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ABSTRACT: We have recently shown how program synthesis
(PS), or the concept of “self-writing code”, can generate novel
algorithms that solve the vibrational Schrödinger equation,
providing approximations to the allowed wave functions for
bound, one-dimensional (1-D) potential energy surfaces (PESs).
The resulting algorithms use a grid-based representation of the
underlying wave function ψ(x) and PES V(x), providing codes
which represent approximations to standard discrete variable
representation (DVR) methods. In this Article, we show how this
inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues
of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some
improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify
accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The
resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of
multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-
based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we
anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful
in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.

1. INTRODUCTION
Program synthesis (PS) is a rapidly evolving technology from
the field of computer science in which a central code is used to
automatically generate new algorithms or code fragments that
solve a defined problem.1−9 The typical inductive PS paradigm
operates by optimizing an algorithm representation such that it
gives the correct target outputs when presented with given
inputs; in this sense, it is clear that PS bears similarities to
artificial intelligence/machine-learning (AI/ML) methods,10−29

such as artificial neural networks (ANNs). However, the output
of PS is not a set of optimized floating-point connection weights,
as in typical ANN applications, but is instead a complete
algorithm (often in the form of implementable code) that solves
the defined input/output target problem. In addition, depending
on the program structure adopted and the approach taken to
code optimization, PS has the potential to propose new
algorithms or solution approaches that might not necessarily
have been proposed by a researcher using traditional solution
methods.3,7,8,30−32 Furthermore, given that PS directly generates
codes, rather than sets of connection weights, there is the
potential that PS solutions may offer a higher level of
interpretability than ANNs or similar AI/ML tools.
Recently, we have begun to explore how PS can be adapted to

solve typical problems encountered in quantum chemistry.33 As
our prototypical problem, we have previously considered the use
of PS to identify algorithms that solve the one-dimensional (1-

D) vibrational Schrödinger equation. In particular, we have
shown that a linear code representation, in which an algorithm is
represented as a set of functions operating on workspace
matrices and vectors, can be used to generate algorithms
(typically containing 15−25 instructions) that provide good
approximations to the ground-state wave functions of vibra-
tional Schrödinger equations for arbitrary 1-D bound-poly-
nomial PESs. Here, a set of randomly generated PESs V(x) were
represented on a uniform coordinate grid and used as PS input,
with the corresponding ground-state wave functions (provided
by a standard discrete variable representation [DVR] code,34

which similarly operates to predict eigenfunctions given as input
the PES values at a set of coordinate grid points) used as target
outputs. Using a stochastic instruction optimization procedure,
we showed that PS can generate several new candidate
algorithms to successfully solve the vibrational Schrödinger
equation; importantly, we also demonstrated that these
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algorithms are transferrable to arbitrary bound PESs beyond
those included in the input/output set used for optimization.
Upon further analysis of the resulting working equations, we

found that all of the PS-generated algorithms that were
generated could be viewed as variants on typical DVR
algorithms.34−41 In particular, the ground-state wave functions
were always given on output as the first eigenvector (with lowest
eigenvalue) of an n × n square matrix that contained the PES
V(x) evaluated at the n position grid-points in the diagonal
elements; in addition to the PES values, further operations using
the matrix indices and/or a set of problem-specific constants
(such as the grid-spacing or the 1-D particle mass) were
incorporated into the matrix before solution of the eigenpro-
blem. As such, the proposed PS-generated algorithms can be
viewed as approximations to an effective Hamiltonian matrix,
albeit without requiring definition of an underlying set of basis
functions or explicit evaluation of kinetic energy (KE) and PES
matrix elements. Building on this relationship between our PS-
generated codes and DVR schemes, we subsequently demon-
strated that one can generate algorithms that give good
approximations to the first few eigenstates of bound PESs, and
we also showed that our newDVR-like schemes can be extended
to multidimensional problems (with more than one active
degree of freedom) in the same way that standard DVR schemes
can.
The purpose of this Article is to expand on our initial proof-of-

concept PS study33 to investigate algorithms that can predict
both the allowed eigenstates and eigenvalues (i.e., energies) in
novel DVR-type schemes applicable to multidimensional
vibrational Schrödinger equations. As discussed below in section
3, determination of the energy eigenvalues in PS schemes is not
as straightforward as the prediction of eigenstates alone; we
investigate why this is the case and propose new PS-based
approaches that can address this problem. Perhaps most
importantly, we demonstrate that PS can be used to generate
accurate DVR algorithms with numerically favorable matrix
structures (i.e., tridiagonal structure and improved sparsity,42

such that an increased number of matrix elements are zero),
providing an interesting alternative route toward efficient large-
scale computations of wave functions for multidimensional
problems, as shown below.

2. THEORY

The general PS system employed here is the same as reported in
our initial investigation;33 as such, we only provide a brief
overview here, before focusing on the improvements relevant to
the new results in section 3.
2.1. ProblemDefinition and Representation.Our target

problem of interest is solution of the time-independent
Schrödinger equation (TISE) to give the allowed wave functions
ψj and corresponding energy eigenvalues Ej.

35 The TISE is

ψ ψ̂ =H Ej j j (1)

where Ĥ is the Hamiltonian operator. Here, we assume that the
coordinates q defining the system of interest form a system of
orthogonal coordinates, such that the Hamiltonian operator is a
sum of kinetic energy (KE) and PES contributions given by

∑̂ = − ℏ ∂
∂

+
=

H
m q

V q
2

( )
k

f

k k1

2 2

2
(2)

where mk is the mass associated with the degree of freedom
(DOF) k and V(q) is the adiabatic PES describing the system of
interest.
In this Article, we focus exclusively on adiabatic PESs, which

are bound in all DOFs; for example, this problem setup is
representative of the challenge of evaluating the eigenstates and
eigenvalues associated with vibrational motion on a molecular
ground-state PES. In this problem setting, an extremely
common approach to solving eq 1 is the DVR scheme. In the
1-D case, diagonalization of the position operator matrix
expressed in an underlying set of basis functions (typically
orthogonal polynomials or sinusoidal functions) yields a grid of
discrete positions, {qi}i=1

ng , where ng is the number of grid points.
These grid points can be viewed as highly localized basis
functions that can be used to represent the solutions of eq
1.34−41 The important consequence of this transformation is
that PES matrix elements in this grid-localized basis are trivial to
evaluate, corresponding to simply the value of the PES at the grid
point, such that the Hamiltonian operator can be written in the
grid-localized DVR basis as

δ= +H T V q( )ij ij i ij (3)

whereV(qi) is the value of the PES evaluated on grid point qi and
Tij is the KEmatrix element (obtained by analytical evaluation in
the underlying polynomial basis and transformation to the grid
representation). Diagonalization of the Hamiltonian matrix in
eq 3 then yields the corresponding eigenfunctions and
eigenvalues, with the number of grid points ng controlling
convergence toward the numerically exact result.
The simplicity of the DVRmethod, as well as the requirement

that one only needs to know the value of the PES evaluated at the
ng grid points, makes it attractive as a method for interrogating
vibrational properties and quantum dynamics of molecular
systems. Typically, working in normal-mode coordinates (or
similar orthogonal coordinate system) such that the KE operator
is separable, one can construct a Hamiltonian matrix
representation using the direct product of all grid points along
each DOF; as such, the DVR scheme of eq 3 can be directly
applied to multidimensional systems, enabling analysis and
prediction of quantum-mechanical properties for multiple
coupled vibrational modes in molecules. For example, in a 2-D
system [using the explicit notation (q1,q2) = (x,y)], the DVR
Hamiltonian matrix elements can be written as

δ δ δ δ= + +′ ′ ′ ′ ′ ′ ′ ′H T x T y V x y( ) ( ) ( , )ij i j ii jj jj ii ii jj, (4)

where (i,j) and (i′, j′) label the indices of the grid point along
each DOF (x,y), and there are now a total of ng

2 grid points
(where ng is the number of grid points available along eachDOF;
we assume, for simplicity, that this number is the same along
eachDOF, but note that this is not a strict requirement).Moving
to 3-D [with (q1,q2,q3) = (x,y,z)], the DVR Hamiltonian matrix
elements are

δ δ δ δ δ δ

δ δ δ

= + +

+

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′

H T x T y T

V x y z

( ) ( )

( , , )

ijk i j k ii jj kk jj ii kk kk ii jj

ii jj kk

,

(5)

where, again, (i, j, k) and (i′, j′, k′) label the grid points along
coordinates (x, y, z). Of course, this approach can be extended to
higher-dimensional systems following directly from eqs 4 and 5.
In DVR calculations such as those described above, it should

be clear that the number of grid points scales as ng
f , where f is the

number of DOFs in the target problem (and assuming the same
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number of grid points in each DOF); given that a typical value
for ng is in the range of 20−50, it is clear that the problem size
that can be treated with DVR schemes is limited by the
requirement to evaluate the PES at all ng

f grid points (which
could be prohibitively expensive if one requires accurate ab initio
energy evaluations), as well as the requirement to manipulate
increasingly large matrices. Later, we discuss how PS-generated
codes can directly contribute to reducing the computational
effort associated with manipulating the large matrices often
encountered in DVR calculations.
At this point, it is worth making the connection between our

previous PS work and the DVR algorithms discussed above. In
our original PS approach,33 wemimic the underlying structure of
DVR methods by assuming that the PES and wave function are
represented on a coordinate grid of ng points; as described
below, the PES is provided as an input to our PS scheme, and the
aim is to predict the expected output wave functions by
identifying algorithms that operate on workspace matrices and
vectors. Notably, we found that a universal operation in our PS-
generated algorithms was the prediction of wave functions for a
given PES by diagonalization of a workspace matrixM, such that
M can be viewed as an approximation of a Hamiltonian-type
matrix H, albeit without reference to any underlying basis
functions. This comparison between the DVR Hamiltonian
matrix and the workspacematrices generated in our PS approach
will be an important aspect in discussions below.
Given the analogy between our PS strategy and well-known

