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Abstract

Leaf-cutting ants of the genera Atta and Acromyrmex are at constant risk of epizootics due to

their dense living conditions and frequent social interactions between genetically related indi-

viduals. To help mitigate the risk of epizootics, these ants display individual and collective

immune responses, including associations with symbiotic bacteria that can enhance their

resistance to pathogenic infections. For example, Acromyrmex spp. harbor actinobacteria that

control infection by Escovopsis in their fungal gardens. Although Atta spp. do not maintain

symbiosis with protective actinobacteria, the evidence suggests that these insects are colo-

nized by bacterial microbiota that may play a role in their defense against pathogens. The

potential role of the bacterial microbiome of Atta workers in enhancing host immunity remains

unexplored. We evaluated multiple parameters of the individual immunity of Atta cephalotes

(Linnaeus, 1758) workers, including hemocyte count, encapsulation response, and the antimi-

crobial activity of the hemolymph in the presence or absence of bacterial microbiota. Experi-

ments were performed on ants reared under standard conditions as well as on ants previously

exposed to the entomopathogenic fungus Metharrizium anisopliae. Furthermore, the effects of

the presence/absence of bacteria on the survival of workers exposed to M. anisopliae were

evaluated. The bacterial microbiota associated with A. cephalotes workers does not modulate

the number of hemocytes under control conditions or under conditions of exposure to the fun-

gal pathogen. In addition, infection by M. anisopliae, but not microbiota, increases the encap-

sulation response. Similarly, the exposure of workers to this fungus led to increased

hemolymph antimicrobial activity. Conversely, the removal of bacterial microbiota did not have

a significant impact on the survival of workers with M. anisopliae. Our results suggest that the

bacterial microbiota associated with the cuticle of A. cephalotes workers does not play a role

as a modulator of innate immunity, either at baseline or after exposure to the entomopathogen

M. anisopliae. Further, upon infection, workers rely on mechanisms of humoral immunity to

respond to this threat. Overall, our findings indicate that the bacterial microbiota associated

with A. cephalotes workers does not play a defensive role.
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Introduction

Leafcutter ants of the genera Atta and Acromyrmex are eusocial insects that live in colonies

with a high density of genetically related individuals [1, 2]. These ants form a mutually benefi-

cial symbiosis with the fungus Leucoagaricus gongylophorus [3–5]. In this association, ants pro-

vide the fungus with freshly cut leaves, and in return, the fungus grows gongylidia, specialized

structures that comprise the main source of nutrition for the queen and the larvae [4, 6]. In

principle, these living conditions should make ants prone to infectious disease outbreaks due

to enhanced transmission between frequently interacting individuals susceptible to the same

pathogens. Moreover, any infection that compromises the viability or productivity of the fun-

gus garden will represent a risk for colony survival. Surprisingly, although a high abundance of

pathogenic fungi nearby or within the nests in natural populations of leafcutter ants has been

recorded, there is no evidence that those infections cause massive damage to the colonies [7–

9]. In fact, evidence has revealed that fungus gardens can coexist with generalist fungi, includ-

ing Syncephalastrum racemosum and Trichoderma harzianum [10].

On the other hand, fungus gardens are relatively vulnerable to infections by the specialized

parasitic fungus Escovopsis [11, 12]. However, the mutualist overgrown by such fungi under

optimal conditions, though unusual, occur frequently when the ants cannot sanitize the gar-

dens and dispose of their waste properly [13–15]. This evidence suggests that the synergistic

action of different immunity strategies of leafcutter ants is efficient in controlling microorgan-

isms that pose a threat to ants or their mutualist fungus.

The immune defense of leafcutter ants consists of an individual immune system and social

immunity. The innate immune system of these ants includes two mechanisms, humoral and

cellular. The first involves antimicrobial peptides and the activation of enzymatic cascades that

regulate hemolymph coagulation and melanization. At the same time, the cellular mechanism

is composed of hemocytes that are responsible for phagocytosis and encapsulation of invasive

organisms [16, 17]. Additionally, workers have a biomineral armor covering their exoskeleton

that contributes to protecting them from the invasion of agents that penetrate the cuticle [18].

