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Background: The early diagnosis and effective prognostic treatment measures for lung cancer are still 
limited, leading to a 5-year survival rate of less than 15% for these patients. Smoking is one of the causes 
of lung cancer, but it is not the initial carcinogenic factor. It is not clear what specific mechanism cigarette 
induces lung cancer, and there is a lack of research on the relationship between related genes and the 
prognosis of patients with smoking lung cancer. The objective of this study was to provide new theoretical 
evidence and potential therapeutic targets for the mechanisms of smoking-related lung cancer formation.
Methods: The gene expression profile data from the GSE12428 dataset which includes 63 lung cancer and 
normal tissue pairs were downloaded from the Gene Expression Omnibus (GEO) database, and data from 
smokers with lung cancer [both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)] 
from The Cancer Genome Atlas (TCGA) database were analyzed. The differential genes in smokers with 
lung cancer were screened using the linear model for microarray data via R software. The differential gene 
enrichment analysis was performed using the online analysis software Database for Annotation, Visualization 
and Integrated Discovery (DAVID). The expression levels of differential genes and their correlation with 
patient tumor clinical stage were analyzed using gene expression profiling interactive analysis (GEPIA). The 
overall survival rate was analyzed using Kaplan-Meier curves.
Results: In the GSE12428 dataset, 225 upregulated genes and 565 downregulated genes were identified 
in cancer tissues; based on smoking status, 1 upregulated gene and 4 downregulated genes were identified. 
Among smokers who also had lung cancer, 4 genes were downregulated, namely CSH1, BPIFA1, SLPI, 
and SCGB3A1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis revealed that these genes were mainly associated with biological functions such as 
antibacterial response, humoral immune response, and response to external stimuli. Among them, BPIFA1, 
SLPI, and SCGB3A1 expression was decreased in lung cancer tissues, with SCGB3A1 showing significant 
differences. Additionally, high expression of SCGB3A1 was associated with favorable prognosis in patients 
with lung cancer.
Conclusions: Three genes BPIFA1, SLPI and SCGB3A1, were identified as being associated with smokers 
with lung cancer, with SCGB3A1 showing a close correlation with patient prognosis. These findings provide 
potential new targets for the treatment of lung cancer. Certainly, this study needs to more investigate the 
mechanism of these genes regulation.
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Introduction

Lung cancer is one of the most severe malignant tumors 
affecting humans. According to the latest World Cancer 
Report [2022], lung cancer ranks first in both incidence and 
mortality among males and second in incidence and first in 
mortality among females (1,2). Based on the different cell 
types that form lung cancer, it can be divided into small-
cell lung cancer (SCLC) (approximately 15% of cases) 
and non-small cell lung cancer (NSCLC) (about 85% of 
cases). NSCLC can further be classified into three types: 
lung adenocarcinoma (LUAD) (30–40% of cases), lung 
squamous cell carcinoma (LUSC) (20–25% of cases), and 
large-cell carcinoma (LCC) (15–20% of cases) (3). Since 
early-stage lung cancer often lacks obvious symptoms, 
about 40% of patients with NSCLC are diagnosed with 
metastasis during disease progression (4). Moreover, early 
diagnosis and effective prognostic treatment measures for 
lung cancer are still limited, leading to a 5-year survival rate 
of less than 15% for these patients (5,6). Therefore, further 

investigation into the mechanisms of lung cancer formation 
and its impact on prognosis is needed.

The occurrence of lung cancer is a complex process 
involving multiple factors and stages. Among these, 
smoking is one of the causes of lung cancer, but it is not 
the initial carcinogenic factor. The molecular mechanisms 
leading to lung cancer may differ depending on whether 
it is caused by smoking (7-9). Studies have found that 
nicotine, a major component of tobacco, can affect the 
expression of the Bcl-2 family proteins in lung cancer 
cells, promoting cancer cell growth and enhancing drug 
resistance (10,11). Tobacco activates the Notch signaling 
pathway to induce lung cancer and regulates cell apoptosis 
by increasing survivin expression, thereby promoting the 
malignant transformation of bronchial epithelial cells (12). 
Vellichirammal et al. reported a positive correlation between 
smoking and fusion frequency in lung adenocarcinoma and 
found that as a fusion gene associated with cigarette smoke 
exposure, downregulation of the P53 pathway resulted in 
higher gene fusion formation in lung adenocarcinoma (13). 
Furthermore, smoking generates carcinogens during the 
combustion process, damaging bronchial epithelial cells 
through different mechanisms and activating oncogenes, 
leading to mutations and inactivating tumor-suppressor 
genes, ultimately causing carcinogenesis (14,15).

