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Abstract T cell responses to viral infections can mediate either protective immunity or
damaging immunopathology. Viral infections induce the proliferation of T cells spe-
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cific for viral antigens and cause a loss in the number of T cells with other specificities.
In immunologically naïve hosts, viruses will induce T cell responses that, dependent
on the MHC, recognize a distinct hierarchy of virus-encoded T cell epitopes. This
hierarchy can change if the host has previously encountered another pathogen that
elicited a memory pool of T cells specific to a cross-reactive epitope. This heterologous
immunity can deviate the normal immune response and result in either beneficial or
harmful effects on the host. Each host has a unique T cell repertoire caused by the ran-
dom DNA rearrangement that created it, so the specific T cells that create the epitope
hierarchy differ between individuals. This “private specificity” seems of little signifi-
cance in the T cell response of a naïve host to infection, but it is of profound importance
under conditions of heterologous immunity, where a small subset of a cross-reactive
memory pool may expand and dominate a response. Examples are given of how the
private specificities of immune responses under conditions of heterologous immunity
influence the pathogenesis of murine and human viral infections.

Abbreviations
APC Antigen-presenting cell
CDR Complementary determining region
CMV Cytomegalovirus
DC Dendritic cell
EBV Epstein–Barr virus
HCV Hepatitis C virus
HIV Human immunodeficiency virus
IFN Interferon
J Joining
LCMV Lymphocytic choriomeningitis virus
MHC Major histocompatibility antigen
NK Natural killer
PKR Protein kinase R
PV Pichinde virus
TCR T cell receptor
V Variable
VV Vaccinia virus

1
Introduction

Immunological memory is a function of expanded clones of antigen-specific
T and B cells. Its purpose is to protect a host from a second encounter with
a pathogen, to keep low-grade persistent infections under control, and, by
passive transfer of antibody, to protect a fetus or neonate from infection. The
repertoire of T and B cells that constitutes a memory population is influenced
by genetic and epigenetic factors, prior infection history, and innate response
regulatory mechanisms (Welsh et al. 2004).
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It has long been noted that an acute host response to viral infection comes
in two waves, an early innate response associated with the induction of cy-
tokines and activation of natural killer (NK) cells, dendritic cells (DCs), and
macrophages, and a later response associated with the expanded clones of
antigen-specific T and B cells (Welsh 1978; Biron 1995). A very important
innate system cytokine characteristic of viral infections is type 1 interferon
(IFN), which exerts many activities, including the direct inhibition of viral
replication in infected cells (Welsh 1984; Biron and Sen 2001). Other impor-
tant innate system cytokines are interleukin (IL)-12, IL-18, and inflammatory
cytokines IL-1, IL-6, and tumor necrosis factor (TNF)-α (Biron 1995). Studies
in the past 10 years have implicated toll receptors in the induction of many
of these cytokines (Compton et al. 2003; Haynes et al. 2001). Viral proteins,
RNA, and DNA can engage many of these receptors, as reviewed elsewhere
in this volume. This receptor engagement triggers signal transduction events
that release transcription factors such as interferon regulatory factor (IRF)-3
and nuclear factor (NF)-κB to activate cytokine genes (Jiang et al. 2004). In
addition, viral double-stranded RNA can activate protein kinase R (PKR),
whose phosphorylated products release cytokine transcription factors into
the nucleus (Biron and Sen 2001). The cytokines produced in response to
these events can skew T cell responses into the type 1 (IL-2, IFN-γ) vs type 2
(IL-4, IL-5, IL-13) cytokine direction, and, as a consequence, influence the
antibody isotype ultimately produced by the B cells. Viral infections tend to
be strong inducers of type 1 cytokine responses, perhaps because of the early
induction of IL-12 and IL-18, which themselves induce IFN-γ from NK cells
and T cells.

The most important cellular interaction at the advent of a new immune
response is the engagement of a naïve T cell with an antigen-presenting
DC. DCs exposed to antigen in the periphery can become activated due
to toll receptor engagement or to other “danger” signals, which induce the
expression of co-stimulatory proteins such as CD80 (B7.1) and CD86 (B7.2)
and of the CCR7 chemokine receptor, which directs their migration into the
lymph nodes, where they encounter naïve antigen-specific T cells (Sallusto
et al. 2000). CD80 and CD86 on the DCs engage CD28 on the T cells and
induce CD154 (CD40L) expression on the T cells and the release of growth
factors such as IL-2 (Harris and Ronchese 1999). This sets up a programmed
proliferation of the T cells (Kaech and Ahmed 2001; Mercado et al. 2000; van
Stipdonk et al. 2001), which may divide as many as 15 times before their
peak in acute infection (Selin et al. 1994; Blattman et al. 2002; Welsh and
Selin 2002). The CD4+ T cells through CD40L/CD40 interactions can provide
help to B cells, which also proliferate (Liu et al. 1997). After clearance of viral
antigens, the T cell response contracts by apoptosis (Razvi et al. 1995a) and
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by dissemination into peripheral tissue (Marshall et al. 2001; Masopust et al.
2001; Reinhardt et al. 2001; Wiley et al. 2001), leaving the host with a stable
population of memory T cells, which slowly divide but do not increase in
number (Razvi et al. 1995b; Zimmermann et al. 1996). The B cell response is
more complex, as some develop into long-lasting antibody-secreting plasma
cells, and some become memory B cells, which do not secrete antibody but
which can rapidly proliferate and produce antibody on antigen re-challenge
(Han et al. 1997; Lin et al. 2003). Developing B cells triggered by viral antigens
enter germinal centers and undergo somatic mutations and selection for
higher affinity antibody responses (Han et al. 1997; Muramatsu et al. 2000).
The high-affinity antibodies are more effective at the neutralization of viruses,
though some viruses seem to induce high-affinity responses without affinity
maturation (Clarke et al. 1990; Roost et al. 1995). This is likely because of
germ line immunoglobulin sequences that encode antibody that is already
high affinity.

This reviewwill focuson the repertoireof cells constitutingaTcellmemory
pool, how this repertoire is generated, how it is modulated by innate immune
system cytokines, and how it is modulated in response to other infections.
In particular, it will describe how properties of an immune system unique to
an individual can alter the pathogenesis of infections. A more comprehensive
though less focused review on immunological memory to viral infections can
be found elsewhere (Welsh et al. 2004).

