
Disruption of the MDM2–p53 interaction strongly
potentiates p53-dependent apoptosis in
cisplatin-resistant human testicular carcinoma
cells via the Fas/FasL pathway
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Wild-type p53 has a major role in the response and execution of apoptosis after chemotherapy in many cancers. Although high
levels of wild-type p53 and hardly any TP53 mutations are found in testicular cancer (TC), chemotherapy resistance is still
observed in a significant subgroup of TC patients. In the present study, we demonstrate that p53 resides in a complex with MDM2
at higher cisplatin concentrations in cisplatin-resistant human TC cells compared with cisplatin-sensitive TC cells. Inhibition of
the MDM2–p53 interaction using either Nutlin-3 or MDM2 RNA interference resulted in hyperactivation of the p53 pathway and a
strong induction of apoptosis in cisplatin-sensitive and -resistant TC cells. Suppression of wild-type p53 induced resistance to
Nutlin-3 in TC cells, demonstrating the key role of p53 for Nutlin-3 sensitivity. More specifically, our results indicate that
p53-dependent induction of Fas membrane expression (Bthreefold) and enhanced Fas/FasL interactions at the cell surface are
important mechanisms of Nutlin-3-induced apoptosis in TC cells. Importantly, an analogous Fas-dependent mechanism of
apoptosis upon Nutlin-3 treatment is executed in wild-type p53 expressing Hodgkin lymphoma and acute myeloid leukaemia cell
lines. Finally, we demonstrate that Nutlin-3 strongly augmented cisplatin-induced apoptosis and cell kill via the Fas death
receptor pathway. This effect is most pronounced in cisplatin-resistant TC cells.
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Most testicular cancer (TC) patients respond well to cisplatin-
based chemotherapy; however, there is still a subset of these
young patients that will die because of chemo-resistant or
chemo-refractory disease.1 Similar to its effects in patients,
cisplatin proved to be an extremely cytotoxic drug, inducing
massive apoptosis in human TC cell lines.2–5 An important
role of p53 in the response to chemotherapeutic drugs and the
execution of apoptosis has been described.6 The p53 is a
tumour suppressor protein with a dual role in stress response
by transactivation of genes that induce apoptosis, such as
FAS (TNFRSF6), as well as genes that induce cell-cycle
arrest, such as cyclin-dependent kinase inhibitor 1A gene
(CDKN1A), encoding p21cip1/waf1, allowing time for DNA
repair. Function of p53 is regulated by several mechanisms,
acting not only at the transcriptional and translational level, but
also on stability, post-translational modification, and subcel-
lular localisation of p53.7

Tumour protein p53 (TP53) is the most frequently mutated
gene in human cancers.7,8 Surprisingly, in human TCs almost

no TP53 mutations are found and wild-type p53 is expressed
at high levels in the majority of TCs.9 Despite the increasing
knowledge about p53 as a transactivator and cellular gate-
keeper for cell growth and division, the effects of wild-type p53
(and mutated p53) on drug sensitivity of human tumours
including TC are still not clear. We have previously shown that
the response to cisplatin-induced DNA damage in TC cell
lines is related to an induction of p53 expression and
activation of the Fas death receptor pathway.2,9 Several other
studies have reported the effect of wild-type p53 expression
on chemo-sensitivity of human TC cell lines with contrasting
and sometimes conflicting results.3,10–15

Tumours that retain wild-type p53 are supposed to have
other defects in the p53 pathway, such as the presence of
microRNA (miR)-371-373, miR-106b-seed-family members
or cytoplasmic p21, the lack of phosphatase and tensin
homologue (PTEN) expression or the increased mouse
double minute 2 (MDM2) expression.16–19 MDM2, as tran-
scriptional target of p53, is the main negative feedback
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regulator of p53. By binding to the transactivation domain of
p53, MDM2 is able to regulate p53 activity and stability via
several mechanisms such as promoting p53 degradation
through ubiquitination, stimulating p53 nuclear export, and
inhibiting acetylation of p53.7

