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Abstract

Osteosarcoma (OSA) is an aggressive mesenchymal tumor of the bone that affects children

and occurs spontaneously in dogs. Human and canine OSA share similar clinical, biological

and genetic features, which make dogs an excellent comparative model to investigate the

etiology and pathogenesis of OSA. Mitochondrial (mt) defects have been reported in many

different cancers including OSA, although it is not known whether these defects contribute

to OSA progression and metastasis. Taking a comparative approach using canine OSA cell

lines and tumor tissues we investigated the effects of mtDNA content and dysfunction on

OSA biology. OSA tumor tissues had low mtDNA contents compared to the matched non-

tumor tissues. We observed mitochondrial heterogeneity among the OSA cell lines and the

most invasive cells expressing increased levels of OSA metastasis genes contained the

highest amount of mitochondrial defects (reduced mtDNA copies, mt respiration, and

expression of electron transport chain proteins). While mitochondria maintain a filamentous

network in healthy cells, the mitochondrial morphology in OSA cells were mostly “donut

shaped”, typical of “stressed” mitochondria. Moreover the expression levels of mitochondrial

retrograde signaling proteins Akt1, IGF1R, hnRNPA2 and NFkB correlated with the inva-

siveness of the OSA cells. Furthermore, we demonstrate the causal role of mitochondrial

defects in inducing the invasive phenotype by Ethidium Bromide induced-mtDNA depletion

in OSA cells. Our data suggest that defects in mitochondrial genome and function are preva-

lent in OSA and that lower mtDNA content is associated with higher tumor cell invasiveness.

We propose that mt defects in OSA might serve as a prognostic biomarker and a target for

therapeutic intervention in OSA patients.

Introduction

Osteosarcoma (OSA) is an aggressive neoplasia of the bone, which affects human children and

older, large and giant breed canines [1–3]. It accounts for about 85% of all primary bone
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tumors in both species [4]. The malignant neoplasm arises from osteoblasts and can manifest

as both osteoproductive and osteolytic lesions [4]. In both species, the tumor most commonly

occurs in the metaphyseal regions of the long bones including the humerus, femur, radius,

tibia, and ulna [5–7]. In human patients, treatment consists of neo-adjuvant chemotherapy fol-

lowed by radical surgery. In canines current OSA treatment involves limb amputation, chemo-

therapy, and palliative radiation [8–12]. Even with aggressive treatment strategies, metastatic

disease leads to high mortality rates in humans and canines [13–15]. The poor prognosis

makes it imperative to investigate the etiology and pathogenesis of OSA to identify new molec-

ular markers and design effective treatments for both human and canine patients. Given the

similarities in the occurrence, biology, behavior and molecular features between human and

canine OSA, identification of novel prognostic markers and therapeutic targets explored in

either species can be evaluated further for their relevance in the comparative model for devel-

oping treatment modalities.

Mitochondrial dysfunction caused by mtDNA mutations, deletions, and depletion have

been widely reported in different types of cancers including OSA [16,17]. It is reported that

tumors with an aggressive phenotype have impaired mitochondrial function and increased

glycolytic metabolism [18–28]. Reports suggest that mtDNA mutations and electron transport

chain (ETC) complex defects can enhance tumor aggressiveness through increased ROS pro-

duction, constitutive activation of nuclear genes involved in cell survival and angiogenesis, and

resistance to apoptosis [29,30]. We earlier reported that mitochondrial dysfunction, and the

subsequent loss of transmembrane potential (ΔCm), elevates cytosolic Ca2+ levels and acti-

vates the calcineurin dependent mitochondria-to-nucleus retrograde signaling (MtRS) path-

way [31,32]. This pathway activates the nuclear transcription factors NFκB, C/EBPδ, CREB,

and NFAT resulting in transcriptional activation of oncogenes such as Akt1, glucose trans-

porter (Glut4), Ryanodine receptor (RyR1) and Cathepsin L [33–35]. Furthermore, hnRNPA2,

an RNA-binding protein, is activated in response to mtDNA depletion and acts as a transcrip-

tional coactivator to propagate MtRS [34–36]. Indeed, consistent with these findings we have

also found that reducing mtDNA copy number in different non-tumorigenic immortalized

cell lines causes a metabolic shift to glycolysis, and results in their transformation to tumori-

genic cells [20,31,32,34–37].