Furthermore, the antimicrobial secretions of several exocrine glands act as an external

immune defense mechanism that constitutes a first barrier to pathogens and determines the

microbial environment [19].

The collective immunity of leaf-cutting ants includes a division of labor in the colony [20,

21] and grooming or cleaning behaviors [1, 15] that are complemented with chemical defense

mediated by metapleural gland secretions [19, 21]. In addition to these main levels of immu-

nity, species of Acromyrmex show yet another association with actinobacteria symbionts of the

genus Pseudonocardia, which are harbored on the cuticle of workers. The pivotal role of this

association in immune defense has been demonstrated in the control of Escovopsis infections

in the fungal garden [22–24]. In contrast, although Atta species maintain associations with

black fungal species, it has not been established whether these fungi play a role in immune

defense [25–28].

Atta species do not maintain a symbiosis with cuticular actinobacteria and appear to rely

on fungus-grooming and weeding hygienic behaviors [29–31] as well as on antimicrobial com-

pounds derived from different exocrine glands to control parasites that harm their symbiont

gardens [32–34]. Although there are only a few studies that address the issue of microbiota

composition in the genus Atta [35–38], it has been shown that they have an association with a

bacterial community that includes a variety of actinobacteria in A. sexdens and A. texana [36,

38]. Furthermore, it has recently been suggested that similar to vertebrates, the insect gut is

colonized by a bacterial microbiome, which plays an important role in nutrition and defense

against pathogens [39–45]. Although the underlying mechanisms are not well understood, this
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protection appears to be mediated by toxins and antimicrobials. Other mechanisms involve

modulation of immune responses by the host [46–48]. Given the superorganismal biology of

leaf-cutting ants, fungus gardens are considered functionally equivalent to an external diges-

tive system [49, 50]. Recent research has shown the presence of a fungus gardens microbiome

with metabolic pathways involved in antimicrobial biosynthesis, which could suggest an inter-

action related to defense against pathogens [51]. The constant interaction between workers

and the fungus makes the horizontal transfer of microbiota plausible, so the resident microbial

communities on the workers may also have a role in defense.

On the other hand [52], showed that differences in the cuticular microbiota composition of

the moth Galleria mellonella induced by the environment could significantly increase their

susceptibility to the saprotrophic fungus Conidiobolus coronatus, suggesting that this bacterial

community may play a role in the defense response against pathogens.

Since the defense reactions of insects, including Acromyrmex spp., may be affected by their

associated bacterial microbiome, we evaluated the potential role of microbiota associated with

A. cephalotes in their reactions to fungal infections. We hypothesized that the bacterial micro-

biota associated with A. cephalotes plays a potential role in the immune response of ant work-

ers. We evaluated parameters of individual immunity, including hemocyte count,

encapsulation response, and hemolymph antimicrobial activity in the presence and after

removal of bacterial microbiota under basal conditions, as well as following fungal infection by

the entomopathogenic fungus Metharrizium anisopliae. Likewise, we assessed the effect of the

presence/absence of bacteria on the survival of workers challenged by this fungus.

Materials and methods

Nest selection and ant collection

Six independent colonies of A. cephalotes were chosen in a suburban area of Cali, Colombia

(3˚22’33.24” N, 76˚32’0.24”W). As a selection criterion, the nest area was considered, which

ranged between 35–50 m2. The existence of foraging tracks and the presence of workers carry-

ing plant material to the nest and workers removing soil fragments were considered normal

activity levels. Additionally, a massive exit of soldiers after disturbing the nest was verified.

Between September 2018 and July 2019, 3000 major workers (cephalic width� 2.1 mm) from

each nest were collected by disturbing the nest entrances. These workers were maintained in

plastic containers for at least 4 h before any experiment took place.