2
Diversity of Memory T Cell Repertoires

2.1
Immunodominance and TCR Repertoire Diversity

Generation of T cell repertoires in the immunologically naïve host is initially
a stochastic process dependent on the randomness of DNA recombination
events. There are about 1015 possibilities for the generation of T cell receptors
(TCRs) with paired α- and β-TCR chains (Casrouge et al. 2000; Nikolich-
Zugich et al. 2004). Since it is impossible to accommodate all possibilities
within one body, only a subset of this repertoire is generated and present in
any given host. The initial randomly generated repertoire is trimmed down
as it passes through the positive and negative selection phases in the thymus.
This has been elegantly shown in a transgenic mouse where a single β-TCR
transgene is expressed along with an α-TCR artificial rearrangement substrate
transgene that must undergo a recombination event to express an α-TCR that



The Privacy of T Cell Memory to Viruses 121

would pair with the β-TCR and be expressed on a mature T cell. This approach,
which provided a manageable number of α-TCR gene complementary deter-
mining regions 3 (CDR3) to sequence, showed a very high clonal diversity
in CD4+CD8+ thymocytes (with few duplicates), which became less diverse
in single positive thymocytes, with some sequences overrepresented 5–40
times, and even less diverse in peripheral T cells, perhaps as a consequence
of homeostatic proliferation of some T cells but not others (Correia-Neves
et al. 2001). In addition to the role of CDR3 in repertoire selection, the other
TCR variable (V) regions, CDR1 and CDR2, may be involved in narrowing
the repertoire due to their differences of affinity in binding to specific class I
and class II MHC molecules. The consequence of this is an uneven Vα and
Vβ family distribution in the pre-immune TCR repertoires in the peripheral
organs of mice or humans expressing different class I or II MHC antigens
(Battaglia and Gorski 2002; Gulwani-Akolkar et al. 1991). Despite all of these
trimming events, however, the naïve TCR repertoire in the immunologically
naïve host remains quite diverse.

CD8 T cells recognize processed 8–9 amino acid viral peptides presented
by class I MHC molecules (Townsend et al. 1986). For the most part these
peptides are loaded into newly synthesized class I molecules in virus-infected
cells, though there are examples of the “cross-presentation” of exogenous viral
peptides on uninfected antigen-presenting cells (APC) (Sigal et al. 1999). Al-
though hundreds of peptides in any viral infection have appropriate sequences
to bind class I MHC, usually only a small number stimulate “immunodom-
inant” T cell responses. What causes immunodominance is a function of
(1) the number of T cells with receptors that recognize the peptide-MHC
combination, (2) the expression level of the peptide and its affinity for bind-
ing the MHC, (3) how early during virus infection the epitope is expressed
(earlier is better), and (4) whether there is “immunodomination” by T cells of
other specificities (Yewdell and Bennink 1999). CD4 T cells recognize longer,
usually 12–15 amino acid, viral peptides expressed by either endogenously
or exogenously loaded class II MHC molecules. Similar issues are involved in
CD4 T cell immunodominance as with CD8 T cells (Wang et al. 1992).

2.2
Public Vs Private Specificities

Despite the events that narrow the TCR repertoire, genetically identical in-
dividuals are still bequeathed with very different TCR repertoires because
of the stochastic processes during T cell development. In the mouse, where
it has been calculated that there are fewer than 107 T cell clones per host,
there is substantial variability of the TCR repertoire from host to host (Cas-
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rouge et al. 2000). Humans have about 3,000 times the body size of a mouse
and will have many more clones of T cells, but this number will still be
orders of magnitude below the theoretical possibility (Arstila et al. 1999).
The repertoire selected in genetically identical environments, while being
distinct between individuals, has similar potential specificities. When ge-
netically identical, immunologically naïve mice are infected with a virus
such as lymphocytic choriomeningitis virus (LCMV), they generate quanti-
tatively similar responses to immunodominant epitopes, and their responses
to these epitopes usually have similar hierarchies among individual mice.
For example, most C57BL/6 mice will generate a range in T cell frequen-
cies directed at a reproducible hierarchy of peptide epitopes, in the order
of NP396–404 > GP34–41 > GP33–41 > GP276–286 > NP205–212 > GP92–101 (Kim et al.
2005; Fuller et al. 2004). This is a common “public specificity” (Cibotti et al.
1994) that can be predicted ahead of time in these genetically identical mice.
Examination of TCR usage between mice will also show preference patterns
for TCR V domains per epitope (Blattman et al. 2000). This is another man-
ifestation of public specificity influenced in part by the importance of CDR1
and CDR2 regions in generating the pre-immune repertoire (Battaglia and
Gorski 2002; Gulwani-Akolkar et al. 1991).

Sequencing of the CDR3 shows, however, that different TCRs are used by
different hosts for similar types of antigen recognition. This is referred to
as the “private specificity” of TCR repertoires (Cibotti et al. 1994; Maryanski
et al. 2001). The CDR3 of antigen-specific TCR pools from different mice will
have some similar CDR3 amino acids which establish a recognition “motif,”
but many amino acids will be unshared. These private T cell responses are
probably mostly accounted for by the diversity of T cells that emigrate from
the thymus. In addition, there may be stochastic events involved with chance
encounters between T cells and APC during early stages of infection. One
might think that the T cell that is the first to encounter its antigen may
become a dominant clone (Butz and Bevan 1998), whereas a T cell that first
encounters antigen 2 days later may develop into a subdominant clone or
else may never have a chance due to “immunodomination” by other clones
competing for domains on APC.

2.3
Repertoire Selection During Infection

Events that shape the antigen-specific TCR repertoire occur very early in
infection. T cell responses to Listeria monocytogenes epitopes occur rather
normally if mice are treated with antibiotics 1 day after infection to prevent
further antigen synthesis (Mercado et al. 2000). T cells that engage APC bind
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to them for hours, but after disengagement the APC tend to die off, as has been
elegantly visualized by in vivo videomicroscopy (Huang et al. 2004) and with
APC infected with green fluorescent protein (GFP)-expressing recombinant
viruses (Norbury et al. 2002). A question is how efficient this process is
for stimulating potentially reactive T cells. This has been studied in mice
with implanted 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE)-
labeled transgenic T cells, where LCMV or L. monocytogenes infections were
shown to easily stimulate programmed expansions of nearly all of the cells
(Mercado et al. 2000; Kaech and Ahmed 2001; van Stipdonk et al. 2001).
These experiments would suggest that the stimulation of T cells, at least
those of high affinity, can be quite efficient, and this probably means that
the private specificity of the TCR repertoire is more a function of the pool of
thymic emigrants than it is a function of inefficient random encounters with
the APC. Nevertheless, limited titration of immunogen resulted in situations
where only a subpopulation of the transgenic T cells responded (Kaech and
Ahmed 2001). One should keep in mind that we are talking about systemic
infections in mice, and the dynamics might be different with more limited
localized infections or in humans. Due to their much larger thymic output,
two MHC-matched humans may be 3,000 times more likely to have similar
T cell clones than two mice and may be less likely to stimulate all of their
antigen-specific clones during an infection. Perhaps in that case, stochasticity
due to random encounters of T cells with APC may play a somewhat greater
role in private specificities of T cell responses between humans.