DVR schemes, a key hypothesis of this Article is that PS could be
used to tackle the computational challenges of DVR calculations,
in particular by seeking DVR-type algorithms with preferred
(i.e., computationally beneficial) matrix structure. Our results in
this direction are described in section 3; first, we describe our PS
implementation and highlight modifications which aim to
provide more efficient DVR-type schemes. Importantly, we
emphasize that our PS-generated codes can be used in
multidimensional problems in just the same way that DVR
can be expanded to multidimensional PESs; this will be
confirmed and explored later, where we discuss the computa-
tional benefits of PS-generated codes in more challenging DVR
calculations.
2.2. Code Representation. The overall strategy adopted in

our PS approach is to treat the challenge of identifying new
algorithms to solve eqs 1 and 2 as an exercise in discrete
optimization.7−9 Here, we are seeking to find an algorithm that
uses, as input, the set of PES values evaluated on the coordinate
grid, and gives an output vector w, which represents the
algorithm’s prediction of the (ground- or excited-state) wave
function on the coordinate grid.
Using a linear code representation, similar to that employed in

Cartesian genetic programming,7 in which a sequence of N
functions operate on an input workspace matrix M and
corresponding vector y, a given algorithm can be encoded as a
list ofN integers labeling the operations to be performed at each
algorithm step, resulting in an output vector w for each input
problem. For a given algorithm (i.e., integer sequence), the
performance can be evaluated by assessing the accuracy of the
predictions given for a series of target examples for which the
exact answer can be calculated using an “oracle” code. As shown
in our previous work, and below, we note that the oracle code
does not need to provide an excessively large number of correct
input/output examples; in our experience to date, PS generally
seems to operate efficiently in finding accurate, general-purpose
algorithms with ∼5−20 input/output pairs.

This approach is highlighted in Figure 1, which illustrates two
schematic representations of different proposed algorithms.

Each algorithm is represented by a sequence of N instructions,
including an input instruction (I), an output instruction (O),
andN− 2 internal code layers. At each code layer (input, output
and internal), there are a number of different possible
mathematical operations that are defined in a function library,
as discussed below. As shown in Figure 1, a sequence of N
instructions corresponds to a unique algorithm, starting with
definition of an input workspace matrix and vector, moving on
through N − 2 internal instructions and, finally, using an output
operation to create the algorithm output; the entire sequence
can be simply encoded as a set of N integers, defining the
operation index at each of the N algorithm layers. We note that
the same set of ni instructions are used at each internal code layer
in our current approach.
An important part of this PS strategy is the definition of the

input, internal, and output function sets. In this Article,
following our previous study, we use a large set of input and
internal functions to provide flexibility in the definition of the
input workspace vector y and matrix M, and a wide range of
mathematical variation in the internal function set. However,
given the analogy between DVR algorithms and the approx-

Figure 1. Schematic representation of PS for generating DVR-type
algorithms.33 The grids in panels (a) and (b) show diagrammatic
representations of the linear code setup employed here; at the input
layer I and each of the internal code layers (of which there are five in the
example here, represented by the five columns of the grids, excluding
input and output), a choice of function is made. In the input layer, the
functions define possible choices for input workspace matrices M and
vectors y; in addition, the input layer defines problem specific
information available to the rest of the functions, such as definitions
of the PES, particle mass, and coordinate grid. In the internal layers,
these objects M and y are subsequently modified by a set of function
options; in the schematic example given here, there are seven function
choices at each internal layer. Finally, an output function O gives the
prediction of the corresponding wave function(s) and/or energy
eigenvalues for the input PES; this can be compared to the correct
target wave functions, and the code can subsequently be improved by
changing the sequence of operations. Panels (a) and (b) give two
representative examples of different algorithms, with panel (a) yielding
poor performance and panel (b) providing good approximation of the
correct target wave functions.
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imation of a Hamiltonian-type matrix via the workspace matrix
M, in this Article, we only use a single output operation (Figure
1) corresponding to diagonalization of the workspace matrixM
and interpretation of the corresponding eigenvectors as the
predicted wave functions for the input PES. This strategy of
treating the workspace matrix as an approximation of a
Hamiltonian-type matrix is justified on the basis of our previous
study, which found that successful algorithms generated by PS
for approximating ground- and excited-state wave functions
always used the calculation of eigenvectors of the workspace
matrix M as the output operation (despite several alternative
output functions being available).33

The set of input possibilities and internal functions used in
this Article are given in the Supporting Information. Generally,
these functions are similar to the set of functions used in our
previous work, with the addition of a few new operations added
in order to provide some additional flexibility in the algorithms
which can be generated by PS.
The input functions define the workspace vector y and

workspace matrix M. In keeping with the analogy with DVR
algorithms, and as noted above, for a PES defined at ng grid
points, the vector y has length ng and the matrixM is square, with
size ng × ng. We define a set of 11 input options, which are
designed to “boot-strap” y and M with different possible
functional forms. For example, as shown in the Supporting
Information, one input option simply defines yi = 1 for all
elements i, and Mij = 1 for all matrix elements (i, j). Beyond
defining numerically sensible input matrices, the challenge of
identifying the “best” set of input options is itself an optimization
problem (as discussed in section 4).
The set of internal functions that operate on y andM through

theN− 2 internal code layers are also somewhat arbitrary in our
current PS approach. As shown in the Supporting Information,
our approach is to simply define a large number of possible
internal functions, and to use the same set of function options at
each internal code layer. Generally, we employ function options
that are often encountered in the mathematics of differential
equations or in well-known methods for solving eq 1. We note
here that the automated evolution of better functions is
something that could be considered in the future, for example,
using a similar approach to the automatically defined functions
(ADFs) proposed in the context of genetic programming.43,44

In total, the PS simulations reported below use 134 function
options at each internal code layer. These functions generally are
“local”, in the sense that the operations performed on element i
in y is dependent only on the index i or the position of the
corresponding grid point, and the operations performed on
element (i, j) inM are similarly dependent only on the indices or
grid points of elements i and j. The focus on local operations in
the internal function set is driven, in large part, by pragmatism;
defining and coding function options that are dependent only on
local matrix elements is simpler than defining nonlocal
functions. Of course, we note that nonlocal functions could
equally be incorporated into the PS described here, but we leave
that expansion to future work; furthermore, we note that even
using the limited set of functions employed here, we can
generate accurate and efficient algorithms for predicting wave
functions.
As well as defining the set of functions available within each

code layer, our PS strategy also uses a set of constants that are
available and accessible to relevant functions at all code layers. In
particular, we define the set of constants c = [m, 2, 3, 4, π, L],
where m is the mass associated with the 1-D degree of freedom

and L is the range of the coordinate grid. In the calculations
below, which consider systems with unit mass in each degree of
freedom and fixed total grid-length L = 10, then we have c = [1,
2, 3, 4, π, 10]. These constants can be used by many of the
functions defined in the internal function set, as shown in
Supporting Information; for example, one allowed function is
the addition of a given constant to all elements of the matrix,

→ + cM M 1

and similar operations are defined for y. It is worth emphasizing
that there are no optimizable floating-point constants in our PS
strategy, a key point in enabling generation of new algorithms
that are applicable across a range of different PES functions; as
such, there is a clear distinction between the typical operation of
ANNs and the PS strategy used here. Finally, we note that, in
addition to the constants, two further vectors, V and x, are
available to all relevant input and internal functions; the vectorV
contains the PES values evaluated at all grid points for the target
problem, whereas x contains the grid-point coordinates
themselves. As shown below, and in the Supporting Information,
these vectors can be used by input and internal functions to build
up functional complexity in seeking more accurate matrix
approximations, and can be viewed as problem definitions
providing information about each individual input PES to the PS
system.

2.3. PS by Stochastic Optimization.With the description
of an algorithm as an integer sequence defining instructions at a
set of N code layers, as well as a definition of the input, internal,
and output function sets, the final aspect of PS to discuss is the
optimization process; in other words, how do we identify
function sequences corresponding to accurate algorithms to
reproduce wave functions that obey eq 1?
To achieve this goal, we use simulated annealing (SA).42 In

the initial implementation of our PS strategy, we defined a cost
function as

∑ ψ= | − |
=

F
M

S w
1

( )
j

M

j j j
1 (6)

where ψj is the ground-state wave function (represented on the
coordinate grid) for the jth example PES, wj is the current
algorithm’s output vector, and S = ±1 is an overall sign-value
chosen independently for each of theM target examples to give
the best agreement between ψj and (Sjwj). The factor Sj accounts
for the fact that both +ψ and −ψ are both typically valid
solutions of eq 1. Note that our initial proof-of-concept study
also demonstrated that the cost function of eq 6 can be modified
to also enable accurate determination of excited-state wave
functions too, by simply redefining the optimization to include
these additional states:

∑ ∑ ψ= | − |
= =

F
Mn

S w
1

( )
e j

M

k

n

j
k

j
k

j
k

1 1

e

(7)