Research has shown that compared to normal tissues, 
the genome of cancer tissue undergoes significant changes, 
such as gene structural abnormalities, including gene copy 
number variations, gene expression profiles changes and 
epigenetic modifications (16). Moreover, different types of 
cancer have various genomic alterations, which are related 
to the patient’s genetic expression and inducing factors. 
In clinical practice, gene mutations are used for cancer 
typing and treatment, allowing for personalized diagnosis, 
treatment, and prevention for different patients (17,18). 
Smoking is a factor in patients with lung cancer, and 
various genetic changes may also occur within their cancer 
tissues. Identifying unique differential genes for patients 
with smoking-related lung cancer can provide targeted 
guidance for clinical diagnosis, treatment, and prevention. 
Advances in gene sequencing and bioinformatics have made 
this approach possible. The specific mechanisms through 
which smoking induces and regulates lung cancer remain 
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unclear, and there is limited research on the relationship 
between related genes and the prognosis of patients with 
lung cancer who smoke. Smoking is one of the causes of 
lung cancer. Therefore, there is an urgent need to provide 
new theoretical basis and potential therapeutic targets for 
the formation mechanism of smoking-related lung cancer.

In this study, we obtained gene chip datasets for patients 
with lung cancer who smoke from the Gene Expression 
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) 
and The Cancer Genome Atlas (TCGA) (https://portal.
gdc.cancer.gov) databases, analyzed the differential gene 
expression in their tissues, and determined the correlation 
of these selected genes with clinical factors and their 
prognostic analysis. The aim of this study is to provide new 
theoretical evidence and potential therapeutic targets for 
the mechanisms of smoking-related lung cancer formation. 
We present this article in accordance with the REMARK 
reporting checklist (available at https://jtd.amegroups.com/
article/view/10.21037/jtd-23-1890/rc).

Methods

Dataset selection 

The microarray data and corresponding clinical data of 
smokers and nonsmokers with lung cancer were obtained 
from the GEO and TCGA databases. The messenger 
RNA (mRNA) expression profile data from the GSE12428 
dataset were downloaded from the GEO database. 
GSE12428 contains mRNA expression level data of 28 cases  
(12 smokers and 16 ex-smokers) of cartilaginous bronchial 
tissue and 35 cases (19 current smokers and 16 ex-smokers) 
of primary lung cancer tissue samples, totaling 63 lung 
cancer and normal tissue pairs. The smokers are patients 
who were still smoking when they were diagnosed with 
lung cancer. Ex-smokers have a history of smoking but had 
quit smoking when they were diagnosed with lung cancer. 
TCGA dataset was analyzed from TCGA and includes 
483 cases of LUAD and 347 cases of normal tissue as well 
as 486 cases of LUSC and 338 cases of normal tissue. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Identification of differentially expressed genes 

The linear model for microarray data in the “limma” 
package in R software (version 3.40.6, The R Foundation 
of Statistical Computing, Vienna, Austria) was used to 

analyze differential genes between samples. The criteria 
for selecting differentially expressed genes were an 
adjusted P value ≤0.05 and |log2(fold change)| ≥2. The 
results were visualized with volcano plots and heatmaps, 
and the common differentially expressed genes among 
datasets (GSE12428) were selected for further study. The 
clinical information about the sample is in the https://cdn.
amegroups.cn/static/public/jtd-23-1890-1.xlsx.

Enrichment analysis of differentially expressed genes 

Enrichment analysis of differentially expressed genes among 
smokers and nonsmokers with LUAD was performed 
using the online Database for Annotation, Visualization 
and Integrated Discovery (DAVID) 6.8 (https://david.
ncifcrf.gov). Gene Ontology (GO) gene function analysis 
was conducted based on human genes. The differentially 
expressed mRNAs related to smoking-related lung cancer 
were analyzed using Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis to identify the 
biological pathways enriched by the differentially expressed 
genes. P value ≤0.05 and |log2(fold change)| ≥2 indicated 
statistical significance.