The private specificity phenomenon complicates TCR studies between in-
dividuals but allows for longitudinal studies within an individual. Studies
using CDR3 “spectratype” or “immunoscope” techniques, PCR-based tech-
niques which analyze receptor diversity based on the CDR3 lengths of the
expressed α and β TCRs derived from particular V families (Pannetier et al.
1993; Gorski et al. 1994), along with studies based on sequencing of the CDR3
region, all showed that genetically identicalC57BL/6mice infectedwithLCMV
generated distinct TCR repertoires, as analyzed either by total leukocytes, to-
tal CD8 T cells, total CD4 T cells, or MHC tetramer or MHC-dimer defined
and sorted antigen-specific T cells (Lin and Welsh 1998; Blattman et al. 2000;
Wang et al. 2003). Sequential sampling of peripheral blood showed that the
repertoire during an acute infection evolved until antigen was mostly cleared
at about day 7 post-infection, after which it became relatively fixed as the
T cell response contracted and entered the memory pool (Lin and Welsh 1998;
Xiong et al. 2001). Similar spectratypes, with some minor variations, were
noted when the memory pool was re-challenged with antigen.
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2.4
The Complexity of Virus-Specific TCR Repertoires

Analyses of the TCR repertoires specific to viral peptides have been done in
a number of systems, with perhaps the most extensive analyses being with
human T cells recognizing an HLA-A2-restricted influenza M158–66 peptide
(Lehner et al. 1995; Moss et al. 1991; Naumov et al. 1998). This is an invariant
peptide present in all 35 influenza A virus strains that have infected humans
since 1918 (Park et al. 1997). Over their lifetimes, people encounter many dif-
ferent influenza infections, which repeatedly should boost the response to the
M158–66 peptide. During these repeated exposures the TCR repertoire changes.
In young children only a small component of the repertoire is associated with
Vβ17 T cells, but by age 15 Vβ17 T cells dominate the response (Lawson et al.
2001b). A detailed analysis of limiting dilution clones from 5 HLA-A2.1+ adult
donors showed that 85% belonged to the Vβ17 family, and a CDR3 sequencing
analysis of 38 Vβ17+ long-term clones revealed that 74% had a highly con-
served XRSX motif (Lehner et al. 1995). Other M158–66-specific Vβ families
(23, 13.6, 8.1) were found at lower frequencies and seemed of lower affinity,
as they required high concentrations of epitope for cytotoxicity (Lawson et al.
2001a). This reflects a narrowing of a TCR repertoire that can occur on re-
peated exposure to antigen, and one might expect that this repeated exposure
would select for a small number of dominant clones. However, a more exten-
sive analysis of the full range of M158–66-restricted clones within individuals
revealed a repertoire that is still quite diverse (Naumov et al. 1998, 2003).
This showed that literally hundreds of clones constitute the M158–66-specific
repertoire, but with no overwhelmingly dominant clones.

Molecular analyses of the Vβ 17 receptor repertoire from tetramer-iden-
tified M158–66-specific T cells or from M158–66-stimulated T cell lines revealed
a power-law-like distribution in clonal composition, where a small number
of clones were present at high frequency and larger numbers of clones were
present at everdecreasing frequencies.Why thisdistributionoccurs isunclear,
though a power law distribution of the clonal ranks and rank frequencies can
be mathematically generated simply by taking virtual clones of comparable
affinity and allowing for proliferation after chance encounter with antigen (E.
N. Naumova, in preparation). This might suggest that there are many clones
of comparable affinities in the highly evolved M158–66-specific T cell response,
but this is not definitive, as power law distributions can be generated on the
basis of other paradigms. Similar power law distributions have been noted for
the mouse repertoire specific to a mouse hepatitis virus epitope (Pewe et al.
2004).Mathematical analyseshave also shown that thedistributionofM158–66-
specific TCR β regions in humans can be described in terms of fractals (Nau-
mov et al. 2003, 2006). The reason for this is not clear, though influenza virus
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hemagglutinin-specific B cell repertoires based on immunoglobulin struc-
tural diversity can similarly be mathematically described in terms of fractals
(Burgos 1996). All of these analyses imply a repertoire that is quite complex.

Despite the high numbers of antigen-specific clones, the influenza M158–66-
specific response conforms to distinct structural features, even when exam-
ined between different healthy individuals (Fig. 1; Clute et al. 2005). Within
the very dominant antigen-specific Vβ17 population lies a hierarchy of joining
region (J)β usage, with Jβ2.7 > Jβ2.3 > Jβ2.1 (Fig. 1). This percentage distribu-
tion of Jβ usage is remarkably similar between individuals and within samples
from the same individual over a number of years. The amino acid sequences
of the CDR3 within most of the Jβ-defined subpopulations share the IRSS
amino acid sequence, with amino acid substitutions frequently occurring in
the first and fourth positions. Thus, the specific clones of T cells are different
between individuals, but the structure of the T cell repertoire is very similar,
and apparently obeying the same rules. The similarity between individuals is
likely due to the structural properties of HLA-A2.1-positively selected T cells
that emigrate from the human thymus.

A major question is whether all T cell repertoires distribute themselves
in patterns similar to or different from the influenza M158–66-specific reper-
toire, but insufficient analyses have been made to clearly answer this question.
What is known is that the T cell repertoire can have different levels of complex-
ity. During viral infections, T cell responses are sometimes directed against
a small number of immunodominant epitopes, but in other cases directed
against a large number of epitopes. The CD8 T cell response to the LCMV
infection in the C57BL/6 mouse is directed against at least seven epitopes,
whereas the vesicular stomatitis virus infection and Sendai virus infections
in mice are each directed mostly at one epitope (Oldstone 1991). An epitope-
specific response may involve several Vβ families, such as Vβ7, Vβ8, Vβ13,
and others for the HLA-A2-restricted HTLV-1 Tax11–19 epitope (Lim et al.
2000b), and Vβ2, Vβ4, Vβ16, and Vβ22 for the HLA-A2-restricted Epstein–
Barr virus (EBV) immunodominant epitope BMLF1280–288 epitope (Annels
et al. 2000; Lim et al. 2000a), or there may be a predilection for the use of one
Vβ family, such as the dominance seen for Vβ17 directed against the M158–66

epitope (Lehner et al. 1995). Within a Vβ family the repertoire may be com-
posed of literally hundreds of clones, such as that seen with influenza M158–66