Here, ne is the number of target states included for each input
target PES, with ψj

k and wj
k representing the target wave

functions and PS output wave functions, respectively. Again,
following analogy to DVR schemes, the set of PS-predicted wave
functions are obtained as the ne eigenfunctions (with lowest
corresponding eigenvalues) of the output workspace matrix M.
A final important point concerns the number of grid points

used to represent each target problem used in evaluation of eqs 6
and 7. In our initial PS studies, we generated a set of target
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problems on uniform grids x with a f ixed number of grid points;
further analysis demonstrated that, although successful in
reproducing target wave functions for the chosen grid size, the
resulting PS-generated codes were not transferable to other grid
sizes. To combat this, we demonstrated that one can instead
generate target problems with a range of different grid sizes, and
use these targets as the basis of the cost functions in eqs 6 and 7.
Here, because PS optimization is driven toward reproducing the
target eigenfunctions for systems with a range of grid sizes, the
resulting algorithms are much more generally applicable across
different grids. In the simulations reported here, we consider
code optimization for both cases: using target problems with
either a range of grid sizes (offering transferability) or fixed grids
(offering potential to generate optimized codes for each
particular grid size).
Algorithm optimization proceeds by using SA to minimize F

(eq 6 or 7), starting at some initial effective temperature Tinit.
During a series of Niter iterations, the current integer sequence
defining a given code is updated by randomly changing a small
number (typically between one and three) of integers in the
code sequence (corresponding to changing input or internal
functions). The new algorithm is accepted or rejected based on
the usual Metropolis criterion, where the probability of
acceptance of the proposed change is given by

= [ ]β− −P emin 1, F F( )new old

where β is the current effective temperature β =( )k T
1

B
, T, and

Fnew and Fold are, respectively, the cost function values for the
new and old code sequences. During the SA iterations, the
effective temperature is linearly decreased such that the
temperature at iteration j is given by

= −T T
jT
Nj init

init

iter

At the end of Niter iterations, the resulting algorithm can be
further tested by assessing its performance in a set of
independently generated random PESs (which were not
included during optimization).
Our PS system described above is implemented in a simple

standalone python code, using numpy to perform function
evaluations where appropriate.45 The set of input, output, and
internal functions are encapsulated in a function library module
that can be readily modified and adapted to the problem at hand.
On completion of the SA optimization, the result is an algorithm
given as a sequence of N integers defining the input workspace
vector/matrix definitions, the N − 2 internal functions, and the
output function (which is, in the current article, simply fixed as
an eigenvector calculation). Given that each integer corresponds
to a specific function defined in the PS function library, it is
straightforward to extract code which implements a given
algorithm as a simple sequence of python instructions.
Furthermore, because each instruction corresponds to a well-
defined mathematical operation, it is also simple to translate
output algorithms into working equations giving the elements of
the workspace matrix M; where appropriate equations defining
workspace matrices are given in section 3.
2.3.1. Target Data Generation. The stochastic optimization

PS strategy described above requires target data in order to
assess algorithm performance using eq 6 or eq 7; specifically, we
requireM input/output examples comprising the PES evaluated
on the coordinate grid (as input) and the corresponding

numerically exact target wave functions on the coordinate grid
(as expected outputs).
In all calculations considered below, target wave functions are

generated using the Colbert−Miller DVR method (CM-DVR),
a well-known DVR with particularly simple Hamiltonian matrix
elements.34 The CM-DVR scheme uses a uniform coordinate
grid with ng grid points; in our calculations, the coordinate-grid
range is [−5,+5], the grid length is L = 10. The CM-DVR has
Hamiltonian matrix elements given by

π
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ℏ
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+ =

ℏ −
Δ −

≠
−
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m x

V i j

m x i j
i j

6
for

( 1)
( )
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i
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2 2

2

2 ( )

2 2

l

m

oooooooo

n
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where Vi is the PES value at grid point i and Δx is the grid
spacing. For the purposes of later discussion, note that, while the
Hamiltonian matrix elements are straightforward to calculate,
the resulting Hamiltonian matrix is reasonably dense, with off-
diagonal elements decaying to zero as 1/(i − j)2.
Following previous work, we generate target PESs of the form

∑=
=

V x a x( )
k

k
k

1

6

(9)

The coefficients a are randomly generated by sampling
uniformly in the range [−5,+5]. We ensure that the PES is
bound by checking the value of the PES at the upper and lower
limits of the coordinate grid, demanding that these values are
both greater than V(x) = 5.0. The requirement of using bound
PESs reflects our interest in using DVR-type methods and PS-
generated algorithms to study the quantum vibrational proper-
ties of typical molecular systems.
After a choice number of grid points ng, generation of random

bound-polynomial PESs using eq 9 and diagonalization of the
resulting Hamiltonian matrix in eq 8 then gives the target
outputs used in eqs 6 and 7. The advantage of the data
generation scheme described here is its simplicity; generating
new PESs for optimization and independent code-testing is
straightforward, and the numerically converged answers can be
readily obtained. Finally, we emphasize that, during PS
simulations, the target data generated by CM-DVR uses a
large grid with ng = 151 grid points; in other words, the target
CM-DVR data represents well-converged results.

2.4. New Ideas To Improve PS. Having described our
initial PS strategy and its connection to traditional DVR
methods, we now turn to focusing on the new aspects of this
Article. First, as noted above, our initial implementation of PS
focused on seeking algorithms that could reproduce the first few
eigenstates of arbitrary bound 1-D PESs. Of course, in addition
to eigenstates, a second key required output in useful quantum-
chemical calculation is the corresponding energy eigenvalues; as
such, in this Article, we focus on methods that provide
approximations to both the eigenstates and the corresponding
energies. Second, we discuss how one can use PS to generate
algorithms that only employ highly sparse (i.e., tridiagonal)
matrices, offering significant advantages from a computational-
efficiency perspective that cannot be easily obtained in standard
DVR schemes; this is demonstrated in applications to few-
dimensional systems in section 3.4.1.

2.4.1. Energy Prediction. Generally, for matrix-based
schemes for solution of eq 1, there are two routes to calculating
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the energy eigenvalue for a given allowed eigenstate. First, one
can either calculate the energy eigenvalues by diagonalization of
the Hamiltonian matrix, as in the CM-DVR scheme. A second,
more circuitous route, is to calculate the energy through
evaluation of the energy expectation value, given in the 1-D case
as

∫
∫
ψ ψ

ψ ψ
=

* ̂

*
E

x H x x

x x x

( ) ( ) d

( ) ( ) dj
(10)

In principle, evaluation of energies by these two routes should
give the same value; however, this assumes that the matrix that is
being diagonalized to give the eigenfunctions is an accurate
approximation to the true Hamiltonian matrix of the system. In
the case of the CM-DVRmethod (and any other DVRmethod),
this is true by construction, such that both energy evaluation
routes effectively give the same result.
However, we must recognize that our PS scheme does not

necessarily generate accurate representations of the full
Hamiltonian matrix; by their nature, the workspace matrices
M generated by our PS strategy have been tuned to reproduce
selected eigenfunctions, without any regard to the corresponding
eigenvalues. As such, in the PS scheme reported previously,
there is no guarantee that the two different energy evaluation
methods would give the same result.
To explore this point, we consider here two modification of

the cost function in our PS scheme to enable accurate prediction
of both eigenfunctions and energies; these two methods are as
follows:
(1)Method E1: The cost function F used during SA is given

by the root-mean-square fractional error (RMSE) between the
energy expectation values (eq 10) calculated for the
eigenfunctions generated by PS and the target energy
eigenvalues given by CM-DVR:
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Here, Ẽj
k is the target energy eigenvalue (given by CM-DVR) for

the kth eigenstate of the jth target PES, and Ej
k is the

corresponding energy predicted as the expectation value of the
Hamiltonian operator; we consider the first ne eigenvalues for
each of the M target problems. Note that, because the energy
expectation values are evaluated from the wave functions
predicted by PS, this cost function implicitly requires both
eigenfunctions and eigenvalues to be accurate in order to reach
small values of FE1.
(2) Method E2: Here, the cost function used during SA

optimization is a composite function based on agreement
between both the target and PS wave functions, as well as the
energy eigenvalues given by CM-DVR and by diagonalization of
the workspace matrix M:
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Here, λj
k is the kth lowest eigenvalue of the output workspace

matrix M, and wj
k is the corresponding eigenvector. In passing,

we note that the magnitudes of the two different components in
FE2 are expected to be roughly similar, particularly given the fact

that the eigenvectors wj
k are normalized on output from a trial

algorithm before the cost functions are evaluated.
As a further comment, we note that a third alternative

approach, using eq 11 but replacing the calculated energy
expectation values with the eigenvalues λj

k is also a possibility;
however, in practice, we have found that this approach results in
eigenfunctions which are effectively nonsensical, as discussed
below. On a practical note, calculation of eq 12 is somewhat
complicated by the fact that the PS target problems have
different grid-sizes yet the target eigenfunctions provided by
converged CM-DVR calculations will necessarily use larger
grids. To address this in the calculation of eq 12, we compare
each element in the output vector w to the closest grid point in
the target wave function ψ; given the fine grid spacing in the
numerically exact CM-DVR results, the error introduced here
will be small.

