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Abstract: Classical network utility maximization (NUM) models fail to capture network dynamics,
which are of increasing importance for modeling network behaviors. In this paper, we consider
the NUM with delivery contracts, which are constraints to the classical model to describe network
dynamics. This paper investigates a method to distributively solve the given problem. We first
transform the problem into an equivalent model of linear equations by dual decomposition theory,
and then use Gaussian belief propagation algorithm to solve the equivalent issue distributively.
The proposed algorithm has faster convergence speed than the existing first-order methods
and distributed Newton method. Experimental results have demonstrated the effectiveness
of our proposed approach.

Keywords: network utility maximization; delivery contracts; Gaussian belief propagation;
distributed algorithms

1. Introduction

Since the publication of the seminal paper [1] by Kelly et al., the framework of network utility
maximization (NUM) has received a great deal of interest in the past two decades, which has
been developed into a mathematical theory of network architectures [2]. Many important network
design and resource allocation problems can be formulated as a NUM model. The utility concept,
originally proposed in economics, is used to measure the satisfaction degree of a consumer for a good
or service. In the basic NUM model, the utility of a network user is defined as a function of its data rate.
The goal of network system is designed to maximize the overall utility of all the users in the network.

Consider a network with L links and R users, where each link l has a capacity of cl bps. Let L
be the set of all links and a route r is a non-empty subset of L, let R be the set of possible routes,
and associate a route r with a user r (or a data source r), i.e., L = {1, 2, . . . , L} andR = {1, 2, . . . , R}.
Set Alr = 1 if l ∈ r, so that the link l lies on route r, and set Alr = 0 otherwise. This defines a 0-1
routing matrix A = (Alr, l ∈ L, r ∈ R).

Suppose that if a rate xr is allocated to user r then this has utility Ur(xr) to the user. Assume that
the utility Ur(xr) is increasing, strictly concave, and continuously differentiable over the range xr ≥ 0.
Let U = (Ur(xr), r ∈ R) and C = (cl , l ∈ L). Under this model, the network seeks a rate allocation
x = (xr, r ∈ R) which solves the following optimization problem [3].
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max ∑
r∈R

Ur(xr)

subject to Ax ≤ C
x ≥ 0

(1)

However, the basic NUM model (1) does not consider the network dynamics such as time-varying
link capacities and user demands for quality of service (QoS). In this paper, we investigate a dynamic
NUM model with QoS constraints, i.e., the model is time-varying over time t, which takes values
in the set of time indices T = {= 1, 2, . . . , T}. The model was first introduced in [4] as following

max ∑T
t=1 ∑R

r=1 Ut
r(xt

r)

subject to Atxt ≤ Ct ∀t ∈ T
Brxr ≥ qr ∀r ∈ R

xt ≥ 0 ∀t ∈ T

(2)

where xt
r denotes the source rate for user r at time step t, xt = (xt

r, r ∈ R) is the rate vector of all users
at time step t and xr = (xt

r, t ∈ T ) is the source rate allocation for user r. The second constraint
in model (2) is the QoS constraints or delivery contracts. For each user, a delivery contract is the required
minimal flow to be delivered over some particular time interval. Assume user r has kr delivery
contracts and qr ∈ Rkr is the associated contract quantity amounts. A contract is active at time index
t if t is in the time interval of the contract. We can define a 0-1 matrix Br ∈ Rkr×T to represent
the delivery contract indicator matrix by setting the (Br)kt = 1 if the kth contract of user r is active
at time t, and setting (Br)kt = 0 otherwise. Thus, the QoS constraints that all delivery contracts are met
can be given by Brxr ≥ qr ∀r ∈ R, i.e., the second constraint in model (2).

In the dynamic NUM model (2), utility function Ut
r , route matrix At and link capacity Ct are all

dependent on the time index t, this means they are all possibly time-varying. There are many different
ways to solve the problem (2), such as interior-point methods [5] and primary-dual algorithms [6].
The interior-point methods are efficient for solving the problem (2); however, they are centralized
algorithms. The primary-dual algorithms are decentralized, but they suffer from slow convergence
speed. In this paper, we concentrate on the issue of designing a distributed algorithm with fast
convergence speed for solving the problem (2).

Only a few studies so far have investigated the problem (2) [4,7]. The goal of these works
are similar to us. In [4], the authors presented a distributed primary-dual algorithm for solving
the problem (2) based on dual decomposition and first-order methods. However, their work suffers
from slow convergence speed. Of particular relevance to our work is [7], where a distributed
Newton-type algorithm has been developed for solving the dynamic NUM model (2). Unlike these
works, we use Gaussian belief propagation (GaBP) algorithm [8] to compute the Newton step
and obtain an efficient distributed algorithm for solving the problem (2).

Our proposed solution is a three-step method for addressing the given issue. The first step
is to obtain the optimality conditions for solving the problem (2) by introducing slack variables.
The first step is similar to that approach used in the primary-dual algorithms for solving the problem (2).
However, we do not adopt the primary-dual algorithms to solve the problem, which suffer from slow
convergence speed.