Expression levels of differentially expressed genes under 
different clinical factors 

Gene Expression Profiling Interactive Analysis (GEPIA) 
(http://gepia.cancer-pku.cn/index.html) online data analysis 
was used to compare the differential gene mRNA expression 
levels obtained from lung cancer (LUAD and LUSC) 
tissues and normal tissues. P value ≤0.05 indicated statistical 
significance. The same samples were grouped according to 
tumor stage (stages I, II, III, and IV), and the expression 
levels of the selected genes during different stages of the 
tumor were analyzed. P value ≤0.05 indicated statistical 
significance.

Prognostic analysis of differentially expressed genes

The Kaplan-Meier plotter (https://kmplot.com/analysis/) 
was used for online analysis of the relationship between 
the differential gene mRNA expression levels obtained 
from lung cancer (LUAD and LUSC) tissues and normal 
tissues and survival data. The Kaplan-Meier plotter includes 
multiple GEO datasets, which can identify and validate 
differentially expressed genes, including mRNA and 
microRNA (miRNA) that can significantly affect prognosis.

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1890/rc
https://jtd.amegroups.com/article/view/10.21037/jtd-23-1890/rc
https://cdn.amegroups.cn/static/public/jtd-23-1890-1.xlsx
https://cdn.amegroups.cn/static/public/jtd-23-1890-1.xlsx
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://gepia.cancer-pku.cn/index.html
https://kmplot.com/analysis
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Statistical analysis 

R software was used for statistical analysis, and the 
threshold for identifying differentially expressed genes was 
set at P≤0.05 and |log2(fold change)| ≥2. The Kaplan-
Meier plotter was used for testing the survival data. P value 
≤0.05 indicated statistical significance.

Results

Differential gene expression analysis and screening 

In the GSE12428 dataset, we used the R software 
package “limma” (version 3.40.6) to perform differential 
expression analysis based on the screening criteria. The 
samples were grouped into lung cancer tissues and normal 
tissues (available online: https://cdn.amegroups.cn/static/
public/jtd-23-1890-2.xlsx), and the analysis revealed 225 

upregulated genes and 565 downregulated genes in lung 
cancer tissues compared to normal tissues (Figure 1A).  
The top 10 upregulated and downregulated mRNA 
differences are shown in the heatmap (Figure 1B). Further 
grouping based on smoking status in the GSE12428 
dataset and differential expression analysis according to 
the screening criteria indicated one upregulated gene 
and four downregulated genes in smokers (Figure 1C) 
(available online: https://cdn.amegroups.cn/static/public/
jtd-23-1890-3.xlsx). The heatmap in Figure 1D depicts the 
differential expression levels of mRNA in the upregulated 
and downregulated genes in smokers. We then intersected 
the upregulated mRNA in lung cancer tumor tissues with 
the upregulated mRNA in smoking patients and found 
no intersecting mRNA (Figure 1E). However, when we 
intersected the downregulated mRNA in lung cancer tumor 
tissues with the downregulated mRNA in smoking patients, 
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four mRNAs were downregulated in both smoking and 
nonsmoking patients with lung cancer: CSH1, BPIFA1, 
SLPI, and SCGB3A1 (Figure 1F).

Functional analysis of genes 

GO enrichment analysis was performed for the selected 
genes, and significantly enriched GO annotations (P≤0.05) 
are presented in the bar chart in Figure 2A. The results 
indicated that the differentially expressed genes were 
enriched in molecular functions such as antibacterial 
humoral response, antimicrobial humoral response, 
negative regulation of multiorganism process, regulation of 
symbiosis, response to external stimulus, humoral immune 
response, defense response to bacterium, and regulation 
of multiorganism process. The cellular components 
included extracellular space, extracellular region part, and 
extracellular region. The enriched biological pathways 
included antibiotic function and antimicrobial function  
(Table 1). KEGG pathway enrichment analysis of the selected 
genes revealed that they were involved in nine significantly 
enriched pathways, including innate immune response, 
innate immunity, immunity, antibacterial humoral response, 
extracellular region, extracellular space, secretion, antibiotic 

process, and antimicrobial process, as shown in the bubble 
chart in Figure 2B (the colors of the circles represent the 
correlation between the genes and pathways, and the size of 
the circles represents the enrichment multiple). The relevant 
enriched pathways are listed in Table 2.