Interfering in the MDM2–p53 interaction, with small
molecules like RITA and Nutlin-3, provides an attractive
strategy for (re)activating wild-type p53 in a non-genotoxic
way. This (re)activation leads to cell-cycle arrest and or
apoptosis in tumour cells with wild-type p53.20–23 Restoration
of p53 function by Nutlin-3 may thus have profound
therapeutic effect on tumours that have retained wild-type
p53, particularly if MDM2 activity is disproportionally in-
creased.23 Recently, Nutlin-3-induced apoptosis was investi-
gated in a small panel of TC cell lines, and only additive effects
were seen in combination with cisplatin. However, no
mechanistic insights in Nutlin-3-induced apoptosis were
offered.24,25 In this study, we explore the potential of
disrupting the MDM2–p53 interaction as a mean to activate
p53 in TC. The role of p53 and MDM2 in cisplatin-induced
apoptosis has been investigated using cisplatin-sensitive and
-resistant human TC models. Finally, the importance of the
Fas death receptor pathway in Nutlin-3 induced apoptosis has
been studied.

Results

P53 and MDM2 cellular localisation and cisplatin
response in TC Cells. In the present study, we have used
a panel of cisplatin-sensitive and -resistant wild-type p53
expressing TC cell lines to compare cisplatin responses
(Table 1) with the cellular localisation of p53 and MDM2, and
MDM2-p53 complex formation (Figures 1a–c, Supplemen-
tary Figure 1). With immunofluorescence, we found that p53
is predominantly localised to the cytoplasm, while MDM2 was
mainly present in the nucleus in all four cell lines (Figure 1a
and Supplementary Figure 1). After exposure of cells to 8mM
cisplatin, p53 became more nuclear localised, while MDM2
was observed in both the nucleus and cytoplasm of cisplatin-
sensitive Tera (Figure 1a) and 833KE (data not shown) cells.
In contrast, in the intrinsically cisplatin-resistant TC cell lines,
Scha, and 2102EP, and in Tera-CP, an acquired cisplatin-
resistant subline of Tera, p53 maintained localised in the
cytoplasm, while MDM2 retained its nuclear localisation upon
treatment with 8 mM cisplatin (Supplementary Figure 1). Only

at higher cisplatin concentrations, p53 became more nuclear
localised, while MDM2 expression was then observed in both
the nucleus and the cytoplasm (results not shown).
Immunoprecipitation (IP) has been used to determine
whether the observed shift in cellular localisation of p53
and MDM2 after cisplatin treatment affects MDM2–p53
complex formation (Figures 1b and c). Note that we have
used lower cisplatin concentrations for the cisplatin-sensitive
Tera cell line compared with the cisplatin-resistant cell lines.
Despite the strong induction of both p53 and MDM2 with
increasing concentrations of cisplatin in Tera cells (lysates
Figure 1b), IP experiments indicated a relative decrease in
p53 being in complex with MDM2 in favour of unbound p53
upon increasing cisplatin concentrations (Figures 1b and c).
In contrast, sustained MDM2–p53 complex formation was
still detected in cisplatin-resistant TC cells at relatively high
cisplatin concentrations (up to 8 mM). Eventually, MDM2–p53
complexes in these cells were (partially) lost at cisplatin
concentrations above 16 mM (Figures 1b and c). Taken
together, our results suggest that high sensitivity for cisplatin
cytotoxicity and cisplatin-induced apoptosis is related to a
reduction in MDM2–p53 complex formation and a change in
p53 cellular localisation.

Apoptosis induction after disruption of the MDM2–p53
interaction depends on wild-type p53. To investigate the
importance of the MDM2–p53 complex formation in
preventing apoptosis in TC, we have used the small
molecule inhibitors ‘reactivation of p53 and induction of
tumours cell apoptosis’ (RITA) and Nutlin-3 that are
supposed to disrupt the MDM2–p53 interaction. RITA
induced massive apoptosis at nanomolar concentrations in
the absence of transcriptional activation of any of the p53
targets tested (p53, MDM2, p21, and Fas). Furthermore,
downregulation of p53 with small-interfering RNA (siRNA) did
not interfere with the apoptosis induction by RITA
(Supplementary Figure 2a). Moreover, treatment with RITA
induced caspase-dependent apoptosis in NCCIT, the TC cell
line expressing mutant p53 (Supplementary Figure 2a),
indicating that at least in TC cells RITA induces apoptosis
independent of wild-type p53.