Removal of bacterial microbiota

To establish the total abundance of bacterial microbiota, 100 individuals were collected from

each nest. These ants were submerged in 2 ml of peptone broth (BD BactoTM, Franklin Lakes,

NJ, USA) in groups of five. The suspension was incubated for 3 h at 25˚C. After this incuba-

tion, fivefold serial dilutions were seeded on plates of nutrient agar broth (BD-BactoTM). The

plates were incubated at 25˚C for 72 h. Colonies were manually counted, and their abundance

was reported as colony forming units (CFU) per ml.

To determine whether bacterial microbiota have an impact on the immune response of A.

cephalotes workers, two treatments designated removal (R) and no removal (NR) were estab-

lished. Each individual was held with forceps and completely submerged in a solution of

120 μg/ml gentamicin (GENFAR-Sanofi, Cali, Colombia) for 10 s to guarantee the contact of

the entire ant with the solution, while workers from treatment NR were submerged in distilled

water. To assess the efficiency of removal and before performing any assay, bacterial abun-

dance was assessed before and after treatment with gentamicin or water, corroborating that

gentamicin removed up to 97±1.7% of the bacterial microbiota.
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After the treatments, the workers were maintained in groups of 10 individuals in Petri

dishes for 24 h. During this time, they were fed ad libitum on portions of an agar-based diet as

described by Bueno et al. [53].

To evaluate whether the bacterial microbiota has an impact on individual worker immunity

under basal conditions and/or after challenge with M. anisopliae, we applied the R and NR

treatments to the ants for each experiment. After 24 h, the workers were randomly divided

into two equal groups: the first was left untreated, whereas workers of the second group were

submerged individually for 10 s in a suspension of 1.5–3.5 x107 conidia/ml of a strain of M.

anisopilae derived from a commercial product (BIO-MA1 Bioprotección, Manizales, Colom-

bia) widely used in the control of insect pests.

Hemocyte count and antimicrobial activity of hemolymph

To establish whether bacterial microbiota had an impact on hemocyte count either under

basal conditions and/or after infection with M. anisopliae, we collected 240 major workers

from each of the six nests selected for this study. Half of the individuals were selected to evalu-

ate the effect of microbiota under basal conditions, and the remaining half were selected to

assess the effect of the microbiota after infection with M. anisopliae. In both groups, workers

were randomly assigned to either the R or NR treatments. After applying the treatments, we

proceeded to extract hemolymph from the workers that were maintained under basal condi-

tions. For the infection group, the hemolymph was extracted 24 h after challenge with M. ani-
sopliae. In both cases, each worker was disinfected using 70% ethanol. Then, the head was

separated from the thorax, and pressure was exerted on the subgenal region to collect the

hemolymph in a micropipette. The hemolymph was then transferred to a microcentrifuge

tube placed on ice.

The pooled hemolymph of five individuals, approx. 7 μl, was mixed with 3 μl of PBS. In

total, we obtained eight samples for every experimental group. The samples were spread on

microscope slides previously covered with poly-L-lysine at a concentration of 0.1 mg/ml

(Sigma-Aldrich, Saint Louis, MO, USA). The slides were kept in a wet chamber at 4˚C for at

least 24 h to allow adherence of the hemocytes to the glass. Then, the hemocytes were stained

with a DAPI solution (Santa Cruz Biotechnology, Dallas, TX, USA) at a concentration of 1

mg/ml and kept for 4 h in a dark chamber. The slides were washed thoroughly using PBS [54].

Hemocyte counts were performed using a Nikon MBA 92010 ECLIPSE Ni-U 90 epifluores-

cence microscope coupled to a Nikon MQA 16050 DS-Ri 1 U3 camera (Nikon, Melville, NY,

USA). For each sample, images of 160 fields at 800x magnification were taken and analyzed

using ImageJ software [55]. The results are plotted as the mean ± standard deviation.