2.4.2. Seeking Sparse Eigenproblems. The second mod-
ification of our PS strategy that will be studied here, and perhaps
a main outcome of this Article, is the investigation of PS as a tool
to develop algorithms for solving eq 1 using matrices that have a
predetermined structure that offers computational benefits.
As noted above, the calculation of the Hamiltonian matrix in

DVRmethods is often quite straightforward.35 Unfortunately, in
typical direct-product grid-based methods, the number of matrix
elements increases rapidly as the number of degrees of freedom
increases; as noted above, assuming an average number of n̅ grid
points along each degree of freedom, the direct-product nature
of the coordinate grid and wave function representation means
that the number of grid points required in an f-dimensional
system is n̅f. Similarly, this means that the number of elements in
the full Hamiltonian matrix is proportional to n̅2f.
The impacts of this rapidly increasing number of grid points

(an example of the “curse of dimensionality”) are clear.
Multidimensional DVR calculations can require very large
numbers of energy evaluations, which can be particularly
demanding if one is using high-accuracy ab initio electronic
structure calculations. Furthermore, the increasing size of the
Hamiltonian matrix can place significant demands on computa-
tional memory and storage for multidimensional calculations,
such that eigenfunction evaluation can become prohibitively
expensive.
As such, there has been a large amount of work focused on

reducing the computational effort associated with DVR
calculations.39−41,46 A primary interest has been the develop-
ment of efficient pruning methods, which seek to remove those
grid points in the full direct-product grid, which are predicted to
have essentially zero wave function amplitude for a given PES;
for example, research by Carrington and co-workers has clearly
demonstrated how pruned basis sets can be developed to
significantly reduce the computational cost of DVR calcu-
lations.47,48 A complementary approach is to seek to reduce the
number of grid points required in each DOF, for example by
seeking to optimize the choice of underlying DVR basis set to
best match the nature of the problem at hand; this is exemplified
by the potential-optimized DVR methodology,41 as well as
developments aimed at using nonproduct coordinate grids.49

Finally, we note another alternative to reducing computational
effort, namely, the use of ML strategies to generate global PESs
using a reduced number of ab initio PES evaluations. In our own
recent work,19,50−56 we have shown how kernel ridge regression
(KRR) can dramatically reduce the number of ab initio PES
evaluations required to generate an accurate global PES,
particularly if the requisite kernel functions are appropriately
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chosen. For example, in a recent study of full-dimensional (6-D)
nonadiabatic dynamics in thioformaldehyde, ∼300 PES
evaluations were required to generate a KRR PES,54 while just
over 2700 PES evaluations were required when performing 12-
mode/2-state nonadiabatic simulations of pyrazine;53 in both
cases, the required number of PES evaluations is far fewer than
the number of DVR grid-points used in modeling the underlying
dynamics via multiconfiguration time-dependent Hartree
(MCTDH) method.
In addition to themeasures outlined above, a further approach

to reducing computational effort is to seek methods for solving
eq 1 that retain the simplicity of DVR schemes but have
computationally beneficial algorithm structure. Specifically, it is
well-known that sparse matrices (dominated by a large number
of elements that are essentially zero) offer significant computa-
tional advantages when one is handling matrix and matrix-vector
manipulations;42,57 for example, sparse matrices can exploit
efficient indexing schemes to minimize storage requirements,
while efficient iterative schemes for eigenproblem solution
readily benefit from sparsity in the associated matrix
manipulations. In such methods, the computational time for
matrix-vector multiplications becomes roughly proportional to
the number of nonzero matrix elements in a sparse matrix; in
other words, minimizing the number of nonzero elements (i.e.,
maximizing sparsity) offers a route to computational benefits.
In the “best-case” scenario, it seems that a method for solving

eq 1 that employs a tridiagonal Hamiltonian (or workspace)
matrix could be considered optimal; it is hard to imagine a
simpler or more compact matrix structure that could give equally
accurate eigenvalues and eigenfunctions. However, in standard
DVR schemes, there is little opportunity to derive accurate
methods that result in exclusively tridiagonal Hamiltonian
matrices; for example, in the CM-DVRmethod demonstrated in
eq 8, it is clear that the resulting Hamiltonian matrix is quite
dense. More generally, in alternative DVR schemes using
orthogonal polynomial basis sets, while the 1-D position-
operator matrix elements might adopt a sparse tridiagonal form,
the evaluation of the full Hamiltonian matrix in the DVR basis
requires matrix multiplications by matrices that are not
necessarily sparse (and, hence, result in a nonsparse
Hamiltonian matrix).35

However, because our PS strategy is not tied to an underlying
basis or DVR transformation, imposing target properties on the
final workspace matrixM is quite straightforward. Specifically, in
the results considered in section 3.4 below, we use PS to
generate algorithms that give accurate eigenfunctions and
eigenvalues, but which only use tridiagonal matrices in solving
the associated 1-D eigenproblem. In the context of our PS
approach, this can be simply achieved by setting all elements of
the output workspace matrixM to zero, except for those on the
diagonal (Mii) or the diagonal-adjacent bands (Mi,i±1). After
enforcing this tridiagonal structure, the predicted wave functions
of the target PES are obtained by diagonalizing M, with the
energy eigenvalues obtained from either diagonalization of the
matrix or as expectation values. The resulting PS-generated
codes are optimized in exactly the same manner as described
above; the only difference is the imposition of tridiagonal
structure in M before the final evaluation of algorithm
performance. We note that this same scheme can, of course,
be used to impose other (e.g., banded) matrix structures; we
consider tridiagonal matrices exclusively here because they
represent the best-possible case, in terms of matrix sparsity, and,
hence, result in excellent matrix sparsity for multidimensional

problems too. Finally, we emphasize that the workspace matrix
M will be tridiagonal in the case of 1-D problems; for
multidimensional problems, the structures of eqs 4 and 5
imply that the resulting workspace matrix will no longer by
tridiagonal, but, below, we clearly demonstrate that imposing
tridiagonal structure on the 1-D subproblems still has large
sparsity benefits for multidimensional problems.
In summary, building on our initial PS approach to generate

algorithms for wave function prediction on uniform grids, this
Article extends our strategy to (i) investigate two different
schemes for energy evaluation in PS, and (ii) employ PS to
identify new grid-based algorithms for solving eq 1 using
tridiagonal (and highly sparse) matrices. The results of these
investigations are discussed in the following section.

3. SIMULATIONS, RESULTS, AND DISCUSSION
In this section, we consider the impact of the two updates of our
initial PS strategy described in section 2.4. We initially focus on
using 1-D PESs as target input/output data for our stochastic PS
optimization strategy. As noted above, there is an analogy
between grid-based DVR methods and the grid-based
algorithms generated by our PS approach; as a result, 1-D
DVR-like algorithms generated by PS can be readily extended to
multidimensional systems (e.g., eqs 4 and 5), just like standard
1-D DVR methods can. So, although we focus on using 1-D
examples as target data for PS optimization, the resulting codes
can be generalized tomultidimensional systems; in fact, we show
below that PS-generated DVR-type algorithms for multidimen-
sional problems can have advantages over traditional DVR
algorithms.

3.1. Simulation Details. Here, we summarize the general
PS simulation conditions used for all calculations below; specific
further details are given in the relevant sections.
In all PS optimizations, a total ofM = 20 target input/output

examples were used, with the mass of the corresponding degree
of freedom assumed to bem = 1 in all cases. These PES examples
were generated as described in section 2.3.1. A total of 100
independent PS optimizations were performed for each of the
different PS simulation conditions outlined below, with each
using a different set of target input/output data; for example, for
each cost function evaluation scheme (e.g., method E1 or E2)
and code-size considered (e.g., N = 15, 20, and 25), we
performed 100 independent optimization simulations. Further-
more, all calculations described below used the first ne = 3
eigenstates as targets, with the PS simulations aiming to
reproduce the wave functions and energies of these states. We
note that this number of target states is somewhat arbitrary, and
could be increased; however, as in all grid-based DVR-type
methods, the finite grid places an implicit limit on the accuracy
with which higher eigenfunctions can be represented. In other
words, although we anticipate that larger values of ne could be
targeted, the tradeoff is the requirement of larger grid sizes; the
problem setup described here is suitable to evaluating the first
few vibrational wave functions and energies for boundmolecular
systems. Furthermore, given the analogy between the PS-
generated codes identified below and DVR schemes, we show
later that our PS schemes can in fact accurately reproduce the
wave functions and energies of higher-energy states than just the
ne = 3 states used in training.
In each SA optimization, the initial temperature wasTinit = 5×

103 K, and a total of 5× 103 code updates were attempted. At the
end of each simulation, our python code lists the set of
instructions for the best discovered algorithm; where required,
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these code instructions were translated into working equations
by hand. We note that symbolic computation58 could
alternatively be used to automatically simplify working
equations, but that approach is not pursued here.
When using method E1, we evaluate the integrals required in

eq 10 using standard numerical techniques. For the PES
component, where the wave function ψ(x) and the PES V(x) are
known at a set of grid points x, we use the standard trapezoid rule
to evaluate the integral (using the numpy library45). In the case
of the KE contribution, we first use KRR to generate a
continuous representation of the PS-predicted wave function
(thereby enabling approximation of the required second
derivative); here, the wave function is written as a linear
combination of Gaussian kernel functions,

∑ψ = α

=

− −x w e( )
k

n

k
x x

1

( )
g

k
2

(13)

where the weights wi are obtained by solving the simultaneous
equations requiring the wave function to be correctly
reproduced at each grid point, namely,

Ψ=Kw (14)

Here, Kij = e−α(xi−xj)
2

, w is the vector of ng unknown weights, and
Ψ is a vector containing the PS-predicted wave function on the
grid. In the PS simulations reported below (many of which use
different grid sizes ng), in order to enable consistent
representation of ψ(x), the width parameter α is chosen so
that the Gaussian kernel functions have a constant value at an
adjacent grid-point, independent of grid size. So, we require

β = α− Δe x2

where β is a target Gaussian kernel value at adjacent grid points
(chosen here to be β = 0.5), and Δx is the grid spacing.
Rearranging gives

α β= −
Δx
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With a continuous representation of ψ(x) in hand, the second
derivatives can be evaluated as
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which then enables evaluation of the KE contribution to eq 10 by
numerical integration. We note that the evaluation of energy
expectation values in this way inevitably introduces numerical
errors that must be factored in when judging algorithm
performance; however, the results below demonstrate that this
method enables accurate energy evaluation across the grid sizes
considered here, as noted below.
A further methodological point involves the identification of

“high-performing” codes. Our primary goal is to determine
whether PS can be used to accurately predict wave functions and
energies for bound PESs, and our chosen accuracy criteria reflect
this goal. Specifically, in the following, we will use a cost function
value (eqs 11 and 12) of 2 × 10−2 (for the training data) to
represent a “good” algorithm, which should be investigated
further; in the case of method E1, we note that this target implies
an average error of <2% in calculated energy expectation values
(relative to numerically exact DVR calculations), although the
combined nature of the cost function in method E2 means this

interpretation is less straightforward (as discussed in more detail
in section 3.2).
For those algorithms that are deemed to be “high-performing”

based on the cost function criteria for the target example data, we
subsequently perform independent tests of accuracy and
convergence with grid size. To do so, we generate a further
independent test set of 500 1-D PES examples, calculate the
numerically exact (i.e., large grid-size) CM-DVR energies, and
compare these to the predictions made by a given PS-generated
code.