(Naumov et al. 2003, 2006), or it may be “oligoclonal,” indicating a predomi-
nance of a smaller number of clones. Examples of oligoclonal responses have
been reported, particularly in persistent viral infections, such as with human
immunodeficiency virus (HIV), hepatitis C virus (HCV), cytomegalovirus
(CMV), and EBV (Lim et al. 2000a; Annels et al. 2000; Meyer-Olson et al. 2004;
Wilson et al. 1998; Manfras et al. 2004; Pantaleo et al. 1994; Khan et al. 2002).
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Fig.1 CD8Tcells isolated fromtwohealthydonors,withpreviousexposure toEpstein–
Barr virus (EBV) and influenza A virus, and from two patients, presenting with
infectious mononucleosis (IM) during an acute EBV infection, were cultured for 3–
4 weeks in the presence of 1 µM M158–66 peptide-pulsed T2 cells transfected with
and expressing HLA-A2.1. Following RNA isolation and cDNA synthesis of those
M1-specific T cell lines, the CDR3 regions of Vβ17 clones were sequenced. Each Vβ
clone was defined by its unique nucleotide sequence, and the pie charts illustrate the
percentage of unique clones using each Jβ family (A 88 clones out of 152 sequences;
B 20 clones out of 104 sequences; C 20 clones out of 31 sequences; D 8 clones out of 17
sequences). Based on Clute et al. (2005)
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Narrowing of the diversity of TCR repertoires for a viral epitope may occur
by evolution for the most perfect fit during persistent virus infections, such as
those with HIV, HCV, CMV, and EBV, or with repeated antigenic challenges,
such as with influenza virus. A repertoire could theoretically also be narrowed
because of clonal exhaustion and activation-induced cell death that may occur
under conditions of antigen excess (Zhou et al. 2002). The repertoire may be
restricted if the host is partially tolerant to the epitope. Transgenic expression
of LCMV proteins can cause complete or partial tolerance to the epitope
when the host is later challenged with virus (von Herrath et al. 1994). The
repertoire may also be restricted for structural reasons. The TCR repertoire
generated in response to the mouse influenza virus epitope PA224–233 tends to
be far more diverse than to the influenza epitope NP366–374. Crystal structures
showed that the PA224–233 epitope had an arginine in position four sticking out
of the MHC groove, whereas the NP366–374 epitope was more buried into the
MHC (Turner et al. 2005). “Flattening” the PA224–233 epitope by way of alanine
substitutions resulted inamore restricted repertoire, leading to the suggestion
that epitopes that structurally blend into the MHC may induce a narrower
repertoire. Further examples are needed to confirm this hypothesis.

There are many examples of T cell cross-reactive peptides encoded by dif-
ferent viruses (Welsh et al. 2004), and another major cause of TCR repertoire
restriction could be due to cross-reactive T cell responses. Here, a rather nar-
row subset of an epitope-specific T cell memory pool is selectively stimulated
to proliferate on exposure to a cross-reactive pathogen (Haanan et al. 1999).
On infection with a heterologous virus, these high-frequency, but not very
diverse set of clones, may immunodominate an emerging T cell response from
naïve precursors and cause a further restriction of the repertoire. This will be
discussed in Sect. 6.

3
Distribution of Repertoire in Different Tissues

T cells can freely circulate throughout the body and can migrate into periph-
eral tissues. Probably because of different levels of viral antigen expression in
different tissues, T cells of some specificities may be at relatively higher fre-
quencies thanTcellsofother specificities (Wangetal. 2003).Tissue-dependent
differences in the TCR repertoire of antigen-specific T cells, at least to the de-
gree in which they have been studied, are minor at best (Wang et al. 2003;
Turner et al. 2003). Perhaps of greater importance are the biological properties
of these antigen-specific T cells. T cells in lymphoid organs tend to proliferate
faster, express higher levels of Fas (CD95) and Fas L, and are more prone to
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apoptosis than T cells in, for example, lungs, adipose tissue, or peritoneal cav-
ity (Wang et al. 2003). Lung T cells appear to be protected from apoptosis by
signals derived from the engagement of very late antigen (VLA)-1 on T cells
with collagen in the lung parenchyma (Ray et al. 2004). T cells from peripheral
organs also express more IL-7 receptor α, or CD127 (Wang et al. 2004). These
tissue differences can occur independently of the TCRs, as transgenic T cells
distributed into these areas have comparable phenotypic differences (Wang
et al. 2003, 2004). Some gene array data have suggested that T cells respond-
ing to antigen in peripheral tissues may have enhanced expression of genes
regulating cytotoxic and cytokine effector functions (Marshall et al. 2005).

Nevertheless, T cells of different specificities have different “personalities,”
in that they may have quantitative differences in their expression of apop-
totic properties, such as mitochondrial electron transport potential, annexin
V-reactive phosphatidyl serine, an early indication of apoptosis, Fas and Fas
L, and the expression of IL-7R (Grayson et al. 2003; Wang et al. 2004). The
reason for this remains unclear, as these personality differences are found dur-
ing acute infection, the resting memory state, and the recall response (Wang
et al. 2004). They occur under conditions of various forms of immunization—
leading to the suggestion that they may relate to the inherent properties of the
epitope—that are perhaps influenced by the genetic background of the host,
either in selecting the repertoire in the first place or else in interacting with
T cells in the periphery.

After the contraction phase of the immune response, memory T cells
can be found in lymphoid organs, including bone marrow, and in peripheral
tissues. There are some tissue-dependent phenotypic differences, in that “cen-
tral memory” cells, which are CCR7high CD62Lhigh, are preferentially found
in lymphoid organs and bone marrow and gradually undergo homeostatic
division (Wherry et al. 2003; Sallusto et al. 2000; Razvi et al. 1995b; Tough
and Sprent 1994). CCR7 is the chemokine receptor that directs lymphocytes
into lymphoid tissue (Sallusto et al. 2000). “Effector memory” cells, which are
CCR7low, CD62Llow, tend to be more in peripheral tissues and are thought to
be less proliferative and have a higher level of effector function (Sallusto et al.
2000). Adoptive transfer studies have indicated that these populations can be
somewhat interchangeable (Wherry et al. 2003).