Therefore, further research was focused on the effects of
the small molecule inhibitor Nutlin-3 in wild-type p53-expres-
sing TC cells. Treatment of cisplatin-sensitive Tera and
833KE cells and cisplatin-resistant Tera-CP, Scha, and

Table 1 IC50 values and p53 status of the cell lines used in this study

Cell line IC50 cisplatin (lM)a IC50 combination (lM)b Enhancement ratioc P53 statusd

Tera 0.69±0.11 0.07±0.01 9.9 wt/wt
Tera-CP 2.14±0.17 0.11±0.02 19.5 wt/wt
833KE 1.04±0.10 0.13±0.03 8.0 wt/wt
Scha 2.91±0.84 0.28±0.08 10.4 wt/wt
2102EP 4.05±0.66 0.39±0.21 10.4 wt/wt
NCCIT 2.15±0.34 2.25±0.59 1.0 mt/�

aThe IC50 (drug concentration reducing cell survival by 50%) for cisplatin was calculated from the graphs in Figure 6a and Supplementary Figures 4a and b. The mean
IC50±S.D. was determined in three experiments, each performed in quadruplicate. bThe IC50 (drug concentration reducing cell survival by 50%) for cisplatin in
combination with 1 mM Nutlin-3 was calculated from the graphs in Figure 6a and Supplementary Figures 4a and b. The mean IC50±S.D. was determined in three
experiments, each performed in quadruplicate. cNutlin-3 enhancement ratios were calculated by dividing the IC50 for cisplatin alone by the IC50 for the combination
with cisplatin and 1 mM Nutlin-3. dThe p53 status of the cells was previously described3,30
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2102EP cells, all expressing wild-type p53, with Nutlin-3
resulted in a dose-dependent reduction in cell survival. No
effect of Nutlin-3 on the survival of mutant p53-expressing
NCCIT cells was observed (Figure 2a). The reduced survival

after Nutlin-3 treatment is caused by a dose-dependent
induction apoptosis (Figure 2b) that is caspase-dependent
as reflected in the increased poly-(ADP-ribose) polymerase
(PARP) cleavage (Figure 2c). Immunoblotting demonstrated
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specific upregulation of p53 after treatment of the various wild-
type p53-expressing TC cell lines with Nutlin-3. A dose-
dependant increase in the expression levels of the p53
transcriptional targets MDM2 and p21 was observed as well
(Figure 2c). Furthermore, Nutlin-3 treatment led to a more
pronounced nuclear localisation of p53 in all wild-type p53-
expressing TC cells (Supplementary Figure 2b). The mutant
p53 NCCIT cell line, however, remained unaffected after
treatment with Nutlin-3 (Figures 2b and c), suggesting a wild-
type p53-dependent effect of Nutlin-3.

Next, we proved that the observed transcriptional activity
and apoptosis induction after Nutlin-3 treatment are p53-
dependent effects, because suppression of p53 with p53
siRNA was accompanied by a reduced apoptotic response
to Nutlin-3 treatment in all wild-type p53-expressing cells
(Figures 3a–c and Supplementary Figure 3a). In addition, p53
suppression prevented the upregulation of MDM2 and p21
levels after Nutlin-3 treatment (Figure 3d). Transfection with
the scrambled siRNA had no effect on p53 levels or Nutlin-3-
induced apoptosis, further demonstrating the wild-type
p53-dependent effect of Nutlin-3 in TC cells.

Increased Fas death receptor expression in TC cells
after Nutlin-3 treatment. Induction of the Fas death
receptor membrane expression after drug treatment has
been observed in several cell lines, which can occur in a p53-
dependent manner.2,5,26–30 In line with our previous results,2

we detected elevated Fas membrane expression in Tera
cells after cisplatin treatment, whereas less induction was
observed in Tera-CP cells and only a minor induction in
2102EP and Scha cells (Figures 4a and b). Interestingly,
Nutlin-3 treatment led to a robust upregulation of Fas
membrane expression to levels significantly higher than
found after solvent or cisplatin treatment in the wild-type
p53-expressing TC cell lines (Figures 4a and b). Additionally,
p53 suppression in wild-type p53 TC cells prevented the
induction of Fas membrane expression by Nutlin-3 treatment

(Figure 4c). Induction of Fas membrane expression was not
detected in the mutant p53-expressing NCCIT cells after
cisplatin or Nutlin-3 treatment (Supplementary Figure 3b).
These results prove that the observed upregulation of Fas
membrane expression after Nutlin-3 treatment in TC cells is
wild-type p53 dependent as well.