In many cancers, it has been reported that patients that have tumors with mtDNA defects

have a poor prognosis [38–42]. We recently reported that aggressive breast tumors have higher

prevalence of mitochondrial defects [27]. Here we investigated the contribution of mitochon-

drial dysfunction to the aggressive behavior of OSA with the goal of determining possible

prognostic significance and identifying new druggable molecular targets for relapsed, aggres-

sive OSA. We hypothesize that mtDNA defects contribute to OSA progression and metastasis

and as such may represent a valuable prognostic biomarker and a potential therapeutic target

for future exploration.

Materials and methods

Cell culture

The canine OSA cell lines SK-KOSA, MC-KOSA, and BW-KOSA were obtained from the

NCI- Canine Comparative Oncolgy Genomics Consortium (CCOGC) [43]. Cells were cul-

tured in Dulbecco Modified Eagle Medium (DMEM) with 10% fetal bovine serum (FBS), 1%

Penicillin-Streptomycin, and 0.1% Fungizone. Reduction in mtDNA copy number was

achieved by treating cell lines with 50 ng/mL of ethidium bromide (EtBr) for three passages.

MtDNA depleted cells were supplemented with 1 mm pyruvate and 50 μg/ml uridine. Cells

Mitochondrial defects prevalent in aggressive osteosarcomas
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were stored in 37˚C and 5% CO2 and were passaged at 70–80% confluence. MtDNA depleted

cell lines were designated SK-KOSA+EB, MC-KOSA+EB, and BW-KOSA+EB.

Canine OSA tissues

Canine primary tumor and non-tumor “control” tissues were obtained from canine OSA

patients directly following limb amputation surgery. This research was approved by the Uni-

versity of Pennsylvania’s Institutional Animal Care and Use Committee (IACUC Protocol

number: 806287). Biopsies were obtained from three different regions of the tumor to assess

intra-tumor heterogeneity in mtDNA contents. For comparison of mtDNA content, non-

tumor skeletal muscle tissue from two regions surrounding the tumor was used. Of the five

patients that were included in this study, three had received only chemotherapy treatment

with carboplatin at the time of tissue collection and two had received an experimental vaccine

aimed at preventing metastatic disease, known as the listeria vaccine. Two patients later also

received the vaccine. At the time this paper was written, all patients were alive with no evi-

dence of metastatic disease.

Relative mtDNA content

At least three punch sections were taken from each tissue for replicates to rule out the effects of

intratumor heterogeneity and each sample was analyzed in triplicate. MtDNA copy number

was measured from total genomic DNA isolated from normal and tumor tissues using DNeasy

Blood and Tissue kit (Qiagen Cat # 69504). Using SYBR Green assay and quantitative real

time PCR (qPCR) we amplified mtDNA (50 ng genomic DNA template) using primers specific

for mtDNA encoded gene Cytochrome Oxidase subunit I (MT-COI) and normalized using a

nuclear encoded single copy gene Cytochrome c Oxidase subunit IVi1 (CcO IVi1). Data analy-

sis was done using the ΔΔCT method. This method of analysis estimates mtDNA copy number

relative to a single copy nuclear gene as an internal reference gene [28,36,44]. Taking into con-

sideration that tumors often have nuclear genome polyploidy due to chromosomal instability,

in preliminary experiments, we used two nuclear encoded single copy genes, 36B4 and

CcOIVi1, coded on different chromosomes, as reference genes for normalization. Although

there are possible inter individual differences in the transcripts of nuclear coded genes in

tumors, the overall patterns of mtDNA content among our comparisons remained unchanged

irrespective of the gene of reference.