To assess the hemolymph antimicrobial activity, 400 workers were captured from each col-

ony. Collected workers underwent the R and NR treatments described above. After 24 h, ants

from each treatment were assigned randomly to either the basal condition group or the infec-

tion group. The hemolymph of the ants in the basal condition group was extracted immedi-

ately, whereas ants from the infection group were treated with M. anisopliae spores, and

hemolymph was extracted 24 h after infection. For both groups, we pooled the hemolymph

extracted from five workers to form one sample, and those samples were kept on ice. Nutrient

agar plates (nutrient broth BD Difco1 and Bacto agar BD Difco1 1%, Franklin Lakes, NJ,

USA) were inoculated with a strain of Pseudomonas aeruginosa isolated from the soil.

Immediately after inoculation, six discs of filter paper (Whatman1 N˚1, diameter 4 mm)

were placed on each plate. On each plate, four discs were impregnated with hemolymph, and

the remaining two were impregnated with PBS and gentamicin solution. The plates were incu-

bated 24 h at 25˚C. To calculate the diameter of the inhibition zone, we acquired images of
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each plate using a Nikon D5300 camera, and the images were analyzed using ImageJ software

[55].

Encapsulation response

Four nests were selected from each group to measure the encapsulation response under both

basal and infection conditions, and 400 workers were collected and randomly assigned to R

and NR treatments. After 24 h, half of the workers of each treatment were infected with M. ani-
sopliae spores, and the other half were left untreated. Twenty-four hours after infection, the

workers were briefly numbed on ice, and a 0.25 mm wide and 2.0 mm long nylon thread was

implanted between the head and thorax. After 24 h, the implants were removed and placed on

microscope slides in groups of 4, and we included a control implant that had not been intro-

duced into ants on each slide. We captured images of each of the slides using a Nikon ECLIPSE

Ci-L lens coupled to a Canon Ti3 camera using Helicon Focus software. The images were

transformed to grayscale to calculate the mean gray-value parameter (MGV) for each implant

using ImageJ software [55]. For the encapsulation assay, the result was reported as:

Normalized MGV ¼ 1=MGVi� MGVc

where MGVi represents the MGV measured for each implant, while MGVc is the MGV mea-

sured for the control implant.

Survival assay after exposure to Metarhizium anisopliae
To assess the potential effect of the microbiota on the survival of workers challenged with M.

anisopliae, 1000 individuals from six nests were assigned to the R and NR treatments. In addi-

tion, an uninfected control group was included (500 workers). The ants were kept in Petri

dishes for 10 days as previously described. Cumulative survival was monitored every day. To

verify that workers died due to M. anisopliae infection, corpses were disinfected with a 1%

sodium hypochlorite solution and incubated in wet chambers until M. anisopliae hyphae were

observed growing on their bodies.

Data analyses

We performed statistical analyses using R software (R CoreTeam 2017). To assess whether

removal of the microbiota had an impact on worker immunity, linear mixed models were used

for each of the response variables: hemocyte count, diameter of the inhibition zone, MGV, and

survival. The treatments (removal, no removal and control) were considered fixed effects, and the

nest was considered a random effect. The hemocyte count data were log-transformed. To evalu-

ate the significance of the fixed factor of each response variable, deviance analysis was performed

using the CAR package ANOVA function [56]. To establish comparisons between groups, the

Tukey test was performed using the multcomp package [57]. The significance level was set at α =

0.05 for all analyses. To assess the impact of the microbiota on worker survival after infection

with M. anisopliae, we performed Cox regression using the survival package [58]. For this analy-

sis, treatment (uninfected control, M. anisopliae infection in the presence of the microbiota and

after the removal of the microbiota) was considered a predictor variable of the survival time of

workers. Unless stated otherwise, data are presented as the mean ± standard deviation.