The second step is to transform the obtained optimality conditions into an inference problem
in a probabilistic graph model describing a certain Gaussian distribution with unknown parameters,
which equal to optimal solutions for the problem (2). The method used in the second step transfers
an algebraic problem into a probabilistic inference problem, which was first raised in [9].

The third step is to use the GaBP algorithm to evaluate distributively the parameter values
of the Gaussian distribution. Essentially the GaBP algorithm is used to compute the Newton step
in a primary-dual interior-point method [10]. This is similar to the work in [11]. However, this work
does not consider the delivery contracts and is the special case of our work.
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The outline of this paper is as follows. We first discuss the background and related work
in Section 2, then present our method in Section 3. Section 4 provides experimental results
and a discussion. Finally, Section 5 concludes this paper.

2. Background and Related Work

Before we present our idea, we first introduce a basic distributed optimization algorithm [3] which
solves the model (1). Our work belongs to extensions of their works to dynamic model.

2.1. Basic Primary-Dual Algorithm

Low et al. present in [3] the following basic distributed optimization algorithm for solving
the model (1).

The Lagrangian dual function for problem (1) is

D(µ) = max
xr≥0

{
∑

r∈R
Ur(xr)− µTr(Ax− C)

}
= max

xr≥0

{
∑

r∈R
Ur(xr)− xr ∑

l∈L
Alrµl

}
+ µTrC

(3)

where µ = (µl , l ∈ L) is a vector of Lagrange multipliers and µTr denotes the transpose of the vector µ.
Here, the second equality follows due to the definition of the matrix A. Thus, the dual problem
for primary problem (1) is

min
µ≥0

D(µ) (4)

In the dual formulation, Lagrange multiplier µl can be interpreted as congestion price on link l.
A key observation from Equation (3) is that sources can compute their optimal rate individually,
based on the total congestion price ∑l∈L Alrµl , using the following source rate algorithm

xr = arg max
xr≥0

{
∑

r∈R
Ur(xr)− xr ∑

l∈L
Alrµl

}
(5)

To solve the dual problem (4), one can use the following projected gradient method

µl(t + 1) =
[
µl(t)− α(t)(cl − ∑

l∈L
Alrxr)

]+
(6)

where α(t) is a positive scalar stepsize, and [a]+ denotes the projection of a onto the set R+

of non-negative real numbers.
According to the duality theory [12] and the assumption that the utility Ur(xr) is increasing,

strictly concave and continuously differentiable over the range xr ≥ 0, the optimal solutions to both
primary problem (1) and dual problem (4) can be found simultaneously by solving iteratively
in Equations (5) and (6), respectively. This suggests treating the network links and the sources
as processors in a distributed computation system to solve the primary problem (1) and the dual
problem (4). The algorithm (5) and (6) is often referred to as the basic primary-dual algorithm.
A large number of studies based on NUM framework belong to extensions of the basic primary-dual
algorithm, the interested readers along this line please refer to [13].

2.2. Related Work

In the basic NUM model (1), the utility Ur(xr) of a network user r is defined as function of its data
rate xr, this means that all utility functions are separable. Due to the characteristic of separability
of utility functions, a basic distributed NUM algorithm is derived to maximize aggregate user utility
by the dual decomposition theory [12]. Along this way, so many extended NUM models and resultant
distributed algorithms have been proposed for network architectural design, cross-layer optimization
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and resource allocation in wireless as well as wireline networks [14–19]. There are some works which
studied the extended NUM models with the non-strictly concave or non-concave utility functions such
as in [20–23]. When the utility functions are not strictly concave, the subgradient method is usually
used to solve the dual problems instead of the gradient method in the basic primary-dual algorithm.
If the utility functions are not concave, the extented duality method [24] can be used to construct
distributed algorithms.

The design of the utility functions depends on applications of NUM problem. NUM-based
approaches have been explored in different applications. Based on NUM, Liu et al. [25] presented
a distributed and adaptive solution that jointly computes the data collection rates for each node
and finds the schedule transmissions for rechargeable sensor networks. The concept of Water
flow Driven Sensor Networks was introduced for leakage and contamination monitoring based
on NUM [26]. Sadagopan et al. [27] use NUM approach constructing an energy balance tree in sensor
networks, where each sensor node’s utility depends on the selection of its parent node. There exist
some challenges to define utility functions based on performance metrics of different applications.
The relationship between performance metrics and utility functions please refer to [28].