Western immunoblot

Total cell lysates were prepared by solubilizing cell pellets in NP-40 lysis buffer (150mM NaCl,

1.0% NP-40, and 50mM Tris-Cl pH 8.0, containing protease inhibitors). 50μg protein were

suspended in Laemmli sample buffer and resolved by electrophoresis on 12% SDS-polyacryl-

amide gels [45] and subjected to immunoblot analysis. The protein levels were estimated by

the Lowry method [46]. The immunoreactivity of the primary antibodies used in this study

had not been previously tested in canine samples, so the time and concentration of each anti-

body was standardized in preliminary experiments in canine lysates. All secondary antibodies

were IgG antibodies from LI-COR Biosciences and were specific to the species of the primary

antibody. The blots were analyzed on a LI-COR Odyssey Infrared Imaging System and quanti-

tated using Image J. To confirm equal protein loading, blots were re-probed with actin anti-

body. The fluorescence intensity of each immunoreactive protein band was normalized to the

fluorescence of the corresponding actin band. pAkt was first compared with actin, then this

value was divided by Akt to show the comparative activation. SK- or BW-KOSA (as indicated
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in the figures) was set to one as a comparison. Representative blots from 3–4 independent

experiments are presented here.

Antibodies

All antibodies were diluted in 1x PBS+ 0.05% Tween20 (0.05%PBST).

hnRNPA2 (1:750): Santa Cruz Biotechnology, Dallas, TX; Cat # sc-32316.

IGF-1Rβ (1:2000): Santa Cruz Biotechnology, Dallas, TX; Cat # sc-713

Akt (1:2000): Santa Cruz Biotechnology, Dallas, TX; Cat # sc-1619

p-Akt (1:2000): Cell Signaling Technology, Danvers, MA; cat # 9271

p50 (1:1000): Santa Cruz Biotechnology, Dallas, TX; Cat # sc-8414

OPA1 (1:1000): Abcam, Cambridge, MA; Cat # ab157457

DRP1 (1:1000): Abcam, Cambridge, MA; Cat # ab184247

Immunocytochemistry

Cells (2x105 cells per well on a 6-well plate) were grown overnight in growth medium on Poly-

D Lysine coverslips. Cell adherence and confluence was confirmed before processing. After

24h of cell seeding, cells were washed with 1X PBS and fixed in ice-cold methanol for 10 min-

utes, at room temperature. Fixed cells were blocked in a buffer containing 1% BSA and were

incubated with primary antibodies (as indicated in the figures) for 1 hour at 37˚C. Immunos-

tained cells were imaged using a Leica confocal microscope under a 100X objective.

Mitochondrial respiration

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were carried out

in a XF24 Seahorse Analyzer (Seahorse Bioscience, Billerica, MA, USA) using 2.5 × 103 cells as

described before [20,27,28]. An equal number of cells was counted and seeded on the XF24

culture plates 6h prior to performing the assay to rule out differences in proliferation rates

between cell types. Thirty minutes prior to the OCR and ECAR measurements, the growth

medium of the cells was replaced with unbuffered assay medium containing 10 mM glucose in

the absence of CO2.

Growth curve

Growth patterns were measured by seeding cells at a density of 1 × 104 cells/well in 24-well cul-

ture plates as described earlier [34]. Cells from three wells at each time point were harvested

and counted in a Guava personal cytometer according to the manufacturer’s protocols (Milli-

pore, Billerica MA).

Matrigel invasion assay

The in vitro invasion assays were carried out as described previously [47]. The Matrigel inva-

sion chambers were prepared at 1:2 dilution of Matrigel (BD Biosciences, Belford, MA) as

described before [34]. Equal numbers of viable cells (4 × 104) were seeded on top of the Matri-

gel layer. After incubation for 24 h at 37˚C, non-invading cells in the Matrigel layer were quan-

titatively removed, and the microporous membrane containing cells that migrated across the

Matrigel layer and through the microporous membrane was stained and viewed under an

Olympus BX 61 bright field microscope as described before [34]. At least six fields were exam-

ined within any one experiment for each condition and a representative image for each cell

line is presented.