Statement of ethical management

The collection of biological material for this study was covered by “Permiso marco de recolec-

ción de especı́menes de especies silvestres de la diversidad biológica con fines de investigación
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cientı́fica no commercial” (Framework permit for the collection of specimens of wild species

of biological diversity for noncommercial scientific research) issued by the National Environ-

mental Licensing Authority (ANLA) to the Universidad del Valle through legal resolution N˚

1070. The experimental procedures were reviewed and approved by the “Ethical Committee in

fauna and flora research from the Faculty of Natural and Exact Sciences Universidad del

Valle”. The favorable concept was stipulated in the concept document for research project No.

022–2016. All trials were performed after numbing the ants on ice to minimize affectation.

Results

Cellular immune response—hemocyte count

The bacterial microbiota associated with workers did not modulate the number of circulating

hemocytes in the hemolymph under basal conditions (χ2 = 0.67, p = 0.41) (Fig 1) or after expo-

sure to the fungal pathogen M. anisopliae (χ2 = 2.18, p = 0.14). In addition, the results sug-

gested that infection by M. anisopliae does not affect the hemocyte count; thus, no differences

were observed between the uninfected control group and workers whose microbiota were not

removed and were subsequently challenged by the fungus (Fig 1).

Fig 1. Hemocyte count in the hemolymph of Atta cephalotes workers in the presence of or after removal of the microbiota.

Hemocyte count in A. cephalotes workers under basal conditions (left) and upon exposure (right) to M. anisopliae (N = 1440

workers from 6 nests).

https://doi.org/10.1371/journal.pone.0247545.g001
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Cellular immune response—encapsulation

The encapsulation assays showed that the treatments affected the encapsulation response (χ2 =

161.36, p<0.001). However, the comparisons between experimental groups indicated that

infection with M. anisopliae, but not the presence of microbiota, modified the encapsulation

response of A. cephalotes workers. Independent of the presence or absence of microbiota,

infection by M. anisopliae caused a slight reduction (4.5%) in normalized MGV (Fig 2). This

reduction was significant for ants in the presence of microbiota under basal conditions and

after infection by M. anisopliae (p<0.001), as well as between ants in the absence of micro-

biota under basal conditions and after infection by M. anisopliae (p<0.001). However, we did

not find significant differences between groups in the presence or absence of microbiota under

basal conditions (p = 0.3615) or after infection by M. anisopliae (p = 0.8835) (Fig 2).

Humoral response—antimicrobial activity of the hemolymph

Similar to previous results, the treatments had an effect on hemolymph antimicrobial activity

(χ2 = 179.6, p<0.001). However, infection by M. anisopliae, and not the removal of the micro-

biota, was a significant treatment. Independent of the presence or absence of microbiota,

worker hemolymph showed low antimicrobial activity (Tukey test p = 0.98) under basal condi-

tions. Likewise, there were no differences between hemolymph antimicrobial activity after

Fig 2. Encapsulation response of Atta cephalotes workers in the presence of or after removal of the microbiota.

Normalized mean-gray value of implants extracted from workers subjected to the removal (left) and no removal (right)

treatments. (N = 1600 workers from 4 nests) ��� p<0.001.

https://doi.org/10.1371/journal.pone.0247545.g002
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infection among workers in the presence of and after removal of the microbiota (Tukey test

p = 0.96). In contrast, the comparison between the hemolymph antimicrobial activity under

basal conditions and after infection by M. anisopliae revealed that exposure of workers to this

fungus led to an increase in the bactericidal activity of the hemolymph, showing an increase in

the diameter of the inhibition zone. In line with this finding, significant differences in hemo-

lymph antimicrobial activity were observed among workers under basal conditions and after

infection in both the presence and absence of microbiota (Tukey test p<0.001) (Fig 3).