3.2. Comparison of Energy Evaluation Schemes. We
first compare the utility of different cost functions, E1 and E2. As
noted above, method E1 uses PS to predict target wave functions
that are subsequently used to evaluate energy expectation values
by numerical integration, whereas method E2 takes the energy
eigenvalue predictions from the PS-generated workspace matrix
M (as in typical DVR schemes).
We note that, in these simulations, there are no matrix-

structure requirements, such as tridiagonal or banded structure,
placed on the workspace matrix M. Furthermore, these
simulations used a set of PESs and coordinate grids with
randomly generated (odd) numbers of grid points ng ∈ [15, 91]
as target data; while the requirement of using an odd number of
grid points is not essential, it satisfies the condition of always
placing a grid point at the center of the coordinate range [−5,
+5], providing a center-of-symmetry in all coordinate grids
(noting that this does not imply that the PESs used are
symmetric, as demonstrated below).
Figure 2 shows the progression of the root-mean-square

(RMS) fractional errors in energy eigenvalues during 100

independent PS simulations for code sizes N = 20; Figure 2a
shows the results of simulations performed using method E1,
whereas Figure 2b shows results using method E2. In the case of
method E2 (Figure 2b), in which the cost function is a
composite of an energy component and a wave function
component, we only show the energy contribution; in other
words, although the results from Figure 2b were obtained using
the cost function in eq 12, the plotted data only show the
energetic contribution in eq 11 to enable closer comparison of
the two different approaches.
Assuming a target RMS fractional error of 2 × 10−2 (i.e.,

percentage error of 2%), we find that a total of 19 out of 100
simulations using method E1 successfully identify a high-
performing algorithm; in contrast, none of the algorithms
determined using method E2 were able to identify codes with

Figure 2. Root-mean fractional errors in calculated energy eigenvalues
(eq 11) as a function of SA iteration from 100 independent PS
simulations using (a) method E1 or (b) method E2. The horizontal
dashed line represents the target fractional error of 2 × 10−2; note the
logarithmic plot on the y-axis.
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RMS fractional errors of <2 × 10−2. We note that increasing the
number of allowed code instructions fromN = 20 toN = 25 does
not improve the success of method E2.
The results of Figure 2 demonstrate that method E1 (using

wave function expectation values to predict energies) enables
discovery of accurate algorithms using PS, but method E2 (using
matrix eigenvalues as energy predictions) does not. In seeking to
explain this result, the first question is whether or not the wave
functions predicted by method E2 are accurate; because the cost
function in E2 is a composite of both energy and wave function
contributions, it is worth investigating how the codes discovered
by PS usingmethod E2 perform for these separate contributions.
Figure 3a shows the first three wave functions predicted for a

randomly generated PES by CM-DVR (with a large grid size of

ng = 151 grid points) and by the best-performing algorithm
obtained by PS usingmethod E1 (and grid size ng = 71, chosen at
random for this PES). This “best” algorithm had a RMS
fractional error of 8× 10−3 for the PS target data; the data shown
in Figure 3a are for an independent random PES, which was not
included during PS optimization. Following our previous work,
we refer to the best-performing algorithm as C20

Full(E1; A); here,
the subscript identifies the number of code instructions (N = 20
in this case), the parentheses identifies the cost function used
during PS optimization and assigns a letter to identify different
algorithms, and the superscript “Full” indicates that the full
matrix could be modified during the PS optimization (in
contrast to the tridiagonal matrix structure considered below in
section 3.4).We note that the algorithmC20

Full(E1; A) is discussed
in more detail in Section 3.3; in this section, we focus on
comparing methods E1 and E2.

It is immediately clear from Figure 3a (as well as by
comparison of numerically exact and PS-generated wave
functions for other PESs) that the reproduction of wave
functions using C20

Full(E1; A) is excellent; we note that the
randomly generated PES in this case exhibits two minima, and is
not just a simple parabola, but the wave functions obtained by
C20
Full(E1; A) agree very well with those from CM-DVR. Figure

3b then shows wave functions obtained for a random PES by the
best algorithm obtained using E2 as the cost function (i.e.,
C20
Full(E2; A)). Again, the agreement with the wave functions

obtained by CM-DVR is very good, and is found to be similarly
good for a broad range of randomPESs. In other words, it is clear
that both methods E1 and E2 can deliver algorithms which yield
very good reproduction of wave functions.
We now consider the energy predictions from the best

algorithms, C20
Full(E1; A) andC20

Full(E2; A), as shown in Figures 3c
and 3d. In Figure 3c, we show the distribution of fractional
errors,
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calculated for 500 randomly generated PESs. Here, Ei
k is the

predicted energy of the kth state for the ith random PES, and Ẽi
k

is the corresponding numerically exact value obtained fromCM-
DVR. For algorithm C20

Full(E1; A), the RMS fractional error after
optimization was 8 × 10−3, and this is reflected in the very
narrow distribution of fractional errors observed in Figure 3c.
Figure 3d also shows the errorsΔEF, but for predictions made by
algorithmC20

Full(E2; A). In this case, theΔEF values calculated for
the matrix energy eigenvalues are shown, as are the ΔEF
calculated as energy expectation values using the PS output
wave functions; as a reminder, method E2 optimizes a cost
function that includes energy eigenvalue predictions obtained
from the workspace matrix M. Even though the energies
obtained from M served as optimization targets, it is clear that
algorithm C20

Full(E2; A) does not perform well in predicting
energies, as highlighted by the very broad distribution of
fractional errors for matrix eigenvalues in Figure 3d. In contrast,
the distribution in fractional errors obtained by evaluating
energies as expectation values is much narrower, and
comparable to that shown in Figure 3c. As such, the conclusion
of the analysis in Figure 3 is that both methods E1 and E2
provide accurate routes to generating algorithms that accurately
predict wave functions, but the prediction of accurate energies
from matrix eigenvalues is much more challenging; in contrast,
given that both methods E1 and E2 predict accurate wave
functions, evaluating energies as expectation values is more
accurate.
As the final point in this section, we comment on why

prediction of energies using matrix eigenvalues appears to be
more challenging than prediction of the corresponding
eigenfunctions. This observation can be explained by consider-
ing the degeneracy of problems associated with finding either
eigenvalues or eigenvectors. As is well-known, the eigenvalues of
a square matrix A are given as the roots of the characteristic
polynomial,

λ λ= −p A I( ) det( )

where λ is an unknown eigenvalue and I is the identity matrix.
The eigenvalues of a given matrix are invariant under the action
of similarity transformations of the formA→C−1AC, whereC is
a square matrix; in the context of PS, this means that any square

Figure 3. Comparison of performance of algorithms C20
Full(E1; A) and

C20
Full(E2; A). (a) Probability distributions |ψ(x) |2 for the first three

eigenstates of a randomly generated PES (green), calculated by CM-
DVR (red dashed) and algorithmC20

Full(E1; A) (blue solid). (b) Same as
panel (a), but PS results were calculated using algorithm C20

Full(E2; A).
(c) Histogram of fractional errorsΔEf for first ne = 3 eigenstates for 500
randomly generated PESs, with energies calculated as expectation
values of eigenstates given by algorithm C20

Full(E1; A). (d) Histogram of
fractional errors ΔEf for first ne = 3 eigenstates for 500 randomly
generated PESs, as given by algorithm C20

Full(E2; A), with energies
predicted by either matrix eigenvalues (red, labeled “Matrix”) or as
expectation values of the Hamiltonian operator for the corresponding
predicted wave functions (blue, labeled “Expectation”).
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matrix which is related to the true Hamiltonian matrix via a
similarity transformation will have the same eigenvalue
spectrum, and so could provide an optimal solution of eq 11
or 12. In other words, we anticipate that there should be a
number of different PS-generated algorithms which give good
reproduction of the energy eigenvalues for a given PES when
predicted from the workspace matrixM; however, it is clear that
locating these matrices using our current PS system is extremely
challenging.
Now consider the problem of identifying matrices which

reproduce the eigenfunctions u of a matrix A; we assume that the
matrix has eigenvalues λ. For a broad class of matrix functions
f(A) (e.g., polynomials and functions which can be expressed as
Taylor expansions), the eigenfunctions of A are equally
eigenfunctions of f(A), with eigenvalues f(λ). For example, if
Au = λu, then