Mitochondrial defects prevalent in aggressive osteosarcomas
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Quantitative real time PCR

Total cellular RNA was prepared using the RNeasy mini kit (Qiagen Cat # 74104). Genomic

DNA was eliminated from the RNA preparations using Turbo DNA Free kit (Thermo Fisher

Scientific). 1μg RNA was reverse transcribed into cDNA using High Capacity reverse tran-

scription kit (Applied Biosystems). 100 ng cDNA was used for each SYBR Green reaction for

transcript analysis of Ezrin, β4 Integrin and Cullin-1. Quantitative Real Time PCR assays were

run on an ABI Quant Studio 6 real time thermocycler (Applied Biosystems). The nuclear gene

GAPDH was used as an endogenous control. All real time PCR assays were run in triplicate.

Data are presented as Relative Quantification (RQ).

The primer sequences used are as follows:

Ezrin

Forward primer 5’-GTTGATGCCCTTGGAC-3’,

Reverse primer 5’-GGTGCCTTCTTGTCG-3’

β4 Integrin

Forward primer 5’-TCATGAGCCGCAATGATGAG-3’,

Reverse primer 5’-TGATGGATAGTCCTGTGTCTTGTACTG-3’

Cullin-1

Forward primer 5’-CTTAGAAGCCCAGTCAACACCAT-3’,

Reverse primer 5’-GGCCTTTCACAATATTTGCCATA-3’

Statistical analysis

Statistical analysis was done using one-tail paired Student’s t-test. P value of<0.05 was consid-

ered as statistically significant and indicated by an asterisk (�).

Results

Inherent heterogeneity in mtDNA content among osteosarcomas

We analyzed five canine patient OSA tumor tissues for their mtDNA content by comparing

mtDNA encoded CcO1 gene to the nuclear encoded CcOIVi1 gene. To exclude the possibility

that intra-tumor heterogeneity can account for the variations in mtDNA content, we have ana-

lyzed atleast 3 punch biopsies from each tumor and non-tumor tissue. The mtDNA copy num-

bers between the different punch biopsies from the same patient remained similar with no

statistical difference. Non-tumor muscle tissue (of mesenchymal origin, as is osteosarcoma)

from the same patient was used as a control. We observed that OSA tumors had lower mtDNA

content than non-tumor tissues taken from the same patient (Fig 1A). There is heterogeneity

in the mtDNA content among both tumor as well as non-tumor “control” samples. We used

statistical analysis to conclude that the mtDNA content is lower in tumor tissues compared to

the non-tumor normal tissues.

We next analyzed three canine OSA cell lines and observed heterogeneity in mtDNA copy

numbers among these cells. Comparisons between the ‘parental’ cell lines were made to deter-

mine inherent mitochondrial heterogeneity among different OSA cells. MC-KOSA inherently

had lower mtDNA content than SK-KOSA and BW-KOSA cells (Fig 1B). This suggests that

there is inherent variation in mtDNA levels among osteosarcomas which could potentially

determine OSA aggressiveness.
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Fig 1. Differences in mtDNA content in OSA cell lines and tissue samples. Real time PCR showing relative mtDNA

levels in (A) OSA tumor tissues (n = 10) and matched non-tumor tissues (n = 10), (B) MtDNA estimation in OSA cell

lines using real time PCR. The mtDNA content (y-axis) is quantified from total DNA as the copy number of mtDNA

gene CcO1, normalized to the copy number of nuclear single copy gene CcOIVi1.

https://doi.org/10.1371/journal.pone.0209489.g001
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Reduced mtDNA content correlates with altered mitochondrial

morphology, dynamics and respiratory function in OSA cells

To investigate the causal role of mtDNA defects, we partially depleted mtDNA copy number

(90% depleted compared to the parental mtDNA content) in the OSA cell lines (SK-KOSA,

MC-KOSA, and BW-KOSA) by ethidium bromide (EtBr) treatment as previously described

[28,31,32]. As reported earlier, these treatments do not affect nDNA content [28,48–51]. The

resulting SK-KOSA+EB, MC-KOSA+EB, and BW-KOSA+EB cell lines each contained 10% of

their parental mtDNA content (S1 Fig).