4
Homeostasis of Memory T Cells

At any given moment, a small subpopulation of memory CD8 T cells is under-
going division and is cytolytically active (Razvi et al. 1995b; Selin and Welsh
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1997; Zimmermann et al. 1996). In vivo studies using bromodeoxyuridine to
label dividing cells indicate that after a few weeks most of the memory T cells
have divided at least once, but they do not increase in number (Zimmermann
et al. 1996; Selin et al. 1996). The limits in their number could be imposed by
the available space in the lymphoid organs. Alternatively, with each division
there could be one surviving and one dying daughter cell. This steady state
homeostatic division appears to be mediated by IL-15 and IL-7 (Prlic et al.
2002; Tan et al. 2002; Kieper et al. 2002). CD8 T cell memory tends to wane
in IL-15 knockout (KO) mice (Becker et al. 2002) and is poorly generated in
the first place in mice lacking IL-7 (Bradley et al. 2005). Of note is that cells
from the acute infection that survive into the memory state are those with
the highest expression of IL-7 receptors (Kaech et al. 2003). Recent work has
indicated that there may be a higher turnover of memory CD8 T cells in the
bone marrow than in other organs (Becker et al. 2005).

So far as anyone can tell, the steady state turnover of CD8 T cells in a replete
and unchallenged immune system is generally across-the-board, affecting all
CD44highCD8 T cells somewhat equally, but in a non-synchronous manner.
Though not extensively studied, there is little evidence for TCR repertoire
changes. There appears to be quite a different dynamic if a host is rendered
lymphopenic and if the immune system needs to replenish itself, as some of
the T cells undergo several cycles of division and appear to compete with
each other. In fact, bona fide virus-specific memory cells do relatively poorly
in this competition, and it is thought that T cells that are either self-reactive
or else reactive with foreign environmental antigens may proliferate the best
(Peacock et al. 2003). This is clearly different from a typical foreign antigen-
stimulated response, which is driven by IL-2, and where there is a transient
enlargement of the lymph nodes and a considerable expansion and then
apoptosis of the T cells. Instead, the proliferation is more IL-7 and IL-15-
dependent, and it occurs without a lymph node expansion phase or a discrete
apoptotic deletion phase. One is left with many CD44high CD8 cells that are
not true memory cells, but instead are something else that is derived from
a CD44low naïve cell (Kieper and Jameson 1999) but is neither a naïve cell nor
a bona fide memory cell.

The most significant point about the above findings in the context of this re-
view is thedepletionofbonafidevirus-specificmemorycells under conditions
of homeostatic proliferation in the lymphopenic host. CSFE-labeled LCMV-
immune spleen leukocytes were transferred into lymphopenic environments
caused by genetics (severe combined immunodeficient or T cell-deficient
mice), irradiation, or toll receptor stimulation by the type 1 IFN-inducer poly
I:C, and the proliferation of the LCMV antigen-specific memory cell popula-
tion was monitored in comparison with the rest of the donor cells. In each
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case there was substantially less proliferation of the bona fide memory cells; in
some cases their frequency within the donor population dropped from about
20% to as little as 3% after 2 weeks (Peacock et al. 2003). Irradiation studies
were particularly intriguing. Because of their enhanced expression of Bcl-2
(Grayson et al. 2000), bona fide memory cells were initially more resistant
to irradiation than the rest of the T cell population and were enriched in
number (Grayson et al. 2002), but with the passage of time even they were
significantly diluted out (Peacock et al. 2003). A second interesting point is
that lymphopenia and a subsequent loss of bona fide memory T cells occurs
with toll-like receptor (TLR) agonists, and many viral infections can stimulate
TLR and simulate the effects of their agonists (McNally et al. 2001; Jiang et al.
2003b; Kim and Welsh 2004; Peacock et al. 2003). Under these conditions, the
TCR repertoire of the host most certainly changes, due to the failure of bona
fide memory cells to recover from the deletion (Peacock et al. 2003).

5
Virus-Induced Lymphopenia and Loss of Memory T Cells

Although new thymic emigrants continually cause repertoire shifts in the
naïve T cell compartment, the memory cell repertoire remains relatively con-
stant, providing that there are no antigenic challenges or events that cause
lymphopenia. When these antigenic challenges occur there are substantial
reductions and alterations in memory T cell populations (Selin et al. 1996,
1999; Brehm et al. 2002). In general, an infection with an unrelated virus will
induce the formation of new memory cells specific to the second virus and will
delete the frequencies of memory cells specific to the previously encountered
virus (Brehm et al. 2002). This is a permanent change that remains for the
lifetime of the mouse, though it has never been demonstrated or sufficiently
studied in the human. We have proposed two models to explain this loss in
memory T cell frequency: the passive attrition model, whereby old memory
cells are lost simply by their competition with newly formed memory cells
for survival niches in the immune system after immune response silencing,
and the active attrition model, whereby there is a directed apoptosis of the
pre-existing memory cells (Selin and Welsh 2004). Most of our data support
the active attrition model (Kim and Welsh 2004).

Theearlyphasesofmanyacutehumanandexperimental animalviral infec-
tions is characterized by a profound lymphopenia, occurring throughout the
body’s organs, and particularly affecting the memory-phenotype (CD44high)
CD8 T cell population (McNally et al. 2001). These T cells appear to be under-
goingapoptosis, as reflectedby their reactivitywith annexinV, their activation
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of caspases, and their staining with TdT-mediated dUTP-X nick end labeling
(TUNEL) assay (McNally et al. 2001; Jiang et al. 2003b). This apoptosis seems
at least inpart due to type1 IFN, as it correlateswith the IFNresponse anddoes
not occur in type 1 IFN receptor-deficient mice (McNally et al. 2001). There
also can be concomitant severe effects of type 1 IFN on DC, preventing their
expansion and development (Hahm et al. 2005). The significance of this lym-
phopenia remains unresolved. Clearly, extremely severe lymphopenia may be
an indicator of an overwhelming infection that may lead to death of the host.
A more moderate lymphopenia does not seem to impair the development of
the T cell response. Given that pathogens which are some of the strongest in-
ducers of lymphopenia stimulate some of the strongest CD8 T cell responses,
it is possible that, by making room in the immune system, the lymphopenia
serves to stimulate the new T cell response. Creation of lymphopenic envi-
ronments by irradiation or cytotoxic drug treatment can enhance immune
responses to antigens (Oehen and Brduscha-Riem 1999; Pfizenmaier et al.
1977), possibly either by making space or reducing the number of regulatory
T cells. It is noteworthy that infections cause less lymphopenia in older mice
(Jiang et al. 2003a), and influenza virus and LCMV inducer weaker CD8 T cell
responses in older mice (Po et al. 2002; Kapasi et al. 2002).