Fas-dependent apoptosis after Nutlin-3 treatment. We
previously reported that cisplatin-induced apoptosis is
depending on activation of the Fas/ Fas Ligand (FasL)
system in cisplatin-sensitive TC cells.2 Activation of the Fas/
FasL system was largely impaired in the cisplatin-resistant
Tera-CP and Scha cells.2 To further investigate the
importance of Fas upregulation for Nutlin-3-induced
apoptosis, we inhibited the Fas-FasL interaction by either
blocking FasL with FasL-specific NOK-1 antibody or
downregulation of FasL with FasL siRNA. Effective
downregulation of FasL was confirmed by immunoblotting
(Figure 4d and Supplementary Figure 3c). Blocking of FasL
and suppression of FasL dramatically reduced the apoptotic
response after high doses Nutlin-3 in the wild-type p53-
expressing TC cell lines (Figure 4e), as visualised by a
significant decrease in active, cleaved caspase-8 and PARP
cleavage (Figure 4d and Supplementary Figure 3c).
Interfering in the Fas/FasL system, however, had no effect
on the induction of p53 by Nutlin-3 (Figure 4d and
Supplementary Figure 3c). Our results demonstrate that
the massive apoptosis induction in TC cells after Nutlin-3
treatment is to a large extent dependent on the activation of
the Fas death receptor pathway.

We have demonstrated that high levels of cytoplasmic
localised p21 protected Scha and 2102EP cells against
cisplatin-induced apoptosis, probably by interfering with
Fas-death receptor signalling.19,30 In this study, we show that
treatment with a relatively low dose of Nutlin-3 (4 mM) led to
higher levels of cytoplasmic localised p21 that was most
pronounced in 2102EP and Scha cells (Figure 2c and
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Supplementary Figures 3d and e). Using the same Nutlin-3
concentration, a concomitantly lower apoptotic response was
observed in the cisplatin-resistant Scha and 2102EP cells
compared with the cisplatin-sensitive TC cells (Figure 2b).
Treatment with high-dose Nutlin-3 further increased the fold of
induction of p21 in the wild-type p53-expressing TC cells, but
p21 seems to no longer be able to inhibit apoptosis induction.
Therefore, the importance of cytoplasmic p21 in inhibiting
Nutlin-3-induced apoptosis has been further defined using
an siRNA approach. Downregulation of p21 (Supplementary
Figure 3e) led to an increase in Nutlin-3-induced apoptosis
(at 4 mM) in Scha and 2102EP cells, as demonstrated
by an increase in PARP cleavage (Supplementary Figure
3e). Thus, p21 can have a role in inhibiting Nutlin-3-induced
apoptosis.

Next, we addressed the question, if the Fas death receptor
pathway also has an important role in Nutlin-3-induced
apoptosis in other non-testicular tumour cell types. To this
end, we analysed Hodgkin lymphoma and acute myeloid
leukaemia (AML) cell lines, which are also known to be
sensitive to Nutlin-3.21,22 Blocking of FasL with NOK-1
considerably reduces the apoptotic response and PARP
cleavage after Nutlin-3 treatment in the wild-type p53-
expressing Hodgkin lymphoma cell lines KM-H2 and L540
(Figure 5a), as well as in the wild-type p53-expressing MOLM-
13 AML cells (Figure 5b). In addition, no effect of either Nutlin-3
treatment or blocking of the Fas/FasL interaction was

observed in OCI-AML3 or the mutant p53 expressing Hodgkin
lymphoma and AML cell lines, L428 (Figure 5a) and HL-60
(Figure 5b), respectively. This shows that the Fas death
receptor pathway also has an important role in Nutlin-3-
induced apoptosis in wild-type p53 expressing cell lines
derived from other tumour types.
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Synergistic effect of Nutlin-3 and cisplatin is Fas death
receptor and p53-dependent. Finally, we tested the
cytotoxicity of cisplatin in combination with minimally toxic
concentrations of Nutlin-3 in TC cells. Treatment for 96 h with
a combined drug treatment led to much stronger reductions
in survival of all wild-type p53 TC cell lines tested, as
compared with single drug treatment with cisplatin or Nutlin-3
(Figure 6a, Supplementary Figure 4a). The strongest
decrease in survival, combining the two drugs, has been
observed in the intrinsic and acquired cisplatin-resistant cell
lines (Figure 6a, Supplementary Figure 4a and Table 1). As
expected, the combination with Nutlin-3 has no potentiating
effect on cisplatin-induced cytotoxicity in the mutant p53 cell
line NCCIT (Supplementary Figure 4b).