λ= =A u AAu u2 2

As a second example,

= λe eu uA

which can be confirmed by considering the Taylor expansion of
the exponential function. The key point is that there is a very
large number of matrices that all share common eigenvectors but
have completely different eigenvalue spectra; for example, in the
two examples given above, the eigenvectors u are common to
both A2 and eA, but the eigenvalues (λ2 and eλ) are completely
different.
What does this suggest for methods E1 and E2? The

implication of these eigenproblem properties are that there are a
very large number of matrices (or matrix functions) which have
very similar eigenvectors to those given by a true matrix
representation of the Hamiltonian operator, but there are only a
(relatively) small number of matrices that have the same
eigenvalue spectrum as the Hamiltonian matrix (i.e., similarity
transformations). In an additional complication, we note that,
although similarity-transformed matrices exhibit the same
eigenvalue spectrum as the original matrix, the same is not
necessarily true with regard to the eigenvectors. In a stochastic
optimization procedure, such as the SA method used in our PS
strategy, it is therefore much “easier” to identify a workspace
matrixM which reproduces the correct eigenvectors for a given
PES (as employed in method E1, and our previous work),

whereas identifying a matrix M which yields both correct
eigenvectors and eigenvalue spectrum appears to be a much
more challenging prospect; in the latter case, using stochastic
optimization to find matrices with correct eigenvalue spectrum
appears akin to “finding a needle in a haystack”. This could
explain why method E2 is not as successful as method E1 in
delivering accurate eigenvalue predictions; in short, E1 only
needs to reproduce the eigenvectors (and there are many ways
to achieve this), whereas E2 needs to reproduce both
eigenvectors and eigenvalues (and it seems more challenging
to achieve this, at least given the current PS setup). Furthermore,
we note that the same underlying reason most likely explains
why the alternative method of using eq 11, but with energy
eigenvalues taken from matrix diagonalization, also proves
unsuccessful. Again, accurate reproduction of the correct energy
eigenvalues by matrix diagonalization requires that M is an
accurate representation of the true Hamiltonian operator
evaluated in some basis representation; with the current PS
setup, this appears to be difficult to achieve.

3.3. High-Performing Full-Matrix Codes. At this point, it
is interesting to investigate the performance of full-matrix codes
for uniform grids which enable accurate reproduction of both
wave functions and energies using method E1 (which is used
exclusively hereafter). Here, we performed PS simulations using
three different code sizes,N = 15, 20, and 25, with all simulations
performed as described in section 3; specifically, for each code
size, we performed 100 independent PS optimizations.
Assuming a target accuracy of FE1 < 2 × 10−2, we find that the
success rate is ∼20%, regardless of code size N; however, rather
than presenting full details of the∼60 algorithms that satisfy this
performance criterion, we simply focus on the best algorithm of
each code size.
Based on the instruction sets generated for each algorithm, it

is straightforward to write down the corresponding output
matrix approximation M which is generated by each algorithm;
these are shown in Table 1. As expected, these matrix
approximations are implicitly “DVR-like”, in the sense that the
PES values at the ng grid points appear in the diagonal elements,
whereas the off-diagonal elements are generally decaying
functions depending on (xi − xj). Beyond being able to write
down the working equations of these matrix approximations,
seeking additional rationalization of these schemes is challeng-
ing. However, based on the discussion in section 3.2, it is

Table 1. Derived Equations for Output Workspace Matrices M for Best-Performing Algorithms with Code Sizes N = 15, 20, and
25a

code size N code label output matrix elements, Mij
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aFinal predicted wavefunctions are obtained as the eigenvectors of M; we use the numpy routine eigsh to obtain eigenvectors,45 which assumes
that the input matrix is symmetric and the lower-triangular portion is input.
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perhaps now clear why; in particular, we have highlighted above
that a large number of arbitrary matrix functions can have the
same eigenvectors as the target Hamiltonian matrix, so it is not
surprising that the resulting matrix approximations in Table 1
are somewhat opaque.
What is clear, however, is that the algorithms shown in Table 1

exhibit very good accuracy in reproducing both target wave
functions and energy values; this is highlighted in Figure 4. In

particular, Figure 4 shows the convergence of the RMS fractional
errors in the ne = 3 eigenvalues for 500 randomly generated
PESs, as obtained by (i) the algorithms from Table 1 (with
energies calculated explicitly as expectation values), (ii) CM-
DVR calculations with a large grid size, and (iii) a simpler DVR
scheme with KE matrix elements obtained by central finite
differences, resulting in the following Hamiltonian matrix:

=

ℏ
Δ

+ =

− ℏ
Δ

= ±
H

m x
V j i

m x
j i

if

2
if 1

ij

i

2

2

2

2

l

m

oooooooo

n

ooooooo (16)

In all cases, the RMS fractional errors are calculated relative to
CM-DVR calculations performed using ng = 151 grid points.
Here, we define Ef as the RMS fractional error in the test-set
calculations; this is calculated using eq 11.
The results of Figure 4 demonstrate that the PS-generated

algorithms of Table 1 can exhibit slightly better convergence in
RMS fractional errors when compared to the CM-DVR
algorithm. This is a useful achievement in demonstrating the

potential of PS; a computer-discovered algorithm can solve eq 1
at a better level of accuracy than standard “human-derived”
algorithms, even when inevitable inaccuracies due to numerical
integration are taken into account. Of course, the benefit in
accuracy is, as might be expected, quite small; typically, we find
that the RMS fractional errors given by the algorithms in Table 1
are ∼0.5% smaller than those given by CM-DVR (although,
given the accuracy of CM-DVR, this usually represents an
improvement of up to 10% on the RMS fractional errors given by
CM-DVR). Furthermore, we note that the finite-difference DVR
method performs much worse than either CM-DVR (as
expected) or PS-generated codes.
Another important observation relates to the overall

convergence behavior of the PS-generated algorithms. Because
the algorithms in Table 1 were obtained using target input/
output data with a range of grid sizes, we anticipate that the
performance of these methods should be maintained across the
training grid-size range of ng∈ [15,91]; this is generally found to
be the case for code sizes N = 20 and N = 25, with these
algorithms offering slightly lower RMS fractional errors than
CM-DVR in this grid range. In the case of the bestN = 20 andN
= 25 codes, the PS-generated codes demonstrate essentially the
same convergence behavior with grid size as the CM-DVR
method. In the case of the N = 15 code, we find that the
convergence follows that of CM-DVR, except for the largest grid
sizes; given that the random grid sizes for the N = 15 code were
generated in the same manner (and broadly cover the same
range) as those generated for N = 20 and N = 25, it appears that
this divergence at larger grid sizes is an inherent property of this
particular algorithm.
As an aside, we note that the best N = 15 algorithm (Table 1)

is actually an example of a tridiagonal output matrix structure;
this has arisen because one of the possible input options is a
tridiagonal matrix filled such that Mij = 1 in all available
tridiagonal elements j = i ± 1, and with all diagonal elementsMii
= 1. As noted above, the large grid-size convergence of this
particular algorithm leaves something to be desired; however, in
section 3.4, we explicitly generate much larger numbers of
tridiagonal matrix algorithms, and show that the best-perform-
ing codes in that case exhibit better convergence properties than
the N = 15 algorithm C15

Full(E1; A) in Table 1.
Finally, note that one can, of course, use PS to generate

algorithms that are optimized to work for a single specific grid
size, rather than generalizing across different grids. Results of
such simulations are given in the Supporting Information. It is
found that the grid-targeted algorithms generally improve on the
codes generated for grid ranges (Figure 4), as might be expected;
for example, whereas the average RMS fractional errors obtained
by the algorithms in Figure 4 are around 0.5%−1.0% smaller
than the corresponding CM-DVR results, in the case of grid-
specific codes, it is found that the errors are decreased further
still, reducing the RMS fractional errors relative to converged
CM-DVR by up to ∼9%. Of course, the price paid for this small
improvement is the requirement of using different algorithms for
different grid sizes, which is not particularly convenient if one is
interested in using PS-generated codes in general analysis of
quantum molecular vibrational properties.
To summarize, we have shown that PS-generated codes can

reduce the errors in predicted wave functions and energies when
compared to the CM-DVR method with the same grid size. In
the case of PS-generated codes, we have discussed how
determination of the correct energy eigenvalues is complicated
by the degeneracy of matrix functions with the same

Figure 4.Grid-size convergence of root-mean-square (RMS) fractional
error (relative to CM-DVR calculations with ng = 151) of DVR and PS-
generated algorithms (a) C15

Full(E1; A), (b) C20
Full(E1; A), and (c)

C25
Full(E1; A). In each panel, we show the results of calculations for the

PS algorithms (blue circles), the finite-difference DVR of eq 16 (green
squares), and the Colbert−Miller DVR of eq 8 (red dashed). At each
grid size, the RMS fractional errors are calculated for each method for
the first ne = 3 eigenstates for 500 randomly generated polynomial PESs;
error bars are typically much smaller than the symbol size, and are not
shown, for the sake of clarity.
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eigenfunctions; the required energy eigenvalues can be
subsequently evaluated as expectation values, but this is not
quite as “neat” as obtaining the energies from solution of the
Hamiltonian matrix eigenproblem. That said, given that
evaluation of the PES on DVR grids is commonly the time-
consuming part of such calculations, numerical evaluation of
expectation values is not necessarily expected to be the
bottleneck for the PS-based methods generated here (as also
discussed below).
3.4. Sparse Algorithms Discovered by PS. In the

algorithms generated in section 3.3, there was no constraint
imposed on the matrix structure. That being said, we did
discover a high-performing algorithm [C15

Full(E1; A)] which
possessed a tridiagonal matrix structure; this was identified by
PS because one of the input options comprised a tridiagonal
matrix, and the generated code did not include any operations
which served to modify this structure. However, as shown in
Figure 4, the convergence of C15