A second function of the lymphopenia may be to kill off some memory
cells to allow more naïve T cells to participate in a new immune response.
When a host immune to one pathogen is infected with a second pathogen, any
memory T cells cross-reactive with the second virus will dominate the new
immune response, by virtue of their higher starting frequency (Klenerman
and Zinkernagel 1998; Haanan et al. 1999; Brehm et al. 2002). Reducing the
numbers of these memory cells would result in less immunodomination and
allow for more naïve T cells to participate in the response (Bahl et al. 2006).
Thus, lymphopeniamaycreate conditionsallowing foramorediverse immune
response to a pathogen, and studies have linked better prognosis with more
diverse responses (Meyer-Olson et al. 2004; Borrow et al. 1997).

The third important effect of lymphopenia is the ultimate loss of pre-
existing memory. Mouse kinetic studies have shown that the memory T cells
depleted during the early lymphopenia stage of infection never recover to
their original frequencies as the infection progresses (Kim and Welsh 2004).
This argues on behalf of the active deletion model of memory cell loss during
infections.
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6
Heterologous Immunity and Memory TCR Repertoire Shift

Experimental viral immunologists go to great lengths to assure themselves
that their animal colonies are free of endogenous pathogens in order to
design reproducible experiments. Results from those experiments are then
thought to provide the basis for human immune responses to viruses. In-
deed sometimes they are, but humans are not immunologically naïve, and
they often have memory T cells than can cross-react with and respond to
a new infectious agent. Cross-reactivity is a common property of the TCRs.
Crystal structural studies reveal the general principles of TCR engagement
with peptide-presenting MHC molecules (Ding et al. 1999; Kjer-Nielsen et al.
2003; Rudolph and Wilson 2002; Reiser et al. 2002, 2003), but thermody-
namic studies of TCR peptide–MHC interactions have provided new insights
into the kinetics of T cell recognition (Boniface et al. 1999; Borg et al. 2005;
Willcox et al. 1999; Wu et al. 2002). Using surface plasmon resonance and
calorimetry assays to define energy consumption during TCR binding to
peptide-MHC, several groups have reported that the TCR undergoes signifi-
cant conformational changes for proper accommodation to cognate antigen.
These conformational modifications involve the TCR CDR3, as shown for hu-
man T cells binding flu-M158–66/HLA-A2.1 and EBV-EBNA3 339–347/HLA-B8
epitopes (Willcox et al. 1999; Borg et al. 2005) and mouse T cells binding
a cytochrome C epitope MCC88–103/H2-Ek (Boniface et al. 1999). An “induced
fit” model has been proposed, where αβ-TCRs with low conformational com-
plementarity to peptide-MHC initially contact the MHC molecule using the
more rigid CDR1 and CDR2 loops and then readjust the flexible CDR3 loops
for particular shapes and charges created by the peptide-MHC complex (Wu
et al. 2002). This wobbling effect of the CDR3 may enable it to accommodate
structurally diverse peptides.

T cell cross-reactivity can be seen between closely related viruses, such as
different strains of influenza virus (Haanan et al. 1999; Effros et al. 1977; Boon
et al. 2004) or dengue virus (Mongkolsapaya et al. 2003; Zivny et al. 1999),
and between different members of the same virus group, such as hantaviruses
(Maeda et al. 2004), arenaviruses (Brehm et al. 2002), and flaviviruses (Spauld-
ing et al. 1999). Cross-reactivity between evolutionarily conserved sites within
virus groups may not be surprising, but examples of cross-reactivity between
completely unrelated viruses such as LCMV and vaccinia virus (VV) (Kim
et al. 2005), influenza virus and HCV (Wedemeyer et al. 2001), influenza virus
and EBV (Welsh et al. 2004), influenza virus and HIV (Acierno et al. 2003),
and human papillomavirus and coronavirus (Nilges et al. 2003), have now
been shown. When cross-reactive immune responses are present, they can
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Table 1 Potential pathological aspects of heterologous immunity

1. Alterations in immunodominance and amplification of an ineffective response

a. Deviation of a response toward non-protective epitopes

– Weakly expressed epitopes

– Epitopes expressed late in infection

– Epitopes cross-presented on uninfected cells

b. Deviation toward a low-affinity response

Less effective at cytotoxicity and viral clearance

Less likely to have a full complement of cytokine production

2. Cytokine deviation—replacement of a type 1 with a type 2 cytokine response

a. Reduced clearance of virus

b. Altered immunopathology (e.g., eosinophilia)

3. TCR repertoire narrowing

a. Increased probability of T cell-escape variants

alter the pathogenesis of infection and either inhibit or enhance the replica-
tion of a newly encountered heterologous virus (Selin et al. 1998; Chen et al.
2001, 2003; Ostler et al. 2003). This alteration in T cell dynamics can have
considerable pathogenic consequences (Table 1).

6.1
Heterologous Immunity Between LCMV and VV

The most explored experimental model of heterologous immunity has been
between LCMV and VV in the mouse (Selin et al. 1998; Yang et al. 1985;
Chen et al. 2001). Immunity to LCMV can provide resistance to an otherwise
lethal VV infection, and cause a substantial 10- to 100-fold lowering of vi-
ral titers early during infection. However, there often are marked changes in
immunopathology. On intraperitoneal challenge, VV-infected mice develop
panniculitis, presenting as severe inflammation and fatty necrosis of visceral
fat pads. In humans, panniculitis can occur in Weber–Christian disease but
more commonly presents as erythema nodosum, a disease of unknown etiol-
ogy sometimes occurring after viral infections or vaccinations and involving
painful lesions on the shins (Di Giusto and Bernhard 1986; Bolognia and
Braverman 1992). On intranasal challenge, VV-infected mice may develop
a blockage of the airways with cells and fibroid tissue in a pathology known as
bronchiolitis obliterans, another human condition of unknown etiology oc-
curring in association with viral infections or during lung transplant rejection
(Schlesinger et al. 1998). In thesemodelsboth theprotective immunity, i.e., en-
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hanced clearance of virus, and the immunopathology are mediated by T cells
producing IFN-γ (Selin et al. 1998; Chen et al. 2001). Altered pathogenesis of
VVinfectionalsooccurs inmicepreviouslyexposed to influenzavirus,murine
cytomegalovirus, and Pichinde virus (PV) (Selin et al. 1998; Chen et al. 2003).