The mechanism of sensitisation has been further investi-
gated in the acquired cisplatin-resistant cell model (Figures 6b
and e) and intrinsic cisplatin-resistant cell lines (Supplemen-
tary Figure 5). Combined treatment with Nutlin-3 and cisplatin
strongly enhanced p53 upregulation compared with the effect
of either cisplatin or Nutlin-3 treatment alone on p53 levels.
This was accompanied by a large induction of apoptosis as
reflected in almost complete PARP cleavage with the
combination and minimal PARP cleavage with either drug
alone, which was most contrasting for Tera-CP (Figures 6b and
c) and Scha and 2102EP (Supplementary Figures 5a and b).

To investigate if the Fas death receptor pathway also has an
important role in apoptosis-induction after combination treat-
ment, Fas membrane expression levels were determined.
Nutlin-3 in combination with cisplatin resulted in much higher
Fas membrane expression levels compared with the levels
found after treatment with Nutlin-3 or cisplatin alone in wild-
type p53-expressing TC cell lines (Figure 6d and Supple-
mentary Figure 5c). No induction of Fas membrane expres-
sion was observed in the mutant p53-expressing NCCIT after
the various treatments (Supplementary Figure 3b). Addition-
ally, blocking of FasL with NOK-1 reduced the apoptotic
response of wild-type p53-expressing TC cells to the
combined treatment of Nutlin-3 and cisplatin (Figure 6e and
Supplementary Figure 5d). Suppression of MDM2 with siRNA
extremely sensitised TC cells to cisplatin-induced apoptosis,
almost similar to our observations with Nutlin-3. Moreover,
p53 expression and Fas membrane expression were strongly
upregulated after treatment with MDM2 siRNA in combination
with cisplatin, especially in the cisplatin-resistant TC cells.
This demonstrates that the release of the negative feedback
on p53 by MDM2 is the important event for enhancing
cisplatin-induced apoptosis in TC cells (Figures 6b–d and
Supplementary Figures 5a–c).

Taken together, these results indicate that targeting MDM2
in combination with cisplatin treatment overcomes both
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intrinsic as well as acquired-resistance to cisplatin in wild-type
p53-expressing TC cells, and is largely dependent on
activation of the Fas death receptor pathway.

Discussion

In the present study, we demonstrate that wild-type p53 is
sustained in complex with MDM2 in cisplatin-resistant TC cell
lines following treatment with therapeutically relevant cisplatin
concentrations. Our results indicate that interfering in the
MDM2–p53 interaction through the small molecule compound
Nutlin-3, sensitises wild-type p53-expressing TC cells for
apoptosis. Combining Nutlin-3 with cisplatin, the most
important therapeutic drug in the treatment of TC patients,
results in hyper-activation of the p53 pathway, largely
sensitises both intrinsic as well as acquired cisplatin-resistant
TC cells to apoptosis via the Fas/FasL death receptor
pathway, and strongly reduces cell survival. These results

indicate that targeting the MDM2/p53 axis, in combination with
standard cisplatin-based chemotherapeutic treatment, is an
attractive therapeutic strategy to pursue for cisplatin-resistant/
refractory TC (Figure 7).

