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ABSTRACT
The interpretation of sampling data plays a crucial role in policy response to the
spread of a disease during an epidemic, such as the COVID-19 epidemic of 2020.
However, this is a non-trivial endeavor due to the complexity of real world conditions
and limits to the availability of diagnostic tests, which necessitate a bias in testing
favoring symptomatic individuals. A thorough understanding of sampling
confidence and bias is necessary in order make accurate conclusions. In this
manuscript, we provide a stochastic model of sampling for assessing confidence in
disease metrics such as trend detection, peak detection and disease spread estimation.
Our model simulates testing for a disease in an epidemic with known dynamics,
allowing us to use Monte-Carlo sampling to assess metric confidence. This model can
provide realistic simulated data which can be used in the design and calibration
of data analysis and prediction methods. As an example, we use this method to show
that trends in the disease may be identified using under 10,000 biased samples each
day, and an estimate of disease spread can be made with additional 1,000–2,000
unbiased samples each day. We also demonstrate that the model can be used to assess
more advanced metrics by finding the precision and recall of a strategy for finding
peaks in the dynamics.

Subjects Epidemiology, Infectious Diseases, Public Health, Statistics, Population Biology
Keywords COVID-19, Population modeling, Epidemic Sampling

INTRODUCTION
Policy decisions in the face of an epidemic rely on perceptions of the population dynamics
of an infectious disease, for example, whether cases are growing or shrinking (Centers for
Disease Control & Prevention, 2020; Occupational Safety & Health Administration,
2020; Lee et al., 2020). If everyone were tested every day, then this would be a matter of
looking at the trend in the total number of positive tests per day. However, this scenario is
unrealistic. In actuality, the population sampling needed to track an epidemic in a
community will depend on the nature of the question we would like to answer. Sometimes,
these questions are in conflict with each other. For instance, the primary goal of healthcare
providers is to identify infected patients in the hospital or clinical setting so that
appropriate treatment and protective measures may be prescribed, while at the other
extreme the epidemiologist concerned with infection prevention within the population
may be interested in determining the number of infected individuals in the population in
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order to focus efforts at limiting disease spread. Clearly, the former is very targeted towards
patients showing up at a clinic with certain symptoms while the latter requires broad
testing of both symptomatic and asymptomatic populations.

The reality is that testing needs to serve multiple purposes with a finite number of tests.
In particular, the COVID-19 pandemic and response from world leaders has shed light on
the need for a better understanding of community infection data and how to use it,
both for decision making and media reporting. Some of the particular challenges are the
significant proportion of asymptomatic carriers of the disease (Bai et al., 2020; Mizumoto
et al., 2020; Pollán et al., 2020) and the changing availability of the testing. Both have resulted
in testing that is strongly biased towards infected individuals and not representative of
the proportion of cases in the population. In this manuscript, we focus on two intermediate
use cases—individuals and businesses that need to estimate risk, that is, the probability
that an infected person will be present in a given situation, and public policy makers that
need to understand changing trends in the spread of the disease. We show that this can
be done with a combination of biased and unbiased sampling that requires many
fewer tests to be performed every day, but importantly must include the number of
negative tests in addition to the number of positive cases that is more widely reported.
Notably, this is in line with the World Health Organization’s global surveillance
guidelines, which include reporting of total tests so positive percentage can be
determined (World Health Organization, 2020).

The purpose of this manuscript is to introduce a method for assessing confidence in
conclusions made from biased sampling of the spread of an epidemic, and therefore
providing a tool in calibration of data analysis and prediction methods. We begin with a
calculation of the number of tests needed to identify a significant portion of infected
individuals in a given day. We then describe a stochastic dynamical model that simulates
testing over the course of an epidemic with known dynamics. We then show how we can
use a given model of epidemic dynamics to investigate the amount of testing needed to
estimate disease spread and trends in disease. We further use our approach to simulate
testing with variable bias and error and investigate the roles of bias and error in testing.
We find that amount of testing needed to identify most infected people in a population
of 300 million (approximately the population of the USA), is extremely high. On the other
hand, we show that trends in the spread of the disease can be accurately identified by
sign (i.e., positive or negative) with less than 10,000 biased tests per day. We show that
approximately 1,000 additional unbiased tests can be used to estimate the bias in testing.
This can be used to estimate the extent of disease spread in the community on a daily
basis. Our approach can also be used to assess the reliability of many data analysis
techniques. We demonstrate this by assessing a strategy for finding peaks in the dynamics
of the outbreak by using a smoothed numerical derivative of the data. Finally, we show the
importance of understanding bias under the conditions of limited testing by examining
COVID-19 data from within the USA.