Full(E1; A) was not very good at
large grid sizes.
In this section, we focus on only generating algorithms which

use a tridiagonal matrix structure in the output matrixM; this is
achieved by simply zeroing matrix elementsMijwhich sit outside
the tridiagonal band. Beyond this modification of the output
matrix structure, all other aspects of the PS approach were as
outlined in sections 2 and 3.1, and employed method E1 during
optimization.
PS optimizations were performed to identify tridiagonal

matrix algorithms with both N = 20 and N = 25; the best-
performing algorithm was found for N = 20, with a RMS
fractional error (relative to converged CM-DVR calculations) of
3 × 10−2 for an independent test set of 500 randomly generated
PESs with random grid sizes ng ∈ [15, 91]. We emphasize here
that our simulations identified ∼10 algorithms, which
demonstrated very accurate final optimization-function values
of <1 × 10−2. Here, we focus on highlighting the energy
predictions of just one of these high-performing algorithms;
closer analysis suggests that the predicted wave functions of
some of the other algorithms are slightly better than the single
algorithm studied here, but at the expense of slightly worse
energy-predictive performance. We leave the analysis of a
broader range of algorithms for future work; the results below
are sufficient to demonstrate the PS performance possibilities.
For the best-performingN = 20 algorithm, labeledC20

Tri(E1; A)
to emphasize the imposition of tridiagonal matrix structure
during PS, the working equation for the output matrix M is

π
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where a = −( )2
L
1 . Wave function predictions are given as the

eigenvectors of this matrix, in our case calculated using the
numpy function eigh,45 which implicitly treats the matrix as
symmetric and employs the lower-triangular section as input. As
in the case of algorithms derived for the full matrix structure, and
in typical DVR algorithms, eq 17 incorporates the PES values on
the grid in the diagonal elements; the remaining contributions to
diagonal and off-diagonal elements represent contributions from
the KE operator (or functions thereof; see section 3.2). In short,
the form of this approximation is really no different from those

presented in Table 1; the important difference in eq 17 is that
only elements in Mij with j = i or j = i ± 1 are nonzero.
Further simulations were performed to assess the convergence

of C20
Tri(E1; A) with different grid sizes; the results are shown in

Figure 5a. The results are generally comparable to those

obtained using algorithms which generated full, dense matrices
(Figure 4); in particular, our PS-generated algorithm typically
reduces the RMS fractional error in the energy eigenvalues
(relative to converged CM-DVR results) by ∼0.5%−2%. At the
largest grid size (ng = 101), the decrease in RMS error slows
somewhat, most likely as a result of the fact that we are using
numerical integration to evaluate the energy expectation values
(which will inevitably introduces errors which become
significant as the magnitude of the RMS errors approaches
small values). In addition, the PS optimizations were performed
with grid sizes of ng < 91, so the performance at ng = 101 might
not necessarily be expected to continue to follow the CM-DVR
trend.
Figure 5a compares the accuracy of our tridiagonal algorithm

C20
Tri(E1; A) to another tridiagonal approach based on the simple

central finite-difference scheme of eq 16; the difference is
significant. Even though PS-generated code C20

Tri(E1; A) has the
same tridiagonal structure as eq 16, C20

Tri(E1; A) demonstrates a
far superior convergence of energy values, which has been found
to be directly comparable to the CM-DVR method. This clearly
demonstrates an advantage of PS, namely, generation of accurate
algorithms with computationally beneficial structures (as
demonstrated below), which are otherwise difficult to impose.
It is also interesting to highlight Figure 5b, which shows the

convergence of energy eigenvalues using C20
Tri(E1; A), but for the

first ne = 6 eigenvalues in 500 randomly generated PESs. As a
reminder,C20

Tri(E1; A) was optimized by PS using a smaller target
number of eigenvectors (i.e., ne = 3). However, Figure 5b
demonstrates that the convergence of C20

Tri(E1; A) for the first ne
= 6 eigenvalues remains essentially the same as in CM-DVR.We
postulate that this performance for higher eigenfunctions is a
result of two factors. First, by construction,C20

Tri(E1; A) is already

Figure 5.Grid-size convergence of root-mean-square (RMS) fractional
error (relative to CM-DVR calculations with ng = 151) of DVRmethods
and tridiagonal PS-generated algorithm C20

Tri(E1; A) 500 randomly
generated PESs. Panel (a) calculates the RMS fractional error for the
first ne = 3 eigenstates, whereas panel (b) uses ne = 6. We show results
from C20

Tri(E1; A) (blue circles), the finite-difference scheme of eq 16
(green squares), and the Colbert−Miller DVR (red dashed line).
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a DVR-like approximation to an effective Hamiltonian (as
discussed above), with PES values appearing on diagonal
elements; the approximation of higher-order eigenfunctions will
similarly benefit from this feature. Second, because the “higher”
eigenfunctions (ne > 3) ofM must be orthogonal to the “lower”
eigenvectors (ne ≤ 3), which are used as optimization targets,
this may impose physically sensible features on the higher
eigenfunctions and hence improve the accuracy to which they
are approximated. Further study of transferability is beyond the
scope of this paper, but we aim to investigate this feature in
future work.
3.4.1. Sparse Algorithms in Multidimensional Problems.

We have shown that PS can be used to develop algorithms
satisfying certain target performance criteria (e.g., reproduction
of eigenvectors and eigenvalues for 1-D quantum systems) while
simultaneously imposing target algorithmic structure on the
computer-generated codes. In the case above, we have shown
how PS can be used to generate algorithms which require
calculation and diagonalization of a tridiagonal matrix (for 1-D
problems); this has the advantage of being highly sparse, so that
efficientmatrix storage andmanipulation routines could be used.
In contrast, the well-known CM-DVR algorithm (and, in
general, other DVR algorithms) exhibit a denser matrix
structure, with a larger number of matrix elements taking
some numerical value when compared to the tridiagonal case. In
this section, we provide a further examination of the sparse
algorithm C20

Tri(E1; A) in the context of multidimensional DVR
calculations in order to demonstrate the potential for computa-
tional gains using PS-generated codes.
First, we consider the properties of the matrices required by

CM-DVR and C20
Tri(E1; A) when calculating the eigenvectors for

multidimensional systems. As a reminder, for a standard
(nonpruned) DVR grid, and assuming that the same number
of grid points ng are used for each dimension for simplicity, the
total number of grid points grows as ng

f , where f is the number of
degrees of freedom in the system; the corresponding size of the
required DVR matrices in standard methods is ng

2f. However,
when constructing DVR Hamiltonian matrices for multidimen-
sional systems, the effective orthogonal structure of basis
functions in different degrees of freedom, as shown in eqs 4 and
5, means that many of these ng

2f matrix elements are zero,
implicitly providing a sparse matrix structure. In the case of
DVR-type algorithms built from tridiagonal matrices, this
sparsity would be expected to be even more apparent. This
sparsity could be important in the case of multidimensional
systems, because it can be exploited by sparse matrix storage
algorithms and iterative for eigenproblem solution.35,42,57 In
particular, matrix eigensolution routes based on repeatedmatrix-
vector multiplication operations can benefit greatly from sparse
matrix structures; as such, it is interesting to assess the impact of
a tridiagonal DVR-type scheme on the efficiency of eigenvector
prediction in higher-dimensional systems.
To investigate the difference between CM-DVR and the

tridiagonal PS-generated code C20
Tri(E1; A), Figure 6 highlights

properties of matrix eigenvector calculations using these two
different approaches. First, Figures 6a and 6b show the fraction
of nonzero elements in the final Hamiltonian or workspace
matrices for 2-D (Figure 6a) and 3-D (Figure 6b) model PESs
with different uniform grid sizes; specifically, the PESs used here
were the 2-D double-well and 3-D Henon−Heiles models that
have been used in previous studies41,59,60 (although we note that
the exact PES is irrelevant for the results in Figures 6a and 6b).
Here, for both CM-DVR and C20

Tri(E1; A), the required matrices

were calculated for different grid sizes ng, and we report the
fraction of unique nonzero elements; in the case of CM-DVR,
we chose to count a matrix element with a magnitude of >10−12

as being nonzero (note that tests show identical results using a
cutoff of 10−10).
As expected, the difference in the fractions of nonzero matrix

elements between the PS-generated code C20
Tri(E1; A) and CM-

DVRmethod is quite clear; for all grid sizes studied, C20
Tri(E1; A)

requires diagonalization of a workspace matrix, which has
typically an order of magnitude fewer nonzero matrix elements
than CM-DVR. This is further emphasized in Figure 6c, which
shows the ratio of the number of nonzero elements in CM-DVR
and C20

Tri(E1; A) workspace matrices; as one pushes toward
larger grid sizes, the number of nonzero matrix elements in
C20
Tri(E1; A) is much smaller than in CM-DVR. This is clearly a

direct result of the imposed tridiagonal 1-D matrix structure.
The potential advantages of sparsity ofC20

Tri(E1; A)matrices in
larger DVR simulations are further highlighted in Figure 6d.
Here, we show the acceleration in computation time, which can
be achieved by usingC20

Tri(E1; A), relative to CM-DVR. Here, for
different uniform grid sizes ng in 2-D and 3-D model PES
problems, we determined the time required to calculate the first
ne = 6 eigenvectors of the Hamiltonian matrices from CM-DVR
and the workspace matrix from C20

Tri(E1; A). Figure 6d shows the
ratio of these times, namely

τ

τ
=S n

n

n
( )

( )

( )g
g

g

CM

PS

where S(ng) is the calculated acceleration for grid size ng, τCM is
the time for CM-DVR eigenvector calculation and τPS is the time
for C20

Tri(E1; A) eigenvector calculation. In these calculations, we
used sparse-matrix symmetric eigensolvers implemented in the
scipy package.57

At small grid sizes, there is already a clear acceleration in using
C20
Tri(E1; A); this relative acceleration increases dramatically as

Figure 6. Upper panels show the fraction of nonzero elements in
working matrices for tridiagonal methods (e.g., C20