6.1.1
Lack of Reciprocity

The LCMV+VV model shows that heterologous immunity is not necessar-
ily reciprocal. LCMV protects against VV but VV does not protect against
LCMV (Selin et al. 1998). Also, VV elicits the proliferation of subpopulations
of a CFSE-labeled adoptively transferred LCMV-specific memory cell popula-
tion,butLCMVstimulates very littleproliferationof aVV-immunepopulation
(Kim et al. 2002). A possible explanation for this lack of reciprocity is that
VV, encoding over 200 proteins and perhaps thousands of potential epitopes,
is probably much more likely to encode an epitope that would activate some
cells from an LCMV-immune T cell population, whereas LCMV, which en-
codes only four proteins and a far more limited number of epitopes, may be
less likely to encounter a VV-immune T cell to stimulate. This may in fact
be why so many large DNA viruses have evolved to encode gene products
that interfere with class I antigen presentation (Ploegh 1998). Other factors
may also be involved. For instance, VV might be a better inducer of IL-12
than LCMV, and this might augment the ability of any cross-reactive T cells
to produce IFN-γ (Chen et al. 2001).

6.1.2
Private Specificity of Heterologous Immunity Between LCMV and VV

Studies on the heterologous immunity between LCMV and VV can be
flawed by high variability among the VV-challenged mice in regards to

�
Fig. 2 Private specificities of the VV-induced T cell response in LCMV-immune F1
(TCRα KO×B6) mice. Top row: Hierarchy of CD8 T cell responses to LCMV-encoded
and a VV-encoded (a11r198–205) epitope in the peritoneal cavity (PEC) of LCMV-
immune mice, as shown by a peptide-induced intracellular IFN-γ assay. The hierarchy
is very similar among individual LCMV-immune mice (Kim et al. 2005). Bottom four
rows: CD8 T cell responses in four LCMV-immune mice challenged with VV for
6 days intraperitoneally. This shows the differences in the specificities of the LCMV-
immune T cells amplified in the individual mice. It also shows that the response to
a cross-reactive VV-encoded epitope (a11r198–205) is amplified in two of the four mice,
indicating that private specificities can dictate immunodominance of T cells specific to
the challenge virus. The use of the F1 (TCRα KO×B6) mice ensures that cross-reactivity
is not mediated by T cells bearing two α-TCRs
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immunopathology and immune response (Chen et al. 2001). In a study
to predict which LCMV-encoded epitopes might be driving cross-reactive
responses to VV, substantial variability was noted when individual mice
were tested. For instance, in 50% of mice the VV infection stimulated strong
expansion of T cells specific to the LCMV NP205–212 epitope, in 23% of mice
they were specific to either the GP33 or 34 overlapping epitopes, and in 15%
of mice specific to the GP118–125 epitope. Often there was expansion of T cells
specific to only one LCMV epitope, but sometimes T cells specific to more
than one epitope were expanded (Kim et al. 2005). In other cases there was
no expansion at all.

Figure 2 shows the strong but very different specificities of expansions of
LCMV-specific memory T cells in individual mice challenged with VV. This
experiment was also performed with F1 progeny of wildtype C57BL/6 mice
crossed with α-TCR-deficient mice, to rule out the presence of two α-TCRs as
accounting for cross-reactivity.

The question was whether these variations in expansion represent random
stochastic events in an LCMV-immune mouse challenged with VV, where
only a limited number of the cross-reactive T cells actually engage antigen, or
whether each mouse had a unique T cell repertoire in regards to its potential
cross-reactivity with VV. To address this point, CFSE-labeled splenocytes
from different donor LCMV-immune mice were adoptively transferred into
three recipients, which were each then challenged with VV. The pattern of
epitope-specific T cell expansion was virtually identical among the recipients
of a single donor, but different in recipients from different donors. This
showed that these variations in T cell responses were reflections of the private
specificities of the individual immune host (Kim et al. 2005).

6.1.3
Matrix of Cross-Reactivity Between LCMV and VV

How then could this cross-reactivity pattern between LCMV and VV be
explained? In a quest for cross-reactive epitopes based on searching for
VV sequence homology with the LCMV NP205–212 epitope, an epitope (VV
a11r198–205) was found that cross-reacted with three LCMV epitopes: NP205–212,
GP34–41, and GP118–125 (which, incidentally, showed no cross-reactivity with
each other) (Kim et al. 2005; Cornberg et al. 2006). VV a11r198–205 also cross-
reactedwithaPVepitope (PVNP205–212) andan immunodominantVVepitope
(e7r130–138). Hence, a whole matrix of cross-reactivity was revealed, and this
was directed at only one of possibly many cross-reactive VV epitopes. Of
significance, however, was when a11r198–205-stimulated cell lines were derived
from individual LCMV-immune donors, each line had different patterns of
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cross-reactivity, with some high for one epitope and others high for a different
epitope, again reflecting the private specificity of cross-reactivity (Cornberg
et al. 2006).

6.2
Heterologous Immunity Between LCMV and PV

LCMV and PV are arenaviruses which encode nucleoprotein NP205–212 epi-
topes that share 7 of 9 amino acids in an evolutionarily conserved site (Brehm
et al. 2002). T cell responses to these epitopes are normally subdominant
in either infection, but when mice immune to one virus are infected with
the second, the T cell responses to the NP205–212 epitope become dominant
and T cell responses to the normally dominant epitopes are much subdued
(Brehm et al. 2002). Protective heterologous immunity occurs between
these viruses, with LCMV protecting against PV more than PV protects
against LCMV, perhaps in part due to higher frequencies of NP205–212-specific
memory cells induced by LCMV (Selin et al. 1998; Brehm et al. 2002). There
is a high level of T cell cross-reactivity between the two epitopes in regards
to peptide induced IFN-γ production, but double tetramer staining and
peptide dilution experiments suggest many affinity differences. Of note is
that a heterologous virus challenge selects for a very small subset of the
cross-reactive T cells, leading to a substantial narrowing of the TCR repertoire
(Fig. 3). This narrowing of the repertoire has different patterns between
individuals, and adoptive transfer studies have indicated that this variation
is again a reflection of the private specificities of the immune system that
developed after the primary infection (Cornberg et al. 2006). It is noteworthy
that, with a recent exception in the HIV system (Dong et al. 2004), most
studies have linked narrow TCR repertoires to poor clearance of virus and
to the enhanced probability of selecting for epitope escape variants (Wilson
et al. 1998; Pantaleo et al. 1994; Meyer-Olson et al. 2004; Borrow et al. 1997).