All the above works considered the static NUM models. Dynamic NUM models also belong
to the extension of the basic NUM model. In [29], the authors presented a dynamic NUM model
in adversarial environments. Their work focuses on the tradeoff between total queue length and utility
regret. However, in this paper, we concentrate on the issue of devising a distributed algorithm
to solve a dynamic NUM. In [30], the authors proposed a dynamic NUM model with time-varying
fading channels. However, the utility functions and route matrix in their work are fixed. Moreover,
their work focuses on the convergence behavior and tracking errors of the iterative primary-dual
scaled gradient algorithm. Parametric network utility maximization model was presented in [31].
If the parameters are regarded as time steps, their model is equivalent to ours. However, their work
concentrates on the tracking of algorithm trajectory by using a pathfollowing method on the parametric
optimization problem [32].

The works in [4,7] are particular relevance to this work. The dynamic NUM with delivery contracts
was first proposed in [4], and the authors presented a distributed primary-dual algorithm to solve
the problem. The distributed primary-dual algorithm provided in [4] is based on dual decomposition
theory, which is similar to the basic primary-dual algorithm. These primary-dual algorithms usually
suffer from the slow rate of convergence [33,34].

The work in [7] also investigates the same model with ours in this paper. They proposed
a distributed Newton method for solving the given problem. Their distributed algorithm obtained
fast convergence speed compared with the distributed primary-dual algorithms. the method in [7]
approximates the Newton direction at each iteration by using the matrix splitting technique.
However, our method in this paper uses GaBP algorithm to evaluate the Newton direction.

Our proposed algorithm is a kind of primary-dual interior-point method. The primary-dual
interior-point method was used for solving the NUM problem in [35]; however, the proposed
algorithm is not decentralized. The work in [11] provided a distributed algorithm for solving a
NUM by using the GaBP algorithm to compute the Newton direction. This is similar to our work.
However, their model is static, and our model includes delivery contracts. Their work can be regarded
as a special case of our work.

3. Our Method

In this section, we develop a three-step method to solve distributively the dynamic NUM
problem (2). Before we present our idea, we first introduce some notations to simplify the model (2).
let x = (xTr

1 , xTr
2 , . . . , xTr

R )
Tr and C = (CTr

1 , CTr
2 , . . . , CTr

T )
Tr be the rate vector of users and the capacity

vector of links respectively, where aTr is the transpose of the vector a. let matrix A denote
the corresponding routing matrix for all time steps given as
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A =


A1 0 . . . 0
0 A2 . . . 0

. . . . . . . . . . . .
0 0 . . . AT


Then we can write down the first constraint of the dynamic NUM problem (2) as Ax ≤ C.
Similarly, let q = (qTr

1 , qTr
2 , . . . , qTr

R )
Tr be the contract quantity vector of users, and the matrix B

denote the delivery contract matrix for all users given as

B =


B1 0 . . . 0
0 B2 . . . 0

. . . . . . . . . . . .
0 0 . . . BR


Thus, the second constraint of the dynamic NUM problem (2) can be written as Bx ≥ q. Let X

be the rate matrix with entries (xt
r, r ∈ R, t ∈ T ), define U(X) = ∑T

t=1 ∑R
r=1 Ut

r(xt
r)

Equivalently, we can transform the dynamic NUM problem (2) as following,

max U(X)

subject to Ax ≤ C
Bx ≥ q

x ≥ 0

(7)

Next, we will present our method to solve the problem (7).

3.1. Optimality Conditions

The Lagrangian associated with the NUM problem (7) is

L(xt
r; λ, µ, α) = U(X)− λTr(Ax− C) + µTr(Bx− q) + αTrx (8)

where λ, µ and α are Lagrange multiplier vectors which are associated the inequality constraints
in the NUM problem (7). Therefore, the dual function is given by

D(λ, µ, α) = max
xr≥0

L(xt
r; λ, µ, α)

Thus, the dual problem for model (7) is given by

min
λ≥0,µ≥0,α≥0

D(λ, µ, α) (9)

Assume x̂t
r, (λ̂, µ̂, α̂) are the optimal solutions of the primary problem (7) and dual problem (9),

according to the Karush-Kuhn-Tucker (KKT) conditions [12], we can obtain the optimality conditions
as following,

−∇U(X̂) + ATrλ̂− BTrµ̂− α̂ = 0
diag(λ̂)(C− Ax̂) = 0
diag(µ̂)(Bx̂− q)) = 0
diag(α̂)x̂ = 0

(10)

where diag(·) denotes a diagonal matrix formed from its vector argument.

3.2. Inference Problem

We can modify the optimality conditions (10) and apply the primary-dual interior-point method
on the modified optimality conditions for solving the primary problem (7) and dual problem (9)
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in an iterative manner with the given error of the duality gap [12]. The modification is parametrized
by a parameter k as [35],