Expression of genes in lung cancer tissues and normal 
tissues 

To validate the expression levels of the selected genes (CSH1, 
BPIFA1, SLPI, and SCGB3A1) in lung cancer, we performed 
online analysis using TCGA database. The expression levels 
of these genes were analyzed in 483 cases of LUAD and 
347 cases of normal tissues as well as 486 cases of LUSC 
and 338 cases of normal tissues. The results showed that 
CSH1 and BPIFA1 had lower expression levels of LUAD 
and LUSC compared with normal tissues (Figure 3A,3B). 
SLPI was significantly downregulated trend in both LUAD 
and LUSC, and the difference was statistically significant 
(P≤0.05) (Figure 3C). SCGB3A1 was downregulated in both 
LUAD and LUSC tissues compared with normal tissues, 
with a statistically significant difference in LUSC (P≤0.05) 
(Figure 3D). Overall, BPIFA1, SLPI, and SCGB3A1 were 
downregulated in lung cancer tissues, which was consistent 
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Table 1 Gene Ontology function analysis results of the different expression of selected genes in lung cancer tissues and normal tissues

Term Count Percent (%) P value FDR

Biological process

Antibacterial humoral response 2 50 0.011 0.05

Antimicrobial humoral response 2 50 0.025 0.05

Negative regulation of multi-organism process 2 50 0.031 0.05

Regulation of symbiosis 2 50 0.048 0.05

Response to external stimulus 3 75 0.046 0.05

Humoral immune response 2 50 0.048 0.05

Defense response to bacterium 2 50 0.042 0.05

Regulation of multiorganism process 2 50 0.07 0.05

Cellular component

Extracellular space 4 100 0.001 0.039

Extracellular region part 4 100 0.0072 0.14

Extracellular region 4 100 0.013 0.16

Molecular function

Antibiotic function 2 50 0.024 0.086

Antimicrobial function 2 50 0.029 0.086

FDR, false-discovery rate.

Table 2 Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes in lung cancer tissues and 
normal tissues

Term Enrichment Count Percent (%) P value FDR

Innate immune response 16.127 2 50 0.05 1

Innate immunity 28.982 2 50 0.035 0.069

Immunity 12.416 2 50 0.081 0.081

Antibacterial humoral response 163.186 2 50 9.2E−4 0.229

Extracellular region 7.219 3 75 0.03 0.121

Extracellular space 10.574 4 100 8.4E−5 6.8E−4

Secretion 8.263 4 100 1.8E−4 1.7E−3

Antibiotic function 52.031 2 50 0.024 0.086

Antimicrobial function 61.995 2 50 0.029 0.086

FDR, false-discovery rate.

with the analysis of the GSE12428 dataset.

Correlation of genes with tumor stage

Using TCGA database, we further analyzed the expression 
levels of the four genes (CSH1, BPIFA1, SLPI, and 

SCGB3A1) in lung cancer tissues according to tumor 
stage. The results showed that CSH1 had low expression 
levels in tissues from all stages of lung cancer, making it 
difficult to draw comparisons (Figure 4A). BPIFA1 had 
higher expression in stage III or IV lung cancer tissues 
than in stage I or II tissues (Figure 4B). SLPI had a lower 
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expression in stage II lung cancer tissues than in stage I, III, 
and IV tumor tissues, but the difference was not significant  
(Figure 4C). SCGB3A1 had a significantly higher expression 
in stage I tumor tissues than in stage II, III, and IV tumor 
tissues, indicating a decreased expression with tumor 
progression (Figure 4D). These results suggest that SCGB3A1 
could be one of the markers for lung cancer staging.