As a special note, we emphasize that while many important efforts are being made to
model the spread of COVID-19 and determine how testing can be used to reduce that
spread (Reich et al., 2020; Piguillem & Shi, 2020; Alvarez, Argente & Lippi, 2020;
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Chowdhury et al., 2020), our approach does not attempt to predict disease spread. Instead,
we are testing confidence in data analysis sampled from known dynamics. In other words,
rather than trying to predict the future, our work focuses on estimating confidence in
current trends under non-ideal conditions.

METHODS
Sampling all infected
Sampling the population in order to identify all or some large proportion of the infected
individuals will require a large amount of testing. If we assume that testing is done in a
single day, the proportion of infected in the population is roughly constant in that day,
and no person is tested more than once, the number of positive cases will follow a
hypergeometric distribution based on the number of cases in the population, the bias in the
testing and the number of tests performed. We can compute the cumulative distribution
function, and so compute the number of tests needed so that the probability that some
number of cases are found.

We take testing to be a process of sampling with replacement in a population of size T.
To do this, we must compute the number of infected people in the population, which
is given by rT. In principle, we may use a hypergeometric distribution with population
T = rT + (1 − r)T and infected rT. However, this approach assumes no bias in the testing,
meaning that the probability of each individual (symptomatic or not) being tested is
uniform. In the real world, symptomatic individuals are much more likely to be tested for a
disease. We therefore introduce non-dimensional a bias parameter B and take the apparent
number of infected to be rBT, so that the apparent total population is rBT + (1 − r)T.
For B > 1, this biases the testing towards infected individuals, representing the fact the
symptomatic individuals are more likely to be tested, and also more likely to be infected.
The rest of this paper considers evaluating the infected population under biased testing
conditions as a means to understand trends in real data.

In our simulations of biased testing, we use a bias on the order of B = 10. However, this
is done only to illustrate the method and should not be taken as an estimate of the bias
from real data. We discuss below how bias may be estimated from a combination of
biased and unbiased samples.

A stochastic model for disease sampling
We developed a stochastic model to simulate the sampling of a population that is
undergoing an epidemic with known dynamics. That is, given an underlying set of
dynamics tracking asymptomatic infected individuals, symptomatic infected individuals,
and non-infected individuals, we simulate testing members of this population for the
disease. Let I1(t), I2(t) and H(t) represent the number of asymptomatic infected
individuals, symptomatic infected individuals, and non-infected individuals in the
population, respectively, for t ∈ [0,T]. Our model does assume that the dynamics of the
disease spread are some known functions of three compartments. In practice, such
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dynamics are often simulated by simple systems of ordinary differential equations.
However, this need not be the case, and dynamics can even be given directly as functions
of time.

Tests are assumed to be carried out according to a Poisson point process (see Klenke
(2014) and Anderson & Kurtz (2011) for a detailed introduction) with (possibly time
varying) intensity function λ(t). The intensity function λ(t) can be interpreted as the rate
at which members of the population are tested for the diseased which is assumed to be
known. For example, an increase in test availability would be reflected in this model
with an increase in λ(t). Additionally, the incidence of positive tests being carried out is
itself a Poisson point process with intensity λ+(t), and likewise the incidence of
negative tests is a Poisson point process with intensity λ−(t), subject to the relation
λ(t) = λ+(t) + λ−(t). In this manuscript, λ(t) is taken to be constant unless otherwise
noted.

Each time a test is performed, we determine the status of the person tested. Under the
assumption of unbiased testing, we categorize a person into one of three pools.
The probability of a test result depends on the respective proportion of the population
which belongs to each pool. That is, the probability the unbiased test is performed on an
asymptomatic infected person is

Pðthis testee is asymptomatic infectedÞ ¼ I1ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ (1)

Likewise, the probability that an unbiased test is performed on a symptomatic infected
person is

Pðthis testee is symptomatic infectedÞ ¼ I2ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ (2)

and the probability that an unbiased test is performed on a non-infected person is

Pðthis testee is non‐infectedÞ ¼ HðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ (3)

We also account for the possibility that a test may give a false-positive or false-negative
with some constant probability. Let ε1 ∈ [0,1] be the false-negative probability of the test
and ε2 ∈ [0,1] be the false-postive probability. Then, for any given test we can combine
Eqs. (1)–(3) to see the following:

Pðpositive testÞ ¼ ð1� e1ÞPðperson is infectedÞ þ e2Pðperson is not infectedÞ (4)

Pðnegative testÞ ¼ e1Pðperson is infectedÞ þ ð1� e2ÞPðperson is not infectedÞ (5)

Testing for disease in a population is not done uniformly at random. Instead, an
individual displaying symptoms of the disease is much more likely to be tested for it than
one who is not. We may model a bias in testing by adjusting Eqs. (1)–(3). Let B(t) be some
function of time, with B(t) ≥ 1 for all t ∈ [0,T]. Then, we can reflect the bias of the testing
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procedure by re-weighting the population for each test performed. We replace Eqs. (1)–(3)
with the following:

Pðthis testee is asymptomatic infectedÞ ¼ I1ðtÞ
I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ (6)

Pðthis testee is symptomatic infectedÞ ¼ BðtÞI2ðtÞ
I1ðtÞ þ BðtÞI2ðtÞ þHðtÞ (7)

Pðthis testee is non‐infectedÞ ¼ HðtÞ
I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ (8)

and combine Eqs. (6)–(8) with Eqs. (4) and (5) to determine the probability of a single test
result. The result is that the number of positive and negative tests that have been carried
out up to time t are each non-homogeneous Poisson point processes with intensity
functions

�þðtÞ ¼ �ðtÞ ð1� e1Þ I1ðtÞ
I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ þ

BðtÞI2ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ

� ��

þe2
HðtÞ

I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ
� ��

(9)

��ðtÞ ¼ �ðtÞ e1
I1ðtÞ

I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ þ
BðtÞI2ðtÞ

I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ
� ��

þð1� e2Þ HðtÞ
I1ðtÞ þ BðtÞI2ðtÞ þ HðtÞ
� ��

: (10)

We note that the model described above essentially assumes an infinite total population
size. Practically, this means that testing is done on an insignificant proportion of the
population, or equivalently that members of a population are immediately eligible to be
re-tested after being tested. In Appendix E, we describe a modification for this model
which accounts for small population size and non-immediate retesting.

Simulation with the stochastic simulation algorithm
Both the initial model described in this manuscript and the model adjusted for small
populations can be written as the sum of Poisson point processes with time-varying
intensities. They can therefore be simulated using a slight adjustment to the Stochastic
Simulation Algorithm (Gillespie, 1976, 1977). This adjustment accounts for possible
changes in the intensity functions between points in the Poisson processes, for example
from variations in λ(t) or B(t). This adjustment is made by choosing event times according
to the maximum values of any time-varying functions, and allowing for the possibility
of a non-event at each event time, a procedure often called thinning (Asmussen & Glynn,
2007; Anderson & Yuan, 2019).
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Simulation of the models as described allow us to perform Monte-Carlo estimations of
the confidence that can be assumed in the calculation of various statistics from data.
We performMonte-Carlo estimation by repeatedly simulating sampling over the course of
an epidemic with given dynamics and determining the success rate or average error of
in determining a metric from simulated sampling when compared to determining the
same metric from the known underlying dynamics.

Estimating trends in disease spread
To assess trends in data simulated according to our model, we discretize the time interval
[0,T] into evenly spaced intervals (e.g., into single day increments) ending at times
t1, t2, …, tN = T. We then compute positive-test proportions for these intervals, simply
defined as the proportion of tests carried out within the interval that were positive.
This allows us to make sense of the simulated data even as testing capacity λ(t) varies in time.

We estimate N-day trends in disease spread using a linear least-squares fit to N
consecutive days of simulated positive test proportions. We define the linear trend of the
simulated data to be the slope of this fitted line. This can then be compared to a linear fit to
the infected proportion

I1ðtÞ þ I2ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ
over the same time interval, computed using time-discretized dynamics.

Finding peaks in disease spread
We attempt to find peaks in the data by estimating the time derivative of the positive-test
proportions simulated. We then identify peaks as points at which the derivative crosses
from positive to negative. That is, we estimate the change in true positive-test proportion
from day to day, and identify when this proportion stopped increasing and began to
decrease.

To estimate the time derivative of positive proportions, we first compute a numerical
derivative over each time interval. We then blur this discretized derivative to reduce noise
(and therefore false peaks) using a one-dimensional Gaussian filter.

Underlying dynamics
Our model is designed to simulate sampling of an epidemic with any non-negative
underlying compartmental dynamics. This means that the number of healthy,
symptomatic infected, and asymptomatic infected members of a population can be any
non-negative known functions of time. As a consequence of this feature, some set of
known dynamics must be either chosen directly or generated by another dynamic model.
Confidence in metric sampling is then measured against the known dynamics.

To demonstrate our method, we use the SIR model (Edelstein-Keshet, 2005; Hethcote,
2000; Kermack &McKendrick, 1927) with a time-variable rate of disease spread to generate
underlying dynamics, as well as a similar compartmental model that allows for
asymptomatic individuals, which we refer to as the SAIR model. See Appendix D for
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details. These models represent a popular, simple choice of dynamic epidemic model with
parameters often reported by the lay news media.