We hypothesized that aggressive OSA tumors have mitochondrial defects that potentially

contribute to their aggressiveness. We investigated whether there is a correlation between

mtDNA content and mitochondrial morphological alterations (fragmentation, loss of filamen-

tous network) in the different OSA cell lines. Healthy functional mitochondria have filamen-

tous network morphology and under cellular stress conditions such as hypoxia or osmotic

pressure changes, mitochondria acquire a “donut-shaped” morphology [52,53]. Mitochondrial

fragmentation has been reported to occur under different physiological or pathological condi-

tions. We observed the presence of “donut-shaped” circular mitochondria along with filamen-

tous mitochondria in the three OSA cell lines and MC-KOSA cell line which had the lowest

mtDNA content showed the highest prevalence of circular “donut-shaped” mitochondria and

a loss of mitochondrial network. We also found that expression of the electron transport chain

(ETC) proteins ATP5B (Fig 2A) and CcOIVi1 (Fig 2B) was reduced in MC-KOSA cells com-

pared to SK-KOSA and BW-KOSA cells.

Furthermore, experimentally reducing mtDNA content, by EtBr treatment, in these cell

lines resulted in loss of mitochondrial filaments suggesting that reduction in mtDNA content

impacts mitochondrial morphology. The expression of mitochondrial proteins ATP5B and

CcOIVi1 is markedly reduced in the mtDNA-depleted cell lines compared to the correspond-

ing parental cells (S2 Fig). This suggests that reduced mtDNA content correlates with and

plays a causal role in the loss of mitochondrial filaments and reduced levels of electron trans-

port chain proteins which are essential to maintain normal mitochondrial function.

Mitochondria are highly dynamic cell organelles, and a balance of mitochondrial fusion

and fission is critical for maintaining mitochondrial functions and cellular signaling [54–57].

Several proteins have been reported to be involved in mitochondrial fusion-fission dynamics,

including OPA1, which controls inner membrane fusion, and Drp1, which is recruited to the

outer membrane for fission [21,58–61]. By immunocytochemistry as well as immunoblot, we

observed elevated levels of mitochondrial fission marker DRP1 (Fig 3A and 3B) and lower

level of mitochondrial fusion marker OPA1 (S3 Fig) in MC-KOSA cells compared to

SK-KOSA and BW-KOSA cells. This suggests that lower mtDNA content is associated with

higher mitochondrial fission in MC-KOSA cells and that reduction in mtDNA content influ-

ences mitochondrial dynamics.

To evaluate the mitochondrial functions, we analyzed the cellular respiratory capacity of

KOSA cell lines using a Seahorse Flux Analyzer. The MC-KOSA cell line which contained the

lowest mtDNA content and most dramatic loss of the mitochondrial network, had the lowest

mitochondrial respiratory capacity (Fig 4A). Reduction of mtDNA content further impaired

mitochondrial respiratory function in SK-KOSA-EB, MC-KOSA-EB, and BW-KOSA-EB

respectively (Fig 4B). Additionally, EtBr mediated mtDNA depletion further reduced mito-

chondrial respiration and also reduced basal respiration, ATP production, and maximal respi-

ration in SK-KOSA-EB, MC-KOSA-EB, and BW-KOSA-EB compared to their parental cell

lines (Fig 4A–4B). These results suggest that mitochondrial functional defects observed in

Mitochondrial defects prevalent in aggressive osteosarcomas
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Fig 2. Expression of electron transport chain proteins in OSA cell lines. (A) Immunofluorescence images showing ATPB (an electron

transport chain protein in red) and nuclei (DAPI, blue) staining pattern in parental OSA cell lines. (B) OSA cell lines stained for CcOIVi1

(green) and nuclei (DAPI, blue). Scale bar: 10μm, magnification 100x.

https://doi.org/10.1371/journal.pone.0209489.g002
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Fig 3. Altered expression of mitochondrial fission marker in OSA cell lines. (A) Immunocytochemistry of OSA cell lines stained for

mitochondrial fission marker protein Drp1 (green) and nuclei (DAPI, blue) viewed under a Leica widefield microscope. Scale bar:

10μm, magnification 100x. (B) Top panel: Western Immunoblot showing high DRP1 protein levels in MC-KOSA relative to

SK-KOSA and BW-KOSA. Bottom Panel: Quantitation (densitometry) of the protein levels from the western immunoblot.

https://doi.org/10.1371/journal.pone.0209489.g003
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Fig 4. Heterogeneity in cellular respiratory capacity in parental and mtDNA-depleted OSA cell lines. (A) Seahorse XF24 was used to analyze

differences in respiration parameters among parental OSA cell lines and (B) among parental OSA cell lines compared to mtDNA-depleted cell lines.