Tri(E1; A); blue
circles) and the Colbert−Miller DVR (red dashed line) for (a) 2-D and
(b) 3-D systems as a function of grid size ng. Panel (c) shows the relative
ratios of the number of nonzero matrix elements in 2-D and 3-D
systems for C20

Tri(E1; A) and CM-DVR, derived from the data in panels
(a) and (b). Finally, panel (d) shows the acceleration in eigenproblem
solution, given by the relative calculation times for CM-DVR and
C20
Tri(E1; A) matrix eigensolutions using sparse scipy routines.
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the matrix size increases, as is evident by comparing 2-D and 3-D
calculations, and by the trend with grid size. For sparse-matrix
manipulations, the computation time would generally be
expected to be proportional to the number of nonzero elements
in the matrices; it is clear that this rule of thumb broadly holds
true in the matrices studied here, with the trend in acceleration
(Figure 6d) reflecting the trend in the ratio of nonzero matrix
elements (Figure 6c). However, we note that this correspond-
ence is approximate, especially in the 2-D case, likely as a result
of additional overheads associated with indexing and sparse-
matrix manipulations. For larger problems, with more degrees of
freedom and large grids, the order-of-magnitude acceleration,
relative to CM-DVR (and other standard DVRs) demonstrated
here, might reasonably be expected to increase further still,
reflecting the underlying sparsity of C20

Tri(E1; A).
As a final comparison, it is worth verifying that the tridiagonal-

based algorithm C20
Tri(E1; A) does indeed reproduce eigenvec-

tors for few-dimensional systems (beyond the 1-D systems,
which were used in PS optimization). Figure 7 shows the results
of 2-D eigenvector calculations using either CM-DVR or
C20
Tri(E1; A). Here, we consider simulations of two different

PESs. Figures 7a−c show the results of simulations of the 2-D
Henon−Heiles model given by41
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As a second example, we consider in Figures 7d−f, an additional
2-D PES model describing a double-well potential coupled to a
harmonic potential,

η
= − + +V x y

x x y
( , )

16 2 2
0.15xy

4 2 2

(19)

where η = 1.3544; this double-well PES has been previously been
employed as a benchmark system for different quantum
dynamics schemes59,60 (although the final correlation term is
slightly increased here, compared to previous work in order to
emphasize this feature in Figure 7).
Figures 7b and 7c show the results of CM-DVR calculations of

the fourth lowest-energy eigenvector of the two PESs, calculated
with a grid size ng = 41; the results are displayed as |ψ|2. Figures
7c and 7f show the same eigenvector, but calculated using
C20
Tri(E1; A) using the same grid size. The agreement between

these two sets of density distributions is clearly very good; this is
even more impressive when one considers that the eigenvectors
shown are for the fourth lowest-energy allowed state of a 2-D
system, whereas the PS optimization only included 1-D
information for the first three eigenstates. In particular, for the
Henon−Heiles potential, it is clear that C20

Tri(E1; A) correctly
captures the appearance of the three satellite peaks around the
central density peak; in the case of the double-well PES, it is also
clear that the appearance of the nodal features of this excited-
state wave function are correctly reproduced.
In summary, the results in this section demonstrate that the

PS-discovered algorithm C20
Tri(E1; A) exhibits a sparser matrix

structure compared to CM-DVR; the imposition of the
tridiagonal matrix structure leads to significant reduction in
the number of nonzero matrix elements in the workspace matrix
which is diagonalized to produce the eigenvectors, and this
sparsity, in turn, leads to accelerations in computation time,
which can be an order of magnitude or more. Note that there is a
price to be paid for this improved efficiency in eigenvector
prediction using C20

Tri(E1; A). In particular, while standard DVR
schemes such as CM-DVR yield both the eigenvectors and
energy eigenvalues from Hamiltonian matrix diagonalization,
our PS-generated codes do not directly yield the energy

Figure 7. Left column shows (a) the 2-DHenon−Heiles PES (eq 18), (b) the probability density function |ψCM|2 of the fourth lowest-energy eigenstate
calculated by CM-DVR, and (c) the corresponding probability density function |ψPS|

2 given by tridiagonal PS-generated matrix C20
Tri(E1; A). The right

column shows the same plots as panels (a)−(c), but the PES is instead a double-well along x coupled to a harmonic oscillator along y (see eq 19).
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eigenvalues. We have discussed above why this might be the
case, namely, the challenge of identifying Hamiltonian matrices,
compared to the (relative) simplicity of generating alternative
matrices, which have the same eigenvectors. However, we have
also shown that there is a simple way around this challenge,
namely evaluation of energy eigenvalues numerically using the
PS-predicted eigenvectors; we have shown that this results in
algorithms that effectively demonstrate the same convergence in
energy eigenvalues as CM-DVR (with marginally better
accuracy). In anticipated applications to larger multidimensional
systems and molecular problems, this numerical evaluation of
energy will become more challenging, but it is also clear that
solutions exist. For example, given that DVR-type algorithms
require evaluation of the PES on the grid points as input, it is
clear that PES expectation values may be relatively straightfor-
ward to evaluate via Monte Carlo methods, using predicted
eigenvectors; similarly, local fitting methods, such as the KRR
method used here, will also enable evaluation of the KE
contribution to the total energy operator. More generally, we
note that the same grid-integration problem is encountered (and
addressed) in the equations-of-motion employed in
MCTDH.61,62 Furthermore, we note that recent work in
integrating machine learning tools with grid-based wave
function methods19,51−55 could equally be ported to DVR
methods; as a demonstration of the potential reduction in
computational expense, we have recently shown that a 12-
dimensional (with two electronic states) model of quantum
dynamics of pyrazine can be accurately simulated using fewer
than 3000 PES (using CASSCF) evaluations as input to a KRR
PES.53,55 Finally, of course, the search for PS-generated codes
that predict both eigenvectors and eigen values will continue.
With regard to future improvements in PS, it is clear that there

are a large number of possibilities to be explored beyond the
immediate goals of this Article. For example, our recent
simulations have demonstrated that nonuniform grids can be
used as the basis for our PS scheme. In particular, we have
investigated the use of Sobol quasi-random grids63 instead of
uniform grids; initial PS simulations demonstrate that the
accuracy of the resulting algorithms is not quite as good as those
based on uniform grids, but improvements in code structure
might help. More generally, one could anticipate a DVR-type
scheme that works in two stages, first diagonalizing a matrix to
give the best choice of grid points for a given PES, and
subsequently solving eq 1 using PS-generated codes based on
the optimized grids. Furthermore, we note that there is clearly
enormous scope for improving both the optimization strategy
employed here and the choice of functions. For example,
alternative methods such as genetic algorithms could clearly be
used as global optimizers to seek out better PS solutions, while
methods to evolve better functions or function combinations
(such as the ADFs used in genetic programming43,44) can also
find application here. In short, there is an enormous amount of
future possibility, and these initial results serve to highlight the
potential of PS in generating new and useful algorithms for
quantum chemistry; this has been demonstrated here by
focusing on developing a novel DVR-type method with a
tridiagonal 1-D workspace matrix, something that has not been
previously available, to the best of our knowledge.

4. CONCLUSIONS
In this Article, we have explored how PS can be used to develop
novel grid-based algorithms for calculating wave functions and
energies of systems described by the time-independent

Schrödinger equation. We have investigated two alternative
approaches in PS to generate codes which evaluate the energy,
either as matrix eigenvalues or as expectation values. It was
found that method E1 (using expectation values) is much more
successful, and we have discussed how this is most likely related
to the fact that many possible output workspace matrices can
have the same set of correct eigenvectors (wave functions), but
significantly fewer possess both eigenvectors and eigenvalues,
which reproduce those of the underlying Hamiltonian matrix.
Perhaps the most important contribution of this Article is the

development of a novel DVR-type algorithm, which only
employs 1-D matrices with tridiagonal structure; such matrices
are extremely sparse, and enable the use of efficient matrix
storage and manipulation routines. We have demonstrated the
potential of these schemes in calculating eigenvectors for few-
dimensional systems; for example, the sparse DVR-like schemes
generated by PS here have been demonstrated to result in faster
calculation speeds for determining eigenvectors for 2-D and 3-D
systems by virtue of employing sparse matrices. This PS
approach generates transferrable algorithms that can offer high-
quality eigenvector predictions for a broad class of PESs; this is
in contrast to previous schemes, such as GP, which focused
previously on offering function approximations for single
allowed vibrational wave functions on a single defined PES.
Current work is now aimed at improving and developing these

methods into general-purpose computer codes that implement
these ideas in combination with ab initio PES evaluations for
molecular systems; this will, in turn, enable a variety of
simulations, including accurate evaluation of molecular vibra-
tional spectra for free-energy calculations and direct wave
function dynamics simulations of reactive collisions between
few-atom molecules. While the current limit of such full-
dimensional quantum simulations using traditional grid-based
schemes lies at∼5 atoms, we hope that further improvements in
sparse PS-generated eigenfunction schemesmight help push this
limit further. We note that there are many remaining important
methodological challenges, perhaps most significantly the
exploration and refinement of “good” function sets from
which to generate new codes; meanwhile, methods such as
ADFs, previously employed in the context of GP, are promising,
but there is clearly work to do here.
As a final comment, we note that there are also a wide variety

of further applications in which PS methods for deriving
effective Hamiltonian matrices might be beneficial. In particular,
the problem of ab initio electronic structure methods could be a
rich domain for future PS applications, seeking new methods
which deliver accurate predictions of molecular properties using
PS-generated Hamiltonian matrix approximations. This is an
ongoing area of research that we hope to expand upon in the
near-future.
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