Kaplan-Meier plotter survival analysis

The Kaplan-Meier plotter was used to evaluate the effects 
of CSH1, BPIFA1, SLPI, and SCGB3A1 on overall survival 
in smokers with LUAD. As shown in Figure 5, high CSH1, 
SLPI, and SCGB3A1 expression was associated with 
improved patient survival rates, indicating that the high 
expression of these three genes was related to improved 
overall survival. However, CSH1 and SLPI did not show 
significant differences (P>0.05), while SCGB3A1 did show 
a significant difference (P≤0.05). On the other hand, low 
expression of BPIFA1 was associated with increased patient 

survival, but the increase was not significant (P>0.05). 
Overall, high expression of SCGB3A1 could indicate a 
better prognosis, as an increase in SCGB3A1 mRNA 
expression was associated with improved patient outcomes.

Discussion

Lung cancer is one of most common malignant tumors, 
but the molecular mechanisms related to its occurrence are 
diverse. Smoking may increase lung cancer incidence and 
mortality (19,20). Even for the same type of lung cancer 
tissue, tumors may have different molecular mechanisms 
based on whether smoking is a factor. Studies have shown 
that cigarette smoke can stimulate lung epithelial and 
cancer cells by activating myristoylated alanine-rich C 
kinase substrate (MARCKS) and subsequently the nuclear 
factor κB (NF-κB) signaling pathway. Smoking induces 
phosphorylation of MARCKS (p-MARCKS), which is 
positively correlated with the phosphorylation of NF-κB 
(p-65), leading to the upregulation of proinflammatory 

Figure 3 The differential expression of the (A) CSH1, (B) BPIFA1, (C) SLPI, and (D) SCGB3A1 genes in lung cancer (compared with normal 
tissues) from The Cancer Genome Atlas database was analyzed. *, P<0.05. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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Figure 4 The expression of (A) CSH1, (B) BPIFA1, (C) SLPI, and (D) SCGB3A1 in different stages of lung cancer.

cytokines and promoting epithelial-mesenchymal transition 
and stem cell properties (21,22). Although the relationship 
between smoking and lung cancer is well known, much 
work remains to fully elucidate the risk factors associated 
with lung cancer among smokers and non-smokers (23). 

Many diseases’ physiological and pathological processes 
can be discerned at the mRNA and protein levels. With 
the rapid development and application of high-throughput 
sequencing technology, bioinformatics analysis of molecular 
biological functions and disease processes has become 
increasingly insightful (24,25). Zhang et al. identified MYH7 
as a novel biomarker for heavy smoking-related LUAD, 
and it is significantly associated with the prognosis of lung 
cancer and closely related to the survival rate of patients 
with this disease (26). Zhang et al. found that compared 
with NSCLC patients who smoked, non-smoking patients 
were more sensitive to EGFR tyrosine kinase inhibitors 
and had better prognosis. In addition, it was found that 
non-smoking patients had a higher maximum standardized 
uptake value of primary tumors and a lower incidence of 
EGFR mutations (27). 

Numerous biomedical databases support data mining 

and bioinformatics analysis, extracting potentially helpful 
data and providing valuable information for clinical and 
disease mechanism research. The GEO database and 
TCGA database are popular and widely used biomedical 
information repositories, covering nearly all genomics, 
transcriptomics, proteomics, epigenetics, and other omics 
data related to organs, tissues, and cells. They are the largest 
and most comprehensive tumor gene information databases 
globally (28,29) and thus have greatly improved the early 
diagnosis and prevention of cancer by providing support for 
the in-depth understanding of cancer’s pathogenic factors 
and mechanisms from molecular and genetic perspectives 
(30,31). In recent years, researchers have integrated and 
analyzed data to uncover the pathogenic mechanisms 
of related tumors. Through TCGA and GEO database 
analysis, Jin and Yang identified hub genes (SPP1, POSTN, 
COL1A2, FN1, IGFBP3, APP, MMP3, MMP13, CXCL8, 
and CXCL12) that could serve as potential diagnostic 
markers for head and neck squamous cell carcinoma 
(HNSCC) (32). The relative expression of FN1, APP, 
SPP1, and POSTN might be associated with the prognosis 
of patients with HNSCC. Through bioinformatics analysis, 
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Figure 5 Analysis of the influence of genes on the survival rate of patients with smoking-related lung cancer according to the Kaplan-Meier 
plotter. HR, hazard ratio.

Zhao et al. found three genes (COL1A1, PLEK2, and GPX3) 
to be related to the prognosis of LUAD. The risk scores 
of patients with LUAD were significantly correlated with 
survival rates in three independent GEO datasets and the 
LUAD TCGA dataset (33). There is still controversy over 
whether smoking induces lung cancer, and there is limited 
research on the relationship between related genes and the 
prognosis of patients with lung cancer who smoke.

In this study, lung cancer-related mRNA expression 
profile datasets were analyzed through bioinformatics 
analysis and integration of the GEO database and multiple 
online databases. The results identified 790 genes with 
statistically significant differences in cancer tissue, including 
225 upregulated genes and 565 downregulated genes. 

Among the smokers with lung cancer, four genes were 
downregulated: CSH1, BPIFA1, SLPI, and SCGB3A1. GO 
and KEGG pathway enrichment analysis of the selected 
genes revealed that they are primarily associated with 
antimicrobial responses, humoral immune responses, and 
responses to external stimuli. Among these genes, BPIFA1, 
SLPI, and SCGB3A1 showed low expression levels in 
lung cancer tissue, with SCGB3A1 exhibiting significant 
differences. High expression of SCGB3A1 was associated 
with a favorable prognosis for smokers with lung cancer, 
suggesting SCGB3A1 may be one of the molecular markers 
related to the pathogenesis and prognosis of smoking-
related lung cancer.

SCGB3A1, also known as secretoglobin family 3A 
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member 1, is distributed in the extracellular region and 
highly expressed in the lungs, regulating cell growth 
(34,35). Mazumdar et al. demonstrated that SCGB3A1 
inhibits tumor growth in NSCLC by targeting hypoxia-
inducible factor 2α (HIF-2α) and inhibiting the Ak strain 
transforming (AKT) signaling pathway (36). The direct 
correlation between SCGB3A1 and HIF-2α was validated in 
approximately 70% of patients with NSCLC in Mazumdar 
et al.’s study, suggesting that SCGB3A1 functions as a 
tumor-suppressor gene (36). Additionally, Palalı et al. 
found that SCGB3A1 has a relieving protective effect 
on nasal polyposis (37). Li et al. found that SCGB3A1 
expression is correlated positively with prognosis and 
promotes antitumor immunity in LUAD, which may serve 
as immune-related therapeutic target for LUAD (38). 
In our study, smokers with lung cancer who had a high 
expression of SCGB3A1 had a favorable prognosis, possibly 
because smoking stimulates the nasal, respiratory, and lung 
tissues, upregulating SCGB3A1 expression, which inhibits 
tumor progression or deterioration. Therefore, it may be 
predicted by judging the expression level of SSCGB3A1 to 
prognostic characteristics of smoking-related lung cancer. 
SCGB3A1 is essential in the pathogenesis and prognosis 
of smoking-related lung cancer. Certainly, key molecules 
that can be used as therapeutic targets for lung cancer can 
be found through gene and molecular target research, 
immunotherapy, clinical trials and drug development in 
future research.

In light of these findings, some limitations to this 
study should also be noted. First, there was lack of clinical 
validation. Moreover, there is need for more data from 
basic studies to elucidate the regulatory mechanisms by 
which SCGB3A1 prolongs patient prognosis. In subsequent 
research, we will conduct clinical experiment to verify 
whether the differential expression of SCGB3A1 affects 
the prognosis of patients with lung cancer. We will also 
conduct basic studies to identify the regulatory mechanism 
of SCGB3A1 in prolonging the prognosis of patients.

Conclusions 

In conclusion, by exploring the pathogenic mechanisms of 
smoking-related lung cancer through bioinformatics, we 
identified the expression of SCGB3A1 as being associated 
with the clinical staging and prognosis of patients, 
supporting its potential as a biomarker for the prognosis of 
smokers with lung cancer. It may play a significant role in 
the occurrence and development of tobacco-related lung 

cancer and may represent a potential new target in lung 
cancer treatment.
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