RESULTS
Sampling all infected
One obviously crucial role of testing of a disease outbreak is to identify patients for
treatment and possible quarantine. From that perspective, it is crucial to identify all or
most infected members of a community. We therefore assess the number of tests this
would require, noting that these tests must be performed in a small enough time frame so
that epidemic dynamics and bias in testing can be assumed constant. Using the cumulative
distribution function of the hypergeometric distribution, we see that in a community
of 300 million with 5% infection, we need approximately 27,009,300 unbiased tests in a
short time interval to have 90% confidence that we have found 90% of the cases. For higher
bias, fewer tests are needed, as seen in Fig. 1. This is likely an intractable number of
tests to be performed in a short enough time interval (perhaps 1 day) so that epidemic
dynamics and bias in testing can be assumed constant. In fact, during the COVID-19
epidemic of 2020, about 500,000–600,000 tests were performed each day across the United
States by the end of June (Lipton, Ellington & Riley, 2020).

Simulated sampling
Rather than attempt to find all COVID-19 patients, we may wish to simply have an
accurate estimate of the number of infected. In order to asses our ability to do this, we
simulated sampling as described above with underlying dynamics generated by ODE
models of outbreaks. We use the positive test proportion per day as our sampled variable,

Figure 1 Number of samples needed to identify 90% of infected individuals with 90% confidence,
computed using a hypergeometric distribution. In orange, we show the limiting case in which every
person tested is infected, which can be interpreted as infinite bias. In this case, 1,350,000 tests are
necessary. Full-size DOI: 10.7717/peerj.9758/fig-1
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in order to account for variations in testing capacity. Figure 2 demonstrates that day–day
variations in testing capacity can mask the real dynamics when only positive test count is
considered. In contrast, the positive proportion of tests does captures the dynamics. In this
simulation, we used a time-varying intensity λ(t) which was taken to be

�ðtÞ ¼ 0:75þ 0:25 tanh
t � 50

5

� �
(11)

Biases in testing
Biased sampling
With false positive and false negative rates equal to 0, biased sampling causes an
overestimation in the proportion of a large population that is infected. If tests are taken at
random in the population (and so not biased), the proportion of positive tests will on
average be the same as the proportion of infected individuals r(t), which is the sum of the
proportions of symptomatic and asymptomatic infected individuals:

rðtÞ ¼ I1ðtÞ þ I2ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ ¼

I1ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ þ

I2ðtÞ
I1ðtÞ þ I2ðtÞ þ HðtÞ

¼ rI1ðtÞ þ rI2ðtÞ: (12)

Biasing the tests towards symptomatic individuals is analogous to sampling a
population with extra symptomatic individuals added:

rBðtÞ ¼ BrI1 þ rI2

1þ ðB� 1ÞrI1 > rðtÞ (13)

Figure 2 Positive proportion of tests and scaled positive tests per day. Testing capacity is initially
1,350 tests per day but rises to 2,700 midway through the simulation.

Full-size DOI: 10.7717/peerj.9758/fig-2
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and we note that this overestimation will not lessen with a higher number of samples.
Including the rate of false positive and negative tests, this becomes

rBðtÞ ¼ BrI1ð1� e1Þ þ rI2ð1� e1Þ þ e2ð1� rI1 � rI2Þ
1þ ðB� 1ÞrI1 > rðtÞ (14)

In order to estimate the spread of the disease in a community (i.e., estimate the
percentage of the population which is infected), we can estimate the bias B if we have
unbiased sample data as well. To do this with only positive/negative test data, we must
assume that the ratio of symptomatic to asymptomatic infected members of the
community is constant (i.e., r1 = cr2). Here, we are making an estimation analogous to a
Monte-Carlo method, and so for better accuracy we need to reduce the variance in our
estimate of B. We simulated an estimate of B with various biased and unbiased sample
capacities. Variances for these estimates are shown in Fig. 3. We see there that with

Figure 3 Variance of bias estimate for various sampling rates. This variance represents the error in
estimation from a single day of biased and unbiased tests. In this experiment, we do not have asymp-
tomatic infected individuals. Full-size DOI: 10.7717/peerj.9758/fig-3
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1,000 unbiased and 1,000 biased tests, we can estimate B with a variance (and so error in
the estimate of B) of less than 2. Depending on the magnitude of B, this is likely reasonable
error. In simulation, this was tested with a true bias of B = 10, meaning that a variance
of 2 represents a 20% error. In Fig. 4, we see the effect of this bias in the overestimation of
the infected proportion of the population.

Linear Trends
Dependence on dynamic slope

The ability to correctly characterize a linear trend in the dynamics from sampled data
depends on the strength of that trend as well as the nature of the population sampling.
Confidence in trends is reported as the proportion of five-day intervals in 1,000
simulations which correctly identified the sign (positive/negative) of the linear fit to the
dynamics. Sampling identifies the sign of the trend robustly for large enough absolute slope
of the dynamics. See Appendix B for details. We also see that increasing sampling improves
identification of trends in data.