Oligomycin (2 μg/mL) was added at step 4, FCCP (0.3 μM) at step 6, and Rotenone (1 μM) at step 8.

https://doi.org/10.1371/journal.pone.0209489.g004
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OSA are associated with low mtDNA contents, and that the degree of functional impairment

correlates with the loss of mtDNA copies.

Mitochondrial defects correlate with the activation of nuclear protein

markers of mitochondrial retrograde signal

We previously reported in multiple immortalized murine and human cells and cancer cell

lines that calcium-calcineurin mediated retrograde signaling (MtRS) is activated in response

to mtDNA depletion, loss of electron transport chain proteins and disruption of mitochondrial

membrane potential [21,31,32,34,37,62]. We have shown that dysfunctional mitochondria

induce a mitochondria-to-nucleus retrograde signaling (MtRS) pathway that results in the

activation of PI3-kinase, IGF-1R, and Akt1, which are all involved in metabolic shift to prefer-

entially glycolysis and tumorigenic phenotype [19,34,35,37]. Nuclear transcription factor

NFkB (p50:cRel) is activated in response to mitochondrial stress. Furthermore, we have shown

that activation of the heterogeneous nuclear ribonuclear protein hnRNPA2, which acts as a

transcriptional co-activator of nuclear oncogenes, occurs in response to mitochondrial stress

and is critical for propagation of MtRS and tumorigenic reprogramming [21,36,63].

Based on these previous findings, we analyzed the protein expression levels of MtRS marker

proteins in the OSA cell lines. We observed higher levels of the MtRS marker proteins IGF-1R,

Akt1, hnRNPA2 and NFkB (p50) in MC-KOSA cells compared with the other cell lines, sug-

gesting that MtRS induction correlates with greater mitochondrial dysfunction and genomic

defects in this cell line (Fig 5A–5C). As mentioned in the materials and methods section, the

antibodies used here have not been previously tested in canine species and therefore the faster

migrating bands we observed in the IGF-1Rβ and p50 western blots are possibly non-specific

immunoreactive proteins. The higher levels of MtRS protein expression suggests the activation

of the signaling pathway in response to mitochondrial dysfunction is dependent on the extent

of the depletion of mtDNA.

Induction of OSA aggressive phenotype in response to mitochondrial stress

Biomarkers to identify aggressive potential of primary osteosarcomas are not well defined.

Some markers reported to be associated with aggressive osteosarcomas are β4 Integrin, Ezrin,

and Cullin-1. Integrins, such as β4 Integrin, are heterodimers comprised of α and β subunits

and regulate many biological processes such as cell adhesion, signaling, migration, prolifera-

tion, survival, angiogenesis, oncogenesis, and metastasis [64–68]. We observed that the mRNA

expression level of β4 Integrin is higher in MC-KOSA cells compared to SK-KOSA and

BW-KOSA, which correlates with the higher levels of mitochondrial dysfunction in these cells

(Fig 6A).

Ezrin is a cytoskeleton linker protein that belongs to the ezrin, radixin, and moesin (ERM)

family [69]. It is reported to influence the cellular processes involved in metastatic transition

by physically connecting the actin cytoskeleton with the cell membrane and thus engaging the

cancer microenvironment [70]. We observed that the mRNA level of Ezrin is higher in

MC-KOSA cells compared to SK-KOSA and BW-KOSA. OSA tumors, which contained lower

mtDNA copies (Fig 1A), have higher Ezrin mRNA compared to matched non-tumor control

tissues which further suggests the correlation between mtDNA content and tumorigenesis (Fig

6B).