−∇U(X) + ATrλ− BTrµ− α = 0
diag(λ)(C− Ax) = ( 1

k )1
diag(µ)(Bx− q)) = ( 1

k )1
diag(α)x = ( 1

k )1

(11)

where k ≥ 0 is a parameter. We know from (11) that the modified optimality conditions
approximate the optimality conditions as k→ ∞ and different values of k set the different accuracies
of the approximation. We can compactly write the modified optimality conditions as following,

rt(x, λ, µ, α) =


−∇U(X) + ATrλ− BTrµ− α

diag(λ)(C− Ax)− ( 1
k )1

diag(µ)(Bx− q))− ( 1
k )1

diag(α)x− ( 1
k )1

 = 0

The search direction of the primary-dual interior-point method is the Newton step for solving
the modified optimality conditions rt(x, λ, µ, α) = 0. If y = (x, λ, µ, α)Tr is the current point,
the Newton step ∆y = (∆x, ∆λ, ∆µ, ∆α)Tr, then we have,

r(y + ∆y) ≈ rt(y) + r
′
t(y)∆y = 0,

where r
′
t(y) denotes the derivative of rt(y). The above equation means

− rt(x, λ, µ, α) =


−∇2U(X) ATr −BTr −I
−diag(λ)A diag(C− Ax) 0 0
diag(µ)B 0 diag(Bx− q)) 0
diag(α) 0 0 diag(x)




∆x
∆λ

∆µ

∆α

 (12)

Searching the Newton step by Equation (12) is the main computational bottleneck
in the primary-dual interior-point method. However, in this paper, we do not directly calculate
Newton’s direction by Equation (12). We transform the problem solving the liner Equation (12)
into a probabilistic inference which can be computed based on GaBP. We first transfer the matrix
in the right side of Equation (12) into a symmetric matrix by multiplying rt(x, λ, µ, α) a factor
(1,−1/λ,−1/µ,−1/α) as following,

−r̂t(x, λ, µ, α) =


−∇2U(X) ATr −BTr −I

A −diag(C− Ax)/λ 0 0
−B 0 −diag(Bx− q)/µ 0
−I 0 0 −diag(x)/α




∆x
∆λ

∆µ

∆α



= A


∆x
∆λ

∆µ

∆α


(13)

where r̂t(x, λ, µ, α) and A are defined as,

r̂t(x, λ, µ, α) = rt(x, λ, µ, α) · (1,−1/λ,−1/µ,−1/α)Tr =


−∇U(X) + ATrλ− BTrµ− α

−(C− Ax) + ( λ
k )1

−(Bx− q)) + ( µ
k )1

−x + ( α
k )1
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and

A =


−∇2U(X) ATr −BTr −I

A −diag(C− Ax)/λ 0 0
−B 0 −diag(Bx− q)/µ 0
−I 0 0 −diag(x)/α


For notational simplicity, let b = −r̂t(x, λ, µ, α), w = (∆x, ∆λ, ∆µ, ∆α)Tr, we can write

the Equation (13) as,
Aw = b (14)

Therefore, the Equation (14) for computing the Newton step is a system of linear equations
with a symmetric coefficient matrix, which can be efficiently solved by using the GaBP algorithm [9].
We can define an undirected probabilistic graphical model G = (W , E), whereW is a set of nodes
which consist of the variables of linear Equation (14), and E is a set of edges which are determined
by the non-zero entries of the coefficient matrix A. Given the matrix A and vector b, we can build
up a Gaussian density function p(w) ∼ exp(− 1

2 wTrAw + bTrw), which corresponds to the probabilistic

graph G. Let M = TR + TL +
R
∑

r=1
Tkr + TR be the dimension of the vector b (or vector w) (refer to the

original model (2), we know that the number of the objective functions is TR, the capacity constraints

are TL, the constraints of the delivery contracts are
R
∑

r=1
Tkr, and the non-negativity constraints are

TR. Therefore, the dimension of the vector b is TR + TL +
R
∑

r=1
Tkr + TR.). The probabilistic graph G

has edge potentials (or compatibility functions) ψ and self-potentials (or evidence) φ. These graph
potentials are determined by the following pairwise factorization of Gaussian distribution,

p(w) ∝
M

∏
i=1

φi(wi) ∏
{i,j}

ψij(wi, wj), (15)

resulting in φi(wi)
.
=exp(− 1

2Aiiw2
i + biwi) and ψij(wi, wj)

.
=exp(− 1

2 wiAijwj). Using this probabilistic
graph, we can transform the problem of solving the linear Equation (14) from the algebraic domain
to a parameter estimation problem in the domain of probabilistic inference, as stated in the following
theorem [9].

Theorem 1. The computation of the solution vector w∗ = A−1b is identical to the inference of the vector
marginal means θ

.
= {θ1, . . . , θR} over the graph G with the associated joint Gaussian probability density

function p(w) ∼ N (θ,A−1).

Proof. See Appendix A.

The above theory shows that if we can distributively evaluate the mean of the Gaussian
distribution p(w), then we can use the primary-dual interior-point method to distributively solve
the primary problem (7) and dual problem (9). The next section will present the method for solving
the mean of the inference problem (15) based on GaBP algorithm.