In Fig. 5, we show how this dependance on the underlying dynamics effects confidence
in trend identification over the course of a simulated outbreak. Here, we see that trends can
be identified with good confidence with 8,100 samples per day for most time-intervals.
Those intervals in which trends could not be confidently identified were those that
included local maxima (peaks) or minima (valleys) in the epidemic dynamics.

Figure 4 Simulation shows how biasing testing towards symptomatic individuals overestimates
infected proportion of the population, even with no false-positive or false-negative tests, and a
high rate of testing. Here, the bias parameter is set to B(t) = 10 and the testing rate is λ(t) = 8,100
for all t. Full-size DOI: 10.7717/peerj.9758/fig-4
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Confidence with bias and errors
In Fig. 6, we see that biased sampling actually improves the confidence of an estimate of the
sign of a trend (i.e., is the trend positive or negative). This is because biased sampling
magnifies a trend in infections which are relatively rare, meaning the trend appears
stronger in the biased data. Biased testing allows for higher trend confidence in error free
(no false positive/false negative) testing as well as testing with 10% error rate.

Peak Finding
Tables 1 and 2 give precision and recall for peak finding with two sets of dynamics
(SIR generated and SAIR generated) with various sampling assumptions (with and without
bias and errors). We observe that identification of peaks in data using the smoothing
method described above has a high chance of finding the peaks in the dynamics, but has
very poor precision, providing many false peaks. See Appendix C for further details.

Trends in COVID-19 data
Overall, our model suggests that five-day trends can be used with confidence if bias was
constant for testing period. For example, we have confidence in five-day trends of the
outbreak in the state of Minnesota using data from The COVID Tracking Project (Lipton,
Ellington & Riley, 2020) to compute, shown in Fig. 7, with data from 6 March to 14 July
2020.

Our approach demonstrates that epidemic sampling data is more difficult to interpret
accurately when the bias in testing varies with time. Unfortunately, such a variation is

Figure 5 Trend sign confidence changes with the underlying dynamics.
Full-size DOI: 10.7717/peerj.9758/fig-5
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suggested by a significant negative correlation between positive test percentage and
number of tests performed in many states. This can be explained by a reduction in bias as
more tests become available (i.e., an increased willingness to test asymptomatic members
of the population). In fact, a strong negative correlation could indicate that testing may
have been initially used in a more restrictive, and therefore more heavily biased, manner.
We hypothesize that as testing increases, testing bias will approach some limit that

Figure 6 Confidence in linear trends identified for sampling of SIR and SAIR dynamics with and
without bias and errors. Full-size DOI: 10.7717/peerj.9758/fig-6

Table 1 Precision of peak finding for various sampling and dynamics.

Sampling per day

900 2,700 8,100

BiasedSAIR 0.1541 0.2198 0.2959

BiasedSIR 0.1865 0.3144 0.5210

ExactSAIR 0.1155 0.1924 0.3045

ExactSIR 0.1228 0.2080 0.3651

PerfectSAIR 0.1871 0.2566 0.3386

PerfectSIR 0.2400 0.3924 0.6132

UnbiasedSAIR 0.0827 0.1034 0.1568

UnbiasedSIR 0.0818 0.1101 0.1783
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represents the preferred policies of healthcare and government organizations. It may be
that even with high testing capacity, some bias will still exist due to testing practices and
patient self-selection. Changes in policies will result in future changes in testing bias.
We note that our model can simulate a change in bias with a time-dependent bias
parameter B in Eqs. (6)–(8). Our model is built with this problem in mind, allowing a
time-varying total intensity function λ(t). However, determining λ(t) remains a challenge.
This may require other than strictly testing data, such as test production data or
self-reported testing bias from healthcare providers.

Table 2 Recall of peak finding for various sampling and dynamics.

Sampling per day

900 2,700 8,100

BiasedSAIR 0.8955 0.9000 0.8475

BiasedSIR 0.8870 0.9370 0.9740

ExactSAIR 0.8565 0.9135 0.9370

ExactSIR 0.8580 0.9045 0.9575

PerfectSAIR 0.9060 0.8955 0.7990

PerfectSIR 0.8985 0.9570 0.9890

UnbiasedSAIR 0.8195 0.8505 0.8970

UnbiasedSIR 0.8005 0.8545 0.9180

Figure 7 Five-day trend of positive test proportion in the state of Minnesota, using data from the
COVID tracking project (Lipton, Ellington & Riley, 2020).

Full-size DOI: 10.7717/peerj.9758/fig-7
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It is worth noting that some day–day variation may be the result of irregularities in
negative test reporting, as evidenced by days with 100% positive rate. Pearson correlations
are shown in Fig. 8, with significance computed as p-value of the correlation coefficient.