To address if reduction of mtDNA content played a causal role in induction of the marker

genes of aggressive OSA, we selected SK-KOSA cells, which had the highest mtDNA content

and low expression of the tumor marker genes, and investigated the effect of mtDNA depletion

in this cell line. Compared to parental SK-KOSA cells, mtDNA depletion in SK-KOSA cells

Mitochondrial defects prevalent in aggressive osteosarcomas
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Fig 5. Induction of MtRS marker proteins in OSA cell lines. Western blot showing the expression levels of MtRS marker proteins: (A)

IGF-1R, (B) Akt and (C) hnRNPA2 and p50 in total cell lysate. n.s = non-specific.

https://doi.org/10.1371/journal.pone.0209489.g005
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Fig 6. Prognostic marker expression in OSA cell lines. (A) Real time PCR of mRNA was used to quantify expression

levels of the metastasis gene β4 Integrin in three OSA cell lines. (B) Real time PCR of mRNA was used to quantify

expression levels of the metastasis gene Ezrin in three OSA cell lines (left) and canine non-tumor and tumor tissues

(right). (C) Expression levels of the three marker genes of aggressive OSA, β4 Integrin, Cullin-1, and Ezrin were

quantified using real time PCR of mRNA from SK-KOSA and mtDNA-depleted SK-KOSA.

https://doi.org/10.1371/journal.pone.0209489.g006
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resulted in higher levels of the markers β4 Integrin, Cullin-1 and Ezrin suggesting a causal role

of mtDNA depletion in the induction of the marker genes that drive tumor progression (Fig

6C).

The cellular processes involved in tumor progression towards metastasis is complex. Dur-

ing initial stages of the metastatic process, aggressive tumor cells from within the primary

tumor acquire the potential to invade into the surrounding host tissue. This invasive potential

is recapitulated in an in vitro Matrigel invasion assay where the capacity of cells to invade and

migrate through the Matrigel layer enriched with components of the tumor microenviron-

ment is assessed. We found that SK-KOSA and BW-KOSA are non-invasive, while MC-KOSA

is highly invasive as shown by the cells that migrated across the Matrigel layer (Fig 7A, top

panel) further suggesting the association of low mtDNA content with invasive phenotype.

Interestingly, chemically depleting mtDNA content in the non-invasive SK-KOSA and BW–

KOSA cells resulted in these cells acquiring an invasive phenotype (Fig 7A, lower panel)

thereby suggesting a causal role of mtDNA depletion towards invasive potential of tumor cells.

As expected, depletion of mtDNA content in the low mtDNA containing, highly invasive

MC-KOSA cells, did not have any further effect on their invasive potential.

The differences in the invasive potential among the cell lines is independent of the cell pro-

liferation as shown in Fig 7B (Bottom panel). MC-KOSA which has high invasiveness among

the three cell lines, has the lowest cell proliferation rate (Fig 7B, left panel). The EtBr treated

mtDNA-depleted SK-KOSA and BW-KOSA are highly invasive have lower cell growth rate

compared to their parental cells (Fig 7B, right panel). While increased cell proliferation is typi-

cal during tumor initiation, higher cell proliferation is not a requirement for tumor progres-

sion (invasion, metastasis). Therefore, our result here is in agreement with reports that there is

no correlation between cell proliferation and aggressive potential of the primary tumor.

Taken together, these data suggest a causal role between reduced mtDNA content and asso-

ciated mitochondrial dysfunction and development of an invasive, metastatic phenotype.

Discussion

Osteosarcomas in canine and human patients share common clinical, biological, behavioral

and genetic features. The disease is highly metastatic in both species and effective therapies for

the treatment or prevention of metastatic disease remain elusive. Although human and canine

patients differ in the average age of onset of the disease [71–73] they share clinical and molecu-

lar prognostic markers. Mitochondrial defects have been associated with aggressive pheno-

types in many different cancer types, and low mtDNA content has also been associated with

chemoresistance and poor prognosis [28,39–41,74,75]. Our earlier reports, which show that

mtDNA dysfunction-induced mitochondria-to-nucleus retrograde signaling (MtRS) pathway

[21,31,32,34,35,37,62] influences tumorigenesis and our findings reported here suggest that

mitochondrial defects and MtRS markers could potentially be biomarkers for identifying

highly aggressive OSA.