Worker survival after infection by M. anisopliae
Cox regression analysis showed that uninfected workers had a higher probability of survival

than workers exposed to the entomopathogenic fungus M. anisopliae (Wald χ2 28 p<0.001).
However, removal of the bacterial microbiota did not have a significant impact on the proba-

bility of survival of the infected workers (Wald χ2 1.35 p = 0.24) (Fig 4).

Discussion

Our results showed that the bacterial microbiota associated with A. cephalotes has no impact

on individual ant worker immunity; its removal did not lead to any significant changes in

hemocyte count, encapsulation response, and/or hemolymph antimicrobial activity, either

Fig 3. Antimicrobial activity of the hemolymph of Atta cephalotes workers in the presence of or after removal of the

microbiota. Inhibition zone diameter was measured as an indicator of hemolymph antimicrobial activity in workers with intact

microbiota and after removal under basal conditions and infection by M. anisopliae (N = 1200 workers from 4 nests ��� p<0.01).

https://doi.org/10.1371/journal.pone.0247545.g003
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under basal conditions or upon exposure to M. anisopliae. These results are consistent with

those of the survival assay, where we did not observe any significant impact on worker survival

following microbiota removal. In contrast, external workers of Acromyrmex subterraneus,
which are naturally devoid of actinobacterial cover, are more resistant to entomopathogenic

fungal infection than internal workers that exhibit an actinobacterial cover. This finding may

suggest that under natural conditions, cuticular microbiota may exert immunomodulation on

this species [59]. Nevertheless, these authors did not observe differences in the encapsulation

rate of external workers covered by bacteria and internal workers without bacteria. Similar

findings have been reported for Ac. subterraneus workers where removal of the visible actino-

bacterial cover did not influence the worker encapsulation rate [60]. This implies that bacterial

coverage is not an exclusive modulator of the encapsulation rate and that it is likely worker age

and/or their risk of exposure to pathogens shaped their response [59].

We only assessed the effect of bacterial microbiota on adult workers; therefore, we cannot

rule out the role that interaction of the individual immune system and microbiota might play

in immune defense at immature stages. This aspect is relevant since it has been reported that

the composition of the A. cephalotes intestinal microbiota undergoes modifications during

development. For instance, larval and pupal intestines contain Pseudomonas and Enterobacter
bacteria, but adult intestines show a significant reduction in the abundance of these bacterial

groups, suggesting that the constitution of the microbiota and, probably, its interaction with

this host, are dynamic [38]. Additionally, an Ac. subterraneus actinobacterial cover appears to

offer protection to the youngest workers until their immune system is fully developed [60].

Fig 4. Survival probability of workers infected with M. anisopliae in the presence of and after removal of the

microbiota. Survival probability of the uninfected workers (black line) and workers exposed to M. anisopliae in the

presence of microbiota (blue line) and after removal of the microbiota (gray line). (N = 1500 workers from 5 nests).

https://doi.org/10.1371/journal.pone.0247545.g004
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This suggests that interactions with microorganisms may not be uniform throughout the

worker lifespan.

Aside from the effect of microbiota on the immune response of workers, we assessed several

parameters associated with the individual immune response of A. cephalotes workers under

basal and infection conditions. Hemolymph exhibited virtually no antimicrobial activity under

basal conditions, whereas microbicidal activity increased upon infection by M. anisopliae. This

finding is in agreement with several studies on insects that have shown that antimicrobial pep-

tide production is an inducible response triggered after the immune system recognizes threats

[61–63]. Likewise, in Ac. echinatior workers, the expression of antimicrobial peptides is

induced upon infection by entomompathogenic M. anisopliae [64]. Similarly, an increase in

hemolymph antimicrobial activity after immune challenge has been reported in solitary insects

such as Galleria mellonella [65], Musca domestica [66] and Schistocerca gregaria [67], as well as

in social insects. For instance, it has been reported that Bombus terrestris [68] and Apis melli-
fera [69] bee workers challenged by bacterial-associated molecular patterns showed an increase

in hemolymph antimicrobial activity compared to the control or uninfected group. Further-

more, Camponotus fellah worker hemolymph has no antimicrobial properties but it acquires

such properties after a trauma [70].

The significant 4.5% reduction in encapsulation rate in the absence of any change in hemo-

cyte count after 48 h of exposure to M. anisopliae is noteworthy. Considering that the encapsu-

lation response is mainly mediated by hemocyte activity, our results suggest that in A.

cephalotes workers, encapsulation results from humoral factors rather than cellular responses.

Previous evidence revealed that upon infection with entomopathogenic fungi, secretion of

antimicrobial peptides prevails over the cellular response [71, 72]. For instance, Bombus terres-
tris individuals challenged by bacterial lipopolysaccharide (LPS) showed enhanced hemo-

lymph antimicrobial activity but did not exhibit changes in the hemocyte concentration [73].

Although we did not observe changes in the number of hemocytes circulating in the hemo-

lymph, our results do not rule out the possibility that immune cells are recruited to the points

where the invader penetrates the exoskeleton and protrudes into the hemocoel. This response

has been reported in Drosophila larvae, where circulating hemocytes are rapidly recruited to

the wounds, where they exert phagocytic activity [74]. Additional and similar functional assays

were performed to determine why the hemocytes modified their functional profile, although

they did not increase in number. This trait has been reported in Aedes aegypti hemocytes,

which exhibit cell-specific transcriptome responses to infection [75].

A reduction in the encapsulation rate has previously been reported for Ac. subterraneus sub-
terraneus and Ac. equinatior workers. In the latter, infection with M. anisopliae led to an ~40%

reduction in worker encapsulation [64]. Our results showed a much less dramatic effect of M.

anisopliae infection on the encapsulation rate, probably due to a shorter observation period.

We evaluated the encapsulation rate at 48 h, while Baer et al. (2005) reported the strongest

infection effect after 96 h. They did not observe any changes in the encapsulation response at

48 h. Regardless of the differences in the magnitude of the reduction, a reduced encapsulation

response has been explained by the production of destruxins by M. anisopliae [76, 77]. These

toxins prevent the formation of hemocyte aggregates and the prefenoloxidase reaction that

together lead to a reduction in the encapsulation response [77]. Therefore, to determine

whether M. anisopliae infection has a greater impact on the encapsulation response, as demon-

strated in other leafcutter ant species, it would be necessary to assess this response at least 96 h

after infection.

In agreement with our findings, the survival of workers challenged with M. anisopliae was

not influenced by the presence/absence of bacteria, supporting the idea that the bacterial

microbiota in A. cephalotes workers does not play a role in the defense against fungal infection.
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In line with this evidence, it has been proposed that in Atta species, which lack actinobacterial

cover, the first line of defense against fungal invasion is the hygienic behaviors and chemical

defense provided by metapleural gland activity [78]. In addition, A. cephalotes workers dis-

played an increase in the frequency of metapleural gland grooming during the first hour after

challenge with the opportunistic pathogen Penicillium sp. [78]. Moreover, it has been shown

that in Atta colombica, workers challenged, either by the entomopathogenic agent M. aniso-
pliae or by the parasite Escovopsis sp., show a significant increase in grooming behavior fre-

quency. Additionally, it has been found that Atta mandibular secretions can also minimize the

action of toxic compounds and inhibit a wide range of microorganisms [79].

Our study evaluated, for the first time, the potential role of bacterial microbiota in the

immune response of A. cephalotes and its effect on survival. Overall, our findings indicate that

microbiota associated with A. cephalotes workers do not play a role in the defense against M.

anisopliae and may support the hypothesis that in Atta species that are devoid of a visible acti-

nobacterial coat, the behavioral and chemical arms of social immunity, including the secre-

tions of the metapleural gland and fecal fluid, are the main mechanisms that restrict fungal

infections.
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Writing – original draft: Sandra Milena Valencia-Giraldo, Andrea Niño-Castro.
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