DISCUSSION
Confidence in any data analysis technique must be carefully assessed in light of the
numerous confounding variables in epidemic sampling data, including bias in testing and
limits to testing capacity. Our model provides realistic simulated data that can be used
to assess confidence in conclusions based on sampled data, and even to calibrate and
engineer novel data analysis techniques. As a relevant test of our approach and an
exploration of real data from COVID-19, we use data from the COVID Tracking Project
(Lipton, Ellington & Riley, 2020) for the state of Minnesota to compute five-day trends for
that data, shown in Fig. 7. For data collected after mid July 2020, testing capacity was
generally over 2,000 samples per day, and so these estimates can be seen as somewhat
reliable with bias assumed to be approximately constant.

We also show the correlation between positive test percentage and number of tests
performed for each state in Fig. 8. We see for example, that in Minnesota, this correlation is
approximately −0.25. In most states, there is a significant anti-correlation between positive

Figure 8 Correlation between positive test percentage and tests performed in each state. Significance
indicates �p < 0.05, ��p < 0.01, ���p < 0.001 and ����p < 0.0001.

Full-size DOI: 10.7717/peerj.9758/fig-8
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test percentage and number of tests performed. This may be due to changes in the policies
of healthcare providers and government organizations as tests become available. We must
therefore account for this change in bias when discussing trends in the spread of the
disease. Additionally, some of this correlation may be due to the occurrence of days on
which negative tests are not reported or under-reported. We may model changes in bias
simply by choosing some time-dependent bias functions B(t) in Eqs. (6)–(8).

While the multiple purposes of infectious disease testing would be satisfied if all or
almost all infected individuals could be identified, the amount of testing needing to have a
high level confidence that almost all infected individuals have been identified is
prohibitively high. For example, the hypergeometric distribution suggest that if we have a
population of 300 million with 5% infection, then we need about 27 million unbiased tests
per day for 90% confidence that we have found 90% of the cases. For COVID-19, it
remains very unlikely that case numbers reported represent an accurate estimate of the
extent of disease spread. Furthermore, these numbers cannot be compared from place to
place or time to time because of changes in testing bias (Lipton, Ellington & Riley, 2020).
As an example of how testing bias can affect perception of a trend, we simulate of an
artificial scenario where testing capacity (i.e., λ(t)) increases drastically part-way through
the course of an infection in Fig. 2, and demonstrate that considering only the number of
positive tests per day completely obscures a peak in the dynamics. On the other hand,
simply considering the proportion of tests in a day which are positive reveals the true
dynamics. This emphasizes the importance of proportion of positive tests over the number
of positive tests.

Testing for COVID-19 is clearly biased toward finding infected individuals. While
reduced testing has drawbacks for addressing particular scenarios, such as screening
healthcare workers, it also has important benefits for tracking the population level trends
that inform policy decisions. As an intuitive example, consider a population with a very
small proportion of COVID-19 cases, as would be expected in the very early or very
late stages of an outbreak. Heavily biased testing helps better detect the infection by
focusing on where the cases are rather than spending the vast majority of tests on negative
results. In this sense, biased testing is a form of importance sampling. Furthermore, biased
testing reduces the number of tests needed to identify all or most infected individuals.
In Fig. 1, we show the number of samples needed for bias parameters ranging from B = 1 to
B = 50. Bias in testing is the natural result of the role of testing in the healthcare setting, and
this confirms the advantages bias has for detecting population trends. However, using
bias in testing as shown in Eqs. (6)–(8), we see in Fig. 4 that the spread of the infection will
be overestimated significantly by biased testing. In other words, to accurately estimate
the spread of disease, we must estimate the bias parameter B. This can be done by
conducting a separate set of unbiased tests and using the relationship given by Eq. (14).
If we assume that the testing bias is constant (which is reasonable for a single day), this is a
Monte-Carlo estimator where the error in this estimation is determined by the variance
in the estimate. We simulated with a bias B = 10, and show the variance of single-day
estimates for B with various biased and unbiased testing capacities in Fig. 3. From that
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simulation, we conclude that it is not unreasonable to estimate bias with 1,000 unbiased
samples per day, in addition to a larger capacity of biased testing.

Policy changes during an outbreak, such as the recent activation and deactivation of
stay-at-home orders in the USA, appear to be based on trends in the disease dynamics, that
is, whether disease spread is accelerating or decelerating, or if there have been changes to
the rate of acceleration. Our work shows that we can account for testing bias and
successfully determine the underlying trend in disease dynamics. Moreover, we show that
the overall positive or negative trend is not overly sensitive to the bias, meaning that
assuming an approximately constant bias may work for most estimates. It is important to
note that determining the sign of trends in the disease is easier when the trends are larger
in magnitude, as shown in Appendix B. The less change there is in infection rate,
such as those through smaller policy changes, the more testing is needed to identify an
effect. As an example, we see in Fig. 5 that 8,100 samples per day is enough to give good
confidence in the estimated sign of a five-day trend in disease dynamics for most of the
course of an outbreak. This confidence is low when the trend is very weak, meaning
the true dynamics are at a local maximum (peak) or minimum (valley). Finally, we see in
Fig. 6 that a constant bias in testing actually improves our ability to detect the sign of a
trend in the dynamics. This is because biased testing magnifies trends in the data, as can be
seen in Fig. 4. We see again that 8,100 tests per day gives high confidence in the sign of
five day trends in the data as long as that data is done with a constant high bias.