Although the prognostic relevance of mitochondrial defects has been reported in many can-

cers, to date there has been very little information on the relationship between mitochondrial

defects in canine OSA and their association with tumor aggression. In this study our goal was

to determine whether mtDNA content and dysfunction were associated with an aggressive

phenotype in canine OSA and whether we could identify mitochondrial dysfunction-associ-

ated molecular markers which in future can be used as therapeutic targets. We observed inher-

ent heterogeneity in mtDNA content and mitochondrial dysfunction amongst the OSA cell

lines and tumors which reflects the heterogeneity seen in OSA progression and prognosis in

canine and human OSA patients. Furthermore, we identified mitochondrial genomic and
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Fig 7. Acquired Invasive potential in mtDNA depleted cells. (A) Invasive potential of three parental OSA cell lines compared to three

mtDNA-depleted OSA cell lines as observed in a Matrigel invasion assay. (B) Plot of the growth rate of three parental OSA and mtDNA-

depleted OSA cell lines over the course of 72 hours.

https://doi.org/10.1371/journal.pone.0209489.g007
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functional defects in canine OSA cell lines and primary tumors that could potentially influence

tumor progression and metastasis.

In addition to low mtDNA copy number, we identified marked loss of the mitochondrial

filamentous network as well as altered mitochondrial fission. These correlated with the extent

of reduction in mtDNA copy number and invasive potential, suggesting that reduction in

mtDNA copy number could be used as a prognostic marker for OSA. The changes in mito-

chondrial fission in the most aggressive MC-KOSA cell line suggests that targeting mitochon-

drial fission may provide a therapeutic opportunity to rescue mitochondrial functions and

reverse the metastatic progression. Notably, therapeutic targeting of mitochondria fission by

mDivi-1, a DRP1 inhibitor, has been shown to abrogate mitochondrial stress and reverse the

tumorigenic phenotype [76].

Our findings that impairment of mitochondrial electron transport chain function is

dependent on mtDNA content further confirms the interdependence of mitochondrial

membrane potential and an efficient respiration process reported earlier [77]. In agreement

with these earlier studies, we now demonstrate that mtDNA depletion in canine OSA cell

lines induces the activation of genes associated with MtRS including Akt1, IGF-1R and

hnRNPA2. Importantly, our results show that mtDNA depletion induced β4Integrin and

Ezrin genes in the non-invasive SK-KOSA cell line resulting in an acquired invasive pheno-

type, which suggests that mitochondrial dysfunction plays a critical role in the complex met-

astatic process.

This study lays the foundation for evaluating agents that rescue mitochondrial functions

and/or block the aberrant MtRS pathway, inhibit glycolysis, or down regulate the expression of

MtRS markers, which might provide new avenues of therapy for preventing metastatic disease

in both human and canine OSA patients.

Supporting information

S1 Fig. Depletion of mtDNA copies in OSA cell lines. Parental OSA cell lines compared to

OSA cell lines treated with 50 ng/mL EtBr for three passages. The mtDNA content (y-axis) is

analyzed from total DNA as the copy number of mtDNA gene CcO1, normalized to the copy

number of nuclear single copy gene CcOIVi1.
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S2 Fig. Expression of ETC proteins in OSA cell lines in response to mtDNA depletion.

Immunofluorescence images showing ATPB (red) and DAPI (nuclei in blue) or CcOIVi1

(green) and DAPI (nuclei in blue) in parental and mtDNA depleted (A) SK-KOSA, (B)

BW-KOSA and (C) MC-KOSA cell lines as indicated. Scale bar: 10μm, magnification 100x.
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S3 Fig. Expression of mitochondrial fusion marker protein OPA1. (A) OSA cell lines

stained for mitochondrial fusion marker protein OPA1 and nuclei (DAPI in blue) viewed

under a Leica widefield microscope. Scale bar: 10μm, magnification 100x. (B) Top panel:

Western Immunoblot showing low OPA1 protein levels in MC-KOSA relative to SK-KOSA

and BW-KOSA. Bottom Panel: Quantitation (densitometry) of the protein levels.
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