaiton will increase.
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4. Conclusions

In summary, a nanoplasmonic sensing array integrated with a parallel microchannel
was demonstrated for label-free multiplex detection. The nanostructure on PC film can be
massively produced by nanoimprinting. The nanoplasmonic sensing array was fabricated
through nanoimprinting and gold deposition which generated Fano-type resonant spectra.
The sensitivity of the sensing chip was also evaluated. The sensing chip could also be
bound with a PDMS-based microfluidic channel after surface APTES and oxygen plasma
treatments. With certain surface modifications, the anti-IgG, anti-IgA, and anti-IgM could
be separately conjugated to each surface of the sensing region which could be used to detect
IgG, IgA, and IgM in test samples. When IgG, IgA, and IgM were conjugated onto the
corresponding sensing regions, the refractive index changed, resulting in red-shifts of the
resonant spectra. By analyzing increases of peak values of resonant spectra, concentrations
of the targets could be estimated. The results indicated that the developed nanoplasmonic
sensing array integrated with parallel microfluidics can be used for multiplex detection.
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