Policy may also be based on other metrics in sampling data, such as the occurrence of
peaks or more complicated model fitting. Our model of sampling provides a method for
testing the confidence of these metrics. As an example we show that the exact peaks in
an outbreak can be found, as seen in Table 2, but there will likely be a large number of false
peaks, as seen in Table 1. However, with the right smoothing, critical points in the
dynamics can be identified with some confidence.

As written, our model assumes that the dynamics of an epidemic can be characterized
by tracking three compartments within a society which we refer to as “symptomatic”,
“asymptomatic” and “healthy”. Thus, any dynamics must be recast as counts of individuals
who have a disease and show symptoms, those who have a disease and do not show
symptoms, and those who do not have a disease. For finer grained models of epidemic
sampling, these compartments can still be determined and our model used, but
information may be lost. It may be beneficial then to tailor a model analogous to ours to
simulate sampling on a more detailed model of epidemic sampling. This can be done
simply by increasing the number of compartments in the model and calculating equations
similar to Eqs. (6)–(8).

CONCLUSION
We provide a model of sampling in a disease outbreak in order to simulate data analysis in
different outbreak situations and to assess infection testing strategies. Clearly, we should
account for the confidence we have in the measurements of metrics used to set policy.
This confidence is affected by testing capacity, errors, and bias. Our model provides a
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method to assess confidence with time-varying testing capacity and bias by simulating
sampling over the course of an epidemic. This model demonstrates the importance of
tracking testing capacity, estimating possible changes in bias, and tracking positive test
percentage rather than raw number of positive tests. Our model provides an essential tool
in designing an effective response to the outbreak of an infectious disease.

APPENDIX A: DETAILED DESCRIPTION OF THE BIAS
PARAMETER
Below, we include a calculation to more provide better intuition about the nature of the
bias parameter B. To explain this parameter, we consider the rate at which compartments
of the population are tested for a disease. In an infinitesimal time-interval [t, t + h),
there is some probability p1h that an asymptomatic or healthy individual will be tested, and
some probability p1h that a symptomatic infected individual will be tested. The nature of
Poisson point processes is that (assuming for simplicity no errors in the tests)

�þðtÞ ¼ p1I
1ðtÞ þ p2I

2ðtÞ (15)

and

��ðtÞ ¼ p1HðtÞ (16)

and that the total rate of testing is λ(t) = p1(I
1(t) + H(t)) + p2I

2(t). We then have from Eq.
(9) that

p1I
1ðtÞ þ p2I

2ðtÞ ¼ ðp1ðI1ðtÞ þ HðtÞÞ þ p2I
2ðtÞÞ I1ðtÞ þ BI2ðtÞ

I1ðtÞ þ BI2ðtÞ þ HðtÞ : (17)

We can rewrite this as

p1I1ðtÞ þ p2I2ðtÞ
ðp1ðI1ðtÞ þ HðtÞÞ þ p2I2ðtÞÞ ¼

I1ðtÞ þ BI2ðtÞ
I1ðtÞ þ BI2ðtÞ þ HðtÞ (18)

and see that

B ¼ p2
p1

(19)

Thus the bias B can be interpreted as the increased rate of testing of symptomatic
individuals over asymptomatic individuals, as presumably p2 > p1. The effect of this
difference is that the apparent population sampled is an adjusted version of the true
population, with apparent total I1(t) + BI2(t) + H(t) and apparent number of infected
I1(t) + BI2(t).

APPENDIX B: SAMPLING FROM DIFFERENT UNDERLYING
DYNAMICS
In Fig. A1, we test sampling’s ability to identify a constant trend (i.e., linear increase or
decrease) in the infected proportion. We see that sampling identifies the sign of the trend
robustly for large enough absolute slope.
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APPENDIX C: RESULTS OF PEAK FINDING
Tables 1 and 2 were generated with a smoothing parameter of 5. Here, we demonstrate that
this can be improved with an optimal choice of smoothing. Figure A2 uses smoothing from
1 to 10, with 10 giving the highest precision and recall.

APPENDIX D: MODELS USED TO GENERATE DYNAMICS
SIR model
We generate SIR dynamics by considering three pools of individuals: those that are
susceptible, those that are infected, and those that have recovered. Individuals transition
between these pools according to mass action dynamics given in the ODE model:

dxS
dt

¼ �bxIxS

Figure A1 Trend fitting for five-day interval of dynamics with constant slope. Top: Confidence in the
sign of the estimated slope as actual slope varies. Bottom: Error in estimated slope as slope varies.