P53-interacting proteins, such as MDM2, are important
regulators of wild-type p53 functionality.7,20 The lack of TP53
mutations in TC has led to the hypothesis that constitutively
expressed p53 is functionally inactive.31 Surprisingly high
levels of wild-type p53 have been frequently observed in TC.
These levels correlate with expression levels of the p53
transcriptional target MDM2, suggesting that p53 is functional
in TC.11,13,17 In this study, we show that treatment with the
selective MDM2 antagonist Nutlin-3 causes a high induction of
both p53 and MDM2, a massive induction of apoptosis, and a
strong reduction in cell survival in cisplatin-sensitive as well as
cisplatin-resistant TC cell lines. In addition, siRNA targeting
MDM2 had similar effects as Nutlin-3 treatment, indicating an
important role of MDM2 as a negative-feedback regulator of
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Figure 7 Simplified model showing the role of the MDM2/p53 axis in regulating the sensitivity to cisplatin and Nutlin-3 in wild-type p53-expressing TC cells. P53 is a
transcriptional activator of p21, Fas and MDM2. Cisplatin sensitive TC cells have low levels of p21 and cisplatin-resistant TC cells, due to higher CDKN1A expression levels
and lower levels of Oct4 and miR-106b family members, high levels of cytoplasmic p21, which is a key determinant of resistance to cisplatin-induced apoptosis.19 Cisplatin-
induced apoptosis in TC cells also involves activation of the Fas death receptor pathway via elevated Fas membrane expression. High cytoplasmic p21 levels inhibit Fas death
receptor-mediated apoptosis in cisplatin-resistant TC cells.30 Moreover, cisplatin-induced DNA damage activates p53 and enhances release of p53 from MDM2–p53 complex,
while sustained MDM2–p53 complex formation is found in cisplatin-resistant cells. Interfering in MDM2–p53 complex formation by Nutlin-3 treatment (or suppression of MDM2)
substantially induces Fas expression, resulting in apoptosis of both cisplatin sensitive and resistant TC cells. Cisplatin in combination with Nutlin-3 further enhances Fas
expression and sensitises cisplatin-sensitive and resistant TC cells to cisplatin-induced apoptosis. Dotted lines indicate interaction or signaling. Solid lines indicate p53-
dependent transcription. Grey dotted and solid lines specify reduced activity
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p53 activity, however we cannot exclude a role for Nutlin-3-
induced release of MDM2 in the observed apoptosis. These
results suggest a tight regulation of MDM2 interacting with
p53. Several in vitro and in vivo studies suggest an important
role for p53 in the cisplatin-sensitivity of TC.10,11,15,31,32 In
contrast, other studies have failed to support a role for p53 in
TC responsiveness,13 although the involvement of the
MDM2–p53 complex in the response to chemotherapy had
not been thoroughly assessed.13,14 The present study
indicates that p53 function is impeded by the interaction with
MDM2 and the subsequent sequestration of p53 in the
cytoplasm of cisplatin-resistant TC cells following cisplatin
treatment. The strong sensitisation to cisplatin by low doses of
Nutlin-3 further demonstrates the importance of MDM2 in
controlling p53 following cisplatin-induced DNA damage.

Induction of FasL and upregulation of the Fas receptor in a
p53-dependent manner has been observed in several tumour
cell lines after treatment with chemotherapeutic drugs, such
as cisplatin, and is related to apoptosis induction.2,5,26–30

Previously, we have reported that the Fas/FasL system is
active and functional in cisplatin-sensitive but almost inactive
in cisplatin-resistant TC cell lines.2 In the present study, we
show that Nutlin-3 treatment strongly enhanced Fas mem-
brane expression levels in TC cells. Fascinatingly, blocking of
the Fas-FasL interaction in TC cells impairs apoptosis
induction by Nutlin-3 as well as combined treatment with
Nutlin-3 and cisplatin. However, involvement of other genes in
this pathway cannot be excluded, because p53 has been
shown to transcriptionally activate several other genes
involved in apoptosis via the Fas/FasL system after cisplatin
treatment. In the cisplatin-sensitive Tera cells, besides FAS,
the Fas adaptor leucine-rich repeats and death domain
containing (LRDD) and a gene implicated in positive Fas
regulation, pleckstrin homology-like domain, family A, mem-
ber 3 (PHLDA3) were found to be regulated by p53 upon
cisplatin treatment.15 Importantly, we have observed that the
Fas/FasL system also has an important role in Nutlin-3-
induced apoptosis of wild-type p53-expressing AML and
Hodgkin cell lines. The wild-type p53-expressing cell line OCI-
AML-3, however, did not show a significant reduction in Nutlin-
3-induced apoptosis after FasL blocking. This latter result can
be explained by the observation that Nutlin-3-induced
apoptosis was independent of transcriptional activation of
p53 in these cells.21 Our results, thus, indicate a major role for
the Fas/FasL system in the response to Nutlin-3 of wild-type
p53-expressing TC, AML, and Hodgkin cell lines.

We have recently reported the important protective role of
elevated p21 levels in cisplatin-resistant TC cells as compared
with p21 levels in cisplatin-sensitive TC cells.19,30 In cisplatin-
resistant TC cells, p21 is cytoplasmic localised thus inhibiting
cisplatin-induced cyclin-dependent kinase 2 and Fas-
mediated apoptosis. In addition, cisplatin- or irradiation-
induced upregulation of p21 does not induce cell-cycle arrest
in TC cells.19,30 The present results indicate that cytoplasmic
localised p21 blocks Nutlin-3-induced apoptosis in cisplatin-
resistant TC cells that are also less sensitive to Nutlin-3
compared with cisplatin-sensitive TC cells. Xia et al.33 has not
found a protective role of p21 against Nutlin-3-induced
apoptosis in non-TC cell lines, though cellular localisation of
p21 was not assessed. The p53-dependent induction of p21 in

these non-TC cells by Nutlin-3 resulted in a cell-cycle arrest,33

strongly suggesting nuclear localisation of p21. In contrast, in
TC cells Nutlin-3 treatment did not induce cell-cycle
arrest,24,25 probably as a result of the predominantly
cytoplasmic localisation of p53-dependent p21 expression
by Nutlin-3.

Treatment with higher Nutlin-3 concentrations led to a
strong induction of p53, a further increase in Fas membrane
expression and higher levels of apoptosis in cisplatin-
sensitive and -resistant TC cells. Non-apoptotic genes, such
as CDKN1A, constitutively harbour high levels of the poised
RNA polymerase II (RNAPII) initiation complex at their core
promoters, which are converted into elongated forms shortly
after stress, but reinitiate very poorly. In contrast, pro-
apoptotic genes, including FAS, have low levels of bound
RNAPII but undergo damage-induced activation through
multiple rounds of efficient reinitiation.34–36 Additionally, the
co-factors apoptosis-stimulating of p53 protein 1/2 (ASPP1/2),
junction mediating and regulatory protein, p53 cofactor
(JMY), herpes virus-associated ubiquitin-specific protease
(HAUSP), and nuclear transcription factor Y (NF-Y) enhance
p53 apoptotic activity by facilitating its binding to pro-apoptotic
promoters.7,35,36 For instance, NF-Y is known to be an
essential positive regulator of FAS transcription, whereas it
represses CDKN1A promoter activity.35,36 Interestingly,
p53 occupancy of the p21 promoter in TC cells was similar
to the levels observed in non-TC cells, whereas much less
p21 expression was found in TC cells.25 In addition, p21
mRNA and protein levels remained relatively low after either
Nutlin-325 or cisplatin treatment in TC cells as compared
with other cancer cell types.2,19,25,30 Therefore, it is tempting
to speculate that the Nutlin-3-induced release of the
negative feedback on p53 by MDM2 further shifts the balance
towards transcribing pro-apoptotic genes, for instance
involved in the Fas death receptor pathway. This effect may
be further enhanced by the combination of Nutlin-3 with
cisplatin.

A previous study has reported that combining Nutlin-3 with
other cytotoxic agents enhances the activity of these agents in
wild-type p53-expressing leukaemia cells.21 Our results show
that combining non-toxic concentrations of Nutlin-3 with
cisplatin sensitises both intrinsic as well as acquired cispla-
tin-resistant TC cells to low concentrations of cisplatin. Of
interest, MDM2 inhibitors in contrast to cisplatin might be
considered non-genotoxic, as demonstrated with Nutlin-3 in
mice.23 Nutlin-3 even showed protective activity in normal
kidney cells against cisplatin-induced apoptosis.37 MDM2
inhibitors have entered phase I clinical trials in haematological
malignancies and solid tumours. Based on the present
results, clinical trials using MDM2 inhibitors such as Nutlin-3
in combination with cisplatin to treat cancer patients with wild-
type p53, for instance refractory TC patients, may be of great
importance.

In conclusion, we demonstrate that the negative feedback
regulator MDM2 has an important role in the sensitivity of
wild-type p53-expressing TC cells to Nutlin-3 and cisplatin.
Our findings show that disrupting the MDM2–p53 interaction,
also in combination with cisplatin, enhances Fas death
receptor-mediated apoptosis in TC cells. Targeting the
MDM2/p53 axis in combination with standard cisplatin-based
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treatment is a therapeutic strategy warranted to pursue in
cisplatin-resistant/refractory TCs.

Materials and Methods
Cell lines and reagents. A well-defined panel of cisplatin-sensitive and
resistant EC cell lines 833KE, Tera, Tera-CP, Scha, and 2102EP (all expressing
wild-type p53) and NCCIT (mutant p53) were used in this study.3,19,30,38,39 Tera,
Tera-CP, 2102EP, Scha, 833KE, and NCCIT were cultured and harvested as
described previously.19 The cell lines OCI-AML-3, MOLM-13, HL-60, KM-H2, L540,
and L428 were maintained as described previously.21,22 Cisplatin was purchased
from Bristol-Myers Co. (Weesp, the Netherlands), Nutlin-3 from Cayman Chemical
(Huissen, the Netherlands). To block Fas/FasL interactions, cells were incubated
with anti-FasL Ab NOK-1 (Becton Dickinson, Breda, the Netherlands) and azide-
free IgG control (Becton Dickinson).

Drug sensitivity assay. Drug sensitivity testing was performed with the
microculture tetrazolium assay as described previously.19

Immunofluorescence. Cells were seeded on 0.01% poly-L-lycine (Sigma,
Amsterdam, The Netherlands) pre-coated coverslips. After 24 h, indicated treatment
cells were fixed with methanol/acetone (1 : 1) for 30 min at RT and then blocked with
1% bovine serum albumin and 1% normal goat serum in PBS for 30 min at RT.
Followed by immunostaining with the corresponding antibodies and counterstained
with Alexa-Fluor goat secondary antibodies (Molecular Probes, Invitrogen,
Merelbeke, Belgium). Finally, cells were stained with Hoechst 33258 (Molecular
Probes, Invitrogen) for 5 min, washed with PBS, and coverslips were mounted on
slides with Vectashield (Vector Laboratories, Amsterdam, the Netherlands). After
staining cells were analysed using a Quantimet 600S digital analysis system (Leica
Microsystems, Rijswijk, The Netherlands).

IP. IP was performed with a mixture of agarose conjugated anti-p53 (DO1 &
FL-393, Santa Cruz, CA, USA) as described previously.19

SDS-polyacrylamide gel electrophoresis and immuno-
blotting. After 24 h, indicated treatment cells were harvested and lysates were
examined by WB as described previously.19,30 Antibodies used are listed in
Supplementary Methods.

Apoptosis. Cells were continuously incubated with cisplatin for 24 h at various
concentrations. Acridine orange fluorescent staining of nuclei in unfixed cells was
used to distinguish apoptotic from vital cells.19,30,40

RNA interference. The siRNA specific for human p53, MDM2, FasL, and
negative control (scrambled) were purchased from Eurogentec (Maastricht, the
Netherlands). TC cells were transfected in six-well plates with 5ml of 20mM siRNA
duplex or siRNA anti-sense using Oligofectamine reagent according to the
manufacturer’s instructions (Invitrogen, Merelbeke, Belgium). After 24 h, cells were
treated with cisplatin. 24 h after the treatment cells were harvested for protein
isolation. Alternatively, in order to perform an apoptosis assay, at 24 h after
transfection, cells were harvested and plated in 96-well plate. The day after, cells
were treated with cisplatin. All sequences are listed in Supplementary Methods.

Fas-membrane expression. TC cells were treated as indicated and
eventually stained with a phycoerythrin (PE)-conjugated Ab against Fas (DX2,
Becton Dickinson) for 1 h at room temperature. Subsequently, cells were washed
and analysed by flow cytometry (FACS-Calibur; Becton Dickinson). The mean
fluorescence intensity (MFI) was determined by comparison of the fluorescence
intensity of unlabelled cells.

Statistical analysis. Results of at least three experiments are expressed as
mean±(standard deviation) S.D. Student’s unpaired t-test was used to compare
values of test and control samples. All tests were two-sided and differences were
considered to indicate significance when Po0.05.
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