3.3. Parameter Evaluation Based on GaBP

Belief propagation is a kind of local message-passing algorithm and has been found to have
excellent performance in many applications [36]. GaBP is a special case of the belief propagation
algorithm, in which the underlying distributions are Gaussian. According to the statements in above
section, in order to solve the linear equation problem (14) we need to infer the marginal densities p(wi),
which must also be Gaussian, i.e.,
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p(wi) ∼ N (θi = {A−1b}i, P−1
i = {A−1}ii)

where θi and Pi are the marginal mean and inverse variance (also known as the precision), respectively.
Let N(i) be the set of all the nodes neighboring the node i (excluding node i). The set N(i) \ j includes
all the nodes in the set of N(i) except node j. The following Algorithm 1 provides the GaBP algorithm
update rules for inferring the mean θi.

Algorithm 1: GaBP Algorithm

• Step 0 Initialization:
Set a convergence threshold ε, Pki = 0 and θki = 0, ∀k ∈ N(i). Compute Pii = Aii and
θii = bi/Aii.

• Step 1 Iteration:
Propagate the messages Pki and θki, ∀k ∈ N(i). Compute Pij = −A2

ij/(Pii + ∑
k∈N(i)\j

Pki),

θij = (Piiθii + ∑
k∈N(i)\j

Pkiθki)/Aij.

• Step 2 Convergence check:
If the message Pij and θij do not converge, return to Step 1, else, go to Step 3.

• Step 3 Inference:
Compute the marginal means θi = (Piiθii + ∑

k∈N(i)
Pkiθki)/((Pii + ∑

k∈N(i)
Pki)).

• Step 4 Output:
Output the solution wi = θi.

4. Experiments and Analysis

4.1. Experimental Settings

In this section, we justify empirically the effectiveness of the proposed algorithm and compare the
performance with the classical primary-dual algorithm and the primary-dual interior-point method.
The classical primary-dual algorithm is based on dual decomposition. The primary-dual interior-point
method used here is an iterative method for solving approximately a Newton system, which is usually
called a truncated Newton primary-dual interior-point method [37].

We consider a network which has 100 flows and 200 links, and all of the utility functions are set
to logarithmic functions, i.e., Ut

r(xt
r) = log(xt

r), which are the most widely used in NUM problems [2].
The network was randomly generated and similar to that used in [34,35], this means that we need
generate the link capacities and the routing matrix. The link capacities are chosen independently
from a uniform distribution on [0.1, 1] and all of the required minimal flows to be delivered over
different time intervals are set to 0.1, and the elements of the routing matrix A are generated randomly
and independently, so that the average route length is 6 links. The time index T and all stepsizes are set
to 10 and 0.001, respectively. After the network was generated, our proposed algorithm, primary-dual
algorithm, and truncated Newton algorithm are performed once on it, respectively. The experimental
results and comparisons are provided in the next section.

4.2. Experimental Results

We first evaluate the convergence of the proposed algorithm and compare with the classical
primary-dual algorithm, these two algorithms are all distributed. Figure 1 shows the convergence
curves of total utilities and Figure 2 provides the duality gap or corresponding residual values between
the primary function and dual function.
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Figure 1. The convergence comparison of the proposed method and the dual decomposition algorithm.
The green curve denotes the convergence speed of total utility for our proposed algorithm which
is a distributed Newton method based on GaBP, and the red curve denotes the convergence speed
of total utility for the dual decomposition algorithm which is a distributed primary-dual algorithm.
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Figure 2. The duality gap comparison of the proposed method and the dual decomposition algorithm.
The green curve denotes the estimation errors between the primary function and dual function versus
iteration number for our proposed method, and the red curve denotes the estimation errors between
the primary function and dual function versus iteration number for the dual decomposition algorithm.

We also compare the performance of our proposed method with the truncated Newton method
which has achieved a very fast convergence speed and very good accuracy for solving nonlinear
equation system. However, the truncated Newton method is centralized. Figures 3 and 4 show
the convergence curves of total utilities and the duality gap curves versus iteration number for our
proposed method and the truncated Newton method, respectively.
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Figure 3. The convergence comparison of the proposed method and the truncated Newton method.
The green curve denotes the convergence speed of total utility for our proposed algorithm which
is a distributed Newton method based on GaBP, and the blue curve denotes the convergence speed
of total utility for the truncated Newton method which is a centralized algorithm.
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Figure 4. The duality gap comparison of the proposed method and the truncated Newton method.
The green curve denotes the estimation errors between the primary function and dual function versus
iteration number for our proposed method, and the blue curve denotes the estimation errors between
the primary function and dual function versus iteration number for the truncated Newton algorithm.

Our proposed method uses GaBP algorithm to compute the Newton and the truncated Newton
method adopts the preconditioned conjugate gradient (PCG) algorithm [38] for computing the Newton
step. While the above Figures 3 and 4 provide the performance comparison in term of the Newton
steps, we also give the comparison of the iteration count in each Newton step for these two algorithms
in Tables 1 and 2. Tables 1 and 2 are the experimental results for two networks which have 100 flows
and 200 links, and 500 flows and 1000 links, respectively.

Table 1. Experimental results of the iteration count for each Newton step in a small network.

Newton Step Number GaBP PCG

1 6 3
2 6 2
3 6 2
4 7 5
5 9 9
6 10 12
7 12 13
8 15 22
9 14 29

10 13 34
11 43

total 98 174

Table 2. Experimental results of the iteration count for each Newton step in a bigger network.

Newton Step Number GaBP PCG

1 6 2
2 5 4
3 5 8
4 6 3
5 7 16
6 7 20
7 7 36
8 7 64
9 101

total 50 253
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4.3. Experiment Analysis

4.3.1. Analysis and Comparison with a Distributed Method

We will analyze the experimental results in terms of convergence speed and solution accuracy.
From Figure 1, we can see that our proposed algorithm and the dual decomposition algorithm can
converge to the optimal value Within a certain range of errors. However, the convergence speed of our
method is much faster than the dual decomposition algorithm.

The duality gap between the primary function and the dual function depicts the accuracy
of the obtained solution. For a convex optimization problem, the primary variables and dual variables
will eventually approach the optimal solution as the duality gap tends to zero. Naturally, we expect that
our proposed algorithm will obtain a smaller duality gap. From Figure 2, we can see that the duality gap
achieved by our proposed algorithm is smaller than that obtained by the dual decomposition method.

4.3.2. Analysis and Comparison with a Centralized Approach

The truncated Newton method is a centralized approach, which is an efficient primary-dual
interior-point method and achieves good performance in many optimization problems [39].
We gave the performance comparison for our proposed method and the truncated Newton method
in this section.

From Figure 3, we can see that the convergence speed of our proposed method is very fast,
which is slightly faster than the truncated Newton method. This means that both methods had
comparable convergence speed. However, as specified before, our proposed approach is distributed,
while the truncated Newton method is centralized.

Figure 4 provides the accuracy comparison of the solutions obtained by both methods.
From Figure 4, we can see that our proposed method has a smaller duality gap than that achieved
by the truncated Newton method. This means that although both methods had comparable
convergence rate, the accuracy of the solution obtained by our method is better than that achieved
by the truncated Newton method.

As these two methods computed the Newton steps based on GaBP and PCG algorithms
respectively, we also compared the iteration count for each Newton step. From Tables 1 and 2,
we can see that the iteration count of GaBP algorithm is smaller than that required by the PCG
algorithm except for the first few Newton steps. Moreover, the total iteration count of GaBP algorithm
is also smaller than that achieved by the PCG algorithm.

Another advantage for GaBP algorithm is that as the Newton step number increases, the iteration
count for each Newton step tends to a stable value. However, the iteration count required
by PCG algorithm always increases; moreover, the increased magnitudes grows bigger as the scale
of the network grows.

5. Conclusions

We propose a three-step method for distributively solving network utility maximization
with delivery contracts (or dynamic NUM). This paper first obtained the optimality conditions
for solving the dynamic NUM problem by dual decomposition theory. Then we transform the problem
for searching the Newton step in solving the optimality conditions into a probabilistic inference.
Finally, GaBP algorithm was used to compute the probabilistic inference.

NUM problems are usually solved by means of the classical primary-dual algorithm, which is used
as the benchmark algorithm for testing the effectiveness of our proposed method. By comparing and
analyzing the experimental results, we can reach a conclusion that the proposed method is effective in
convergence speed and solution accuracy compared with the classical primary-dual algorithm.

Our proposed method belongs to distributed primary-dual interior-point methods. Therefore,
we also compared the performance of our proposed method with the primary-dual interior-point
method based on PCG, which had achieved a very fast convergence speed and very good accuracy
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for solving nonlinear equation problems. The experimental results also validated the effectiveness
of our proposed method.
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Abbreviations

The following abbreviations are used in this manuscript:

NUM Network utility maximization
GaBP Gaussian belief propagation
QoS Quality of service
KKT Karush-Kuhn-Tucker
PCG preconditioned conjugate gradient
(·)Tr The transpose of a matrix or a vector

Appendix A

Proof of Theorem 1. Solving the linear equation system Aw = b is equivalent to maximizing
the quadratic form − 1

2 wTrAw + bTrw, which is further equivalent to finding the maximal value
of the exponential function exp(− 1

2 wTrAw + bTrw).
Next, we can define the joint Gaussian probability density function as follows:

p(w)
.
= Z−1exp(−1

2
wTrAw + bTrw) (A1)

where Z is a normalization factor to make p(w) to be a probability distribution. Let θ
.
= A−1b,

we can rewrite the joint Gaussian probability density function as following,

p(w) = Z−1exp(
1
2

θTrAθ)exp(−1
2

wTrAw + θTrAw− 1
2

θTrAθ)

= ξexp(−1
2
(w− θ)TrA(w− θ))

= N (θ,A−1)

(A2)

where ξ = Z−1exp( 1
2 θTrAθ) is the new normalization factor after the distribution p(w)

has been rewritten.
From the above Equation (A2), we see that the mean vector of the Gaussian distribution p(w)

defined by Equation (A1) is θ, which is equal to the our target solution w∗ = A−1b. This proves
Theorem 1.

References

1. Kelly, F.P.; Maulloo, A.; Tan, D. Rate control for communication networks: Shadow prices, proportional
fairness and stability. J. Oper. Res. Soc. Am. 1998, 49, 237–252. [CrossRef]

2. Chiang, M.; Low, S.H.; Calderbank, A.R.; Doyle, J.C. Layering as optimization decomposition:
A mathematical theory of network architectures. Proc. IEEE 2007, 95, 255–312. [CrossRef]

3. Low, S.H.; Lapsley, D.E. Optimal flow control, I: Basic algorithm and convergence. IEEE/ACM Trans. Netw.
1999, 7, 861–874. [CrossRef]

http://dx.doi.org/10.1057/palgrave.jors.2600523
http://dx.doi.org/10.1109/JPROC.2006.887322
http://dx.doi.org/10.1109/90.811451


Entropy 2019, 21, 708 13 of 14

4. Trichakis, N.; Zymnis, A.; Boyd, S. Dynamic Network Utility Maximization with delivery contracts.
In Proceedings of the IFAC World Congress, Seoul, Korea, 6–11 July 2008; pp. 2907–2912.

5. Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: New York, NY, USA, 1999.
6. Bertsekas, D.P. Nonlinear Programming, 2nd ed.; Athena Scientific: Nashua, NH, USA, 1999.
7. Weiy, E.; Ozdaglary, A.; Eryilmazz, A.; Jadbabaie, A. A Distributed Newton Method for Dynamic Network

Utility Maximization with Delivery Contracts. In Proceedings of the 46th Annual Conference on Information
Sciences and Systems (CISS 2012), Princeton, NJ, USA, 21–23 March 2012; pp. 1–6.

8. Weiss, Y.; Freeman, W.T. Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary
Topology. Neural Comput. 2001, 13 , 2173–2200. [CrossRef] [PubMed]

9. Danny, B. Gaussian Belief Propagation: Theory and Application. Ph.D. Thesis, The Hebrew University
of Jerusalem, Jerusalem, Israel, 2009.

10. Wright, S.J. Primal-Dual Interior-Point Methods; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 1997.

11. Bickson, D.; Tock, Y.; Zymnis, A.; Boyd, S.P.; Dolev, D. Distributed large scale network utility maximization.
In Proceedings of the IEEE International Symposium on Information Theory (ISIT 2009), Seoul, Korea,
28 June–3 July 2009; pp. 829–833.

12. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
13. Pham, Q.V.; Hwang, W.J. Network utility maximization-based congestion control over Wireless Networks:

A survey and potential directives. IEEE Commun. Surv. Tutor. 2017, 9 , 1173–1200. [CrossRef]
14. Shengbin, L.; Jianhua, H. Design and analysis of distributed utility maximization algorithm for multihop

wireless network with inaccurate feedback. Int. J. Commun. Syst. 2014, 27, 4280–4299.
15. Jan, V. Dynamic Scoring: Probabilistic Model Selection Based on Utility Maximization. Entropy 2019, 21, 36.

[CrossRef]
16. Im, Y.; Joe-Wong, C.; Ha, S.; Sen, S.; Kwon, T.; Chiang M. AMUSE: Empowering users for cost-aware

offloading with throughput-delay tradeoff. IEEE Trans. Mob. Comput. 2016, 15, 1062–1076. [CrossRef]
17. Merayo, N.; Pavon-Marino, P.; Aguado, J.C.; Duran, R.J.; Burrull, F.; Bueno-Delgaado, V. Fair bandwidth

allocation algorithm for PONS based on network utility maximization. J. Opt. Commun. Netw. 2017, 9, 75–86.
[CrossRef]

18. Abhishek, S.; Eytan, M. Network utility maximization with heterogeneous traffic flows. In Proceedings
of the 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless
Networks (WiOpt 2018), Shanghai, China, 7–11 May 2018; pp. 1–10.

19. Shengbin, L.; Qingfu, Z. A multiutility framework with application for studying tradeoff between utility
and lifetime in wireless sensor networks. IEEE Trans. Veh. Technol. 2011, 64, 4701–4711.

20. Wang, W.; Palaniswami, M.; Low S.H. Optimal flow control and routing in multi-path net-works.
Perform. Eval. 2003, 52, 119–132. [CrossRef]

21. Lin, X.; Shroff, N.B. Utility maximization for communication networks withmultipath routing. IEEE Trans.
Autom. Contr. 2006, 51, 766–781. [CrossRef]

22. Pal, A.; Kant, K. On the Feasibility of Distributed Sampling Rate Adaptation in Heterogeneous
and Collaborative Wireless Sensor Networks. In Proceedings of the 25th International Conference
on Computer Communication and Networks (ICCCN 2016), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–9.

23. Liao, S.; Sun, J.; Chen, Y.; Wang, Y.; Zhang, P. Distributed power control for wireless networks via
the alternating direction method of multipliers. J. Netw. Comput. Appl. 2015, 55, 81–88. [CrossRef]

24. Chen, Y.; Chen, M. Extended duality for nonlinear programming. Comput. Optim. Appl. 2010, 47, 33–59.
[CrossRef]

25. Liu, R.; Sinha, P.; Koksal, C.E. Joint energy management and resource allocation inrechargeable sensor
networks. In Proceedings of the 29th Conference on Computer Communications (INFOCOM 2010),
San Diego, CA, USA, 15–19 March 2010; pp. 902–910.

26. Pal, A.; Kant, K. Water flow driven sensor networks for leakage and contamination monitoring.
In Proceedings of the IEEE 16th International Symposium on “A World of Wireless, Mobile and Multimedia
Networks” (WoWMoM 2015), Boston, MA, USA, 14–17 June 2015; pp. 1–9.

27. Sadagopan, N.; Singh, M.; Krishnamachari, B. Decentralized utility-based sensor network design.
Mob. Netw. Appl. 2006, 11, 341–350. [CrossRef]

http://dx.doi.org/10.1162/089976601750541769
http://www.ncbi.nlm.nih.gov/pubmed/11570995
http://dx.doi.org/10.1109/COMST.2016.2619485
http://dx.doi.org/10.3390/e21010036
http://dx.doi.org/10.1109/TMC.2015.2456881
http://dx.doi.org/10.1364/JOCN.9.000075
http://dx.doi.org/10.1016/S0166-5316(02)00176-1
http://dx.doi.org/10.1109/TAC.2006.875032
http://dx.doi.org/10.1016/j.jnca.2015.05.005
http://dx.doi.org/10.1007/s10589-008-9208-3
http://dx.doi.org/10.1007/s11036-006-5187-8


Entropy 2019, 21, 708 14 of 14

28. Zhao, Y.; Mao, S.; Neel, J.; Reed, J. Performance evaluation of cognitive radios: Metrics, utility functions,
and methodology. Proc. IEEE 2009, 97, 642–659. [CrossRef]

29. Qingkai, L.; Eytan, M. Network Utility Maximization in Adversarial Environments. In Proceedings
of the IEEE International Conference on Computer Communications (INFOCOM 2018), Honolulu, HI, USA,
15–19 April 2018; pp. 1–10.

30. Junting, C.; Vincent, K.N.L.; Yong, C. Distributive network utility maximization over time-varying fading
channels. IEEE Trans. Signal Process. 2011, 59, 2395–2404.

31. Lutbat, Y.; Enkhbat, R.; Suk-Hwan, L.; Won-Joo, H. Parametric network utility maximization problem.
Optim. Lett. 2014, 8, 889–901.

32. Guddat, J.; Guerra, V.F. Parametric Optimization: Singularities, Pathfollowing and Jumps; Wiley: New York, NY,
USA, 1990.

33. Ehsan, N.; Tansu, A.; Girish, N.N.; Robin, J.E. Convergence analysis of quantized primal-dual algorithms
in network utility maximization problems. IEEE Trans. Control Netw. Syst. 2018, 5, 284–297.

34. Michael, Z.; Alejandro, R.; Asuman, O.; Ali, J. Accelerated dual descent for network flow optimization.
IEEE Trans. Autom. Control 2014, 59, 905–920.

35. Zymnis, A.; Trichakis, N.; Boyd, S.; O’Neill, D. An interior-point method for large scale network utility
maximization. In Proceedings of the Allerton Conference on Communication, Control, and Computing,
Monticello, IL, USA, 26–28 September 2007; pp. 877–882.

36. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann:
San Francisco, CA, USA, 1988.

37. Kelley, C.T. Iterative Methods for Linear and Nonlinear Equations; Society for Industrial and Applied
Mathematics (SIAM): Philadelphia, PA, USA, 1995; ISBN 9780898713527.

38. Avriel, M. Nonlinear Programming: Analysis and Methods; Dover Publishing: Mineola, NY, USA, 2003;
ISBN 0-486-43227-0.

39. Bonnans, J.F.; Gilbert, J.C.; Lemaréchal, C.; Sagastizábal, C.A. Numerical Optimization: Theoretical
and Practical Aspects; Springer: Berlin, Germany, 2006; ISBN 3-540-35445-X.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JPROC.2009.2013017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Basic Primary-Dual Algorithm
	Related Work

	 Our Method 
	Optimality Conditions
	Inference Problem
	Parameter Evaluation Based on GaBP

	Experiments and Analysis
	Experimental Settings
	Experimental Results
	Experiment Analysis
	Analysis and Comparison with a Distributed Method
	Analysis and Comparison with a Centralized Approach


	Conclusions
	
	References