Full-size DOI: 10.7717/peerj.9758/fig-A1
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dxI
dt

¼ bxIxS � gxi

dxR
dt

¼ gxI

where xS, xI, xR represent the proportion of the population that is susceptible, infected, or
recovered from the disease. We allow β = β(t) to be a function of time, and choose a dynamic
parameterization which allows us to generate an infection with more than one peak time, as
can be seen in Fig. 4. We do this simply by varying β (intuitively varying the virulence of
the disease) so that it decreased until t = 50 and then increased, with maximum of 2

15:

bðtÞ ¼ 1
15

2� exp � t � 50
15

� �2
 ! !

(20)

and g ¼ 1
15. This dynamic parameterization allows us to generate an infection with more

than one peak time, as can be seen in Fig. 4.
This model can be interpreted as stating that individuals transition from susceptible to

infected at the rate βxIxS, and transition from infected to recovered at the rate γxi. The well
known “R(t)" parameter is defined as

RðtÞ ¼ Nb

g
(21)

where N is the total population size (Edelstein-Keshet, 2005).
Using these dynamics, we take I1(t) = xI(t), I

2(t) = 0 and H(t) = xS(t) + xR(t).

Figure A2 Precision and recall for peak finding with various smoothing parameters. These simu-
lations sought peaks in a course of infection dynamics generated by the SIR model with a variable β(t).
The underlying dynamics were the same as shown in Fig. 4. Sampling was done with bias of 10 and false
positive/false negative rates of 10%. Full-size DOI: 10.7717/peerj.9758/fig-A2
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SAIR model
We also test dynamics that include an asymptomatic infected population. We generate
SAIR dynamics by considering three pools of individuals: those that are susceptible, those
that are infected, and those that have recovered. Individuals transition between these pools
according to mass action dynamics given in the ODE model:

dxS
dt

¼ �ðb11 þ b12ÞxI1xS � ðb21 þ b22ÞxI2xS

dxI1

dt
¼ b11xI1xS þ b21xI2xS � gxI1 � dxI1

dxI2

dt
¼ b12xI1xS þ b22xI2xS � gxI2 þ dxI1

dxR
dt

¼ gðxI1 þ xI2Þ

where xS, xI1, xI2, xR represent the proportion of the population that is susceptible,
asymptomatic infected, symptomatic infected, or recovered from the disease.

This model can be interpreted as stating that individuals transition from susceptible to
asymptomatic infected at the rate β11xI1xS + β21xI2xS, from susceptible to symptomatic at the
rate β12xI1xS + β22xI2xS, from asymptomatic to symptomatic at the rate δxI1, and recover at the
rate γxI1 if asymptomatic and γxI2 if symptomatic. Note that if we take β11 = β12 = β21 = β22
we may again define the intrinsic reproduction rate R(t) as in the SIR model.

Using these dynamics, we have I1(t) = xI1(t), I
2(t) = xI2(t) and H(t) = xS(t) + xR(t).

APPENDIX E: ACCOUNTING FOR SMALL POPULATIONS
The model as described above assumes that members of the population may be re-tested
immediately after being tested. This is reflected in the fact that performing a test has no effect
on Eqs. (9) and (10). In large populations, this assumption is reasonable because the proportion
of the population who have been tested is not significant. On the other hand, in small
populations we must model the limited availability of untested members of the population.

To account for this effect, we must estimate the proportion of each sub-population
(I1(t), I2(t),H(t)) which is available for testing. We assume that testing removes one person
from testable population, and those removed are re-introduced after some exponential
wait time. However, we still must approximate how the overall disease dynamics change
the tested and untested population. That is, we must account for a healthy individual
who has been tested becoming infected before being re-introduced into the testable
population, or an infected individual recovering.

We make the following simplifying assumption that the dynamics of each sub-population
are distributed uniformly across the tested and untested parts of the sub-population:

dxT
dt

¼ xT
x
dx
dt

(22)
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where x = I1, x = I2, or X =H represent total sub-populations and xT is the number of tested
and not-yet reintroduced members of the sub-population. In practice, we use an Euler
approximation to estimate the proportion of a sub-population ineligible for testing:

xTðt2Þ � xTðt1Þ þ xTðt1Þ
xðt1Þ xðt2Þ � xðt1Þð Þ ¼ xTðt1Þ

xðt1Þ xðt2Þ: (23)

where t1, t2 are the times of consecutive stochastic events in the model (i.e., a test
performed or population member re-introduced into the testable population).

With this model, overestimation of the positive percentage due to biased testing lessens
as the rate of testing increases, as shown in Fig. A3. This is due to the limited number of
testable infected individuals at any time.
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