6.3
Immune Deviation

A byproduct of heterologous immunity may be immune deviation caused
by shifts in cytokine production. Three days after acute infection of naïve
mice with VV, there are high levels of IL-6 and low levels of IFN-γ produced.
This contrasts to VV infection of LCMV-immune mice, where there are much
higher levels of IFN-γ and lower levels of IL-6 (Chen et al. 2001). In general,
studies in murine models with several virus infections have shown alterations
in cytokine responses to a virus caused by previous virus infections (Chen
et al. 2003).
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Fig. 3 TCR repertoire narrowing during heterologous immunity between PV and
LCMV. T cells specific to the subdominant LCMV epitope NP205–212 are mostly in the
Vβ16 family and seldom represent more than 5% of the acute CD8 T cell response
to LCMV in naïve C57BL/6 mice. This figure shows that acute LCMV infections of
PV-immune mice elicit responses that can be immunodominant yet highly variable
between mice, reflecting the private specificities, and that they can result in a nar-
rowing of the repertoire by stimulating expansions of T cell Vβ families that would
never be prevalent in an acute response in naïve mice. *The percentage of Vβ+ cells
was calculated by staining tetramer-defined T cells with Vβ-specific antibodies. An
exception was Vβ16, for which no antibodies are available, and which was detected less
quantitatively by PCR amplification. Based on a manuscript submitted by Cornberg
et al. (2006)

Immune deviation away from type 1 responses is a problem in respira-
tory syncytial virus (RSV) infection and may have been what occurred when
children in the 1960s contracted RSV infections after being immunized by
an ineffective vaccine (Kapikian et al. 1969). Mice immunized with a VV re-
combinant expressing the RSV G protein and later challenged with live RSV
developed a type 2 response and severe eosinophilia in the lung. However, if
mice had been immune to influenza virus prior to the recombinant VV im-



The Privacy of T Cell Memory to Viruses 139

munization, no such deviation occurred on RSV challenge, and the pathology
was much less severe (Walzl et al. 2000). It is also interesting to note that prior
immunization with RSV G led to an extreme repertoire narrowing of Vβ14
CD4 T cells specific to the dominant epitope G185–193 on live RSV challenge
(Varga et al. 2001).

6.4
Heterologous Immunity in Human Infections

Evidence is accumulating for heterologous immunity in humans between
commonly occurring viruses.

6.4.1
Influenza Virus Strains and Variants

It has been noted for some time that a prior history of an influenza virus infec-
tion can lead to an altered immune response to a different but related strain.

Theoriginalobservation involvedassessmentof antibodyresponses,where
antibodies cross-reactive between the strains dominated the immune re-
sponse and squelched new immune responses to non-cross-reactive antigens.
These alterations of B cell repertoires were referred to as “original antigenic
sin,” (Fazekas de St. Groth and Webster 1966) and a similar phenomenon can
happen with T cell responses (Klenerman and Zinkernagel 1998; Mongkol-
sapaya et al. 2003). Different strains and variants of influenza are commonly
cross-reactive at the human and mouse T cell level, leading to speculations
that these cross-reactive cells may be involved in the pathogenesis of in-
fluenza virus infections (Effros et al. 1977; Haanan et al. 1999; Boon et al.
2004). Perhaps of even greater conceptual interest is the observation of T cell
cross-reactivity between influenza and other viruses, as discussed in the fol-
lowing sections.

6.4.2
Hepatitis C Virus

The pathogenesis of HCV in humans is remarkably variable, ranging from
asymptomatic to fulminant, with most patients undergoing long-term per-
sistent infections and others clearing the virus (Farci et al. 1996). The reasons
for this extreme variability are unknown, and it has been questioned whether
heterologous immunity may play a role (Urbani et al. 2005; Rehermann and
Shin 2005). HCV encodes an HLA-A2-restricted epitope (NS31073–1081) that
shares 7 of 9 amino acids with the influenza epitope (NA231–239), and T cells
from influenza-immune individuals with no evidence of a past HCV infection
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can often respond to the HCV epitope in vitro (Wedemeyer et al. 2001). Hence,
the human population may be partially immune to HCV as a consequence
of this cross-reactivity. We know that LCMV and PV similarly share 6 of 8
amino acids in their cross-reactive peptides and that sequential infections
can lead to immunodomination of the normally protective epitope-specific
T cell responses, as well as to a substantial narrowing of the repertoire, and
that the degree of this is influenced by the private specificity phenomenon
(Brehm et al. 2002; Fig. 3). In 2 of 8 patients examined, a very pronounced
cross-reactive T cell response between influenza and HCV was noted; and in
these same individuals there was a narrowing of the repertoire, in that T cell
responses to other epitopes were minimal (Urbani et al. 2005). These same
patients experienced a hepatitis far more severe than patients who mounted
a more diverse T cell response against a variety of epitopes. The fact that
these patients were all immune to the ubiquitous influenza virus suggests that
private specificities may have dictated the altered immune responses.

6.4.3
Epstein–Barr Virus

EBV-associated mononucleosis is one of several viral diseases that are more
severe in teenagers and young adults than in children. Others that come to
mind are mumps, chicken pox, polio, and measles. What is unique about
mononucleosis is that the characteristic diagnostic feature of the disease is
an overzealous CD8 T cell response (Silins et al. 2001). Could this relate to the
reactivation of memory T cells? It may, as a subset of T cells directed against
a major HLA-A2.1 restricted immunodominant EBV peptide, BMLF-1280–288,
cross-react with the invariant HLA-A2.1-restricted influenza A virus epitope
M158–66, even though they shareonly 3 of 9 aminoacids (Welsh et al. 2004).Our
recent studies have shown activation of these cross-reactive T cells in some
but not all acute mononucleosis patients, perhaps again reflecting private
specificities in the host response (Clute et al. 2005). Of note, as mentioned
above in Sect. 2.4, is that the TCR repertoire to influenza M158–66 normally has
a consistent structure in regards to the dominance of Vβ17 and its hierarchy
of utilization of Jβ genes (Fig. 1). Analyses of the M158–66 repertoire from
two individuals experiencingEBV-associatedacute infectiousmononucleosis,
however, revealed a substantially different hierarchy of Jβ usage, suggesting
that a skewed subset of the M158–66-specific TCR repertoire, probably those
cross-reactive with EBV, were being stimulated to proliferate (Fig. 1).
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6.4.4
Dengue Virus

Perhaps the most recognized human examples of heterologous immunity
come from dengue virus infections. Dengue viruses occur as four distinct
but cross-reactive serotypes which fail to elicit neutralizing antibody effective
against each other (Morens 1994). A host immune to one serotype when
challengedwitha secondserotypemay, insteadofhavingprotective immunity,
develop a much more severe disease known as dengue hemorrhagic fever and
shock syndrome. One theory for its occurrence is that non-neutralizing cross-
reactiveantibodies cancause“immuneenhancement”and increase theuptake
of virus into target cells viaFc receptors, resulting in ahigher frequency of cells
infected (Morens 1994). These could also inhibit the formation of effective
neutralizing antibodies to the second virus. A second theory is that original
antigenic sin of T cells may be the cause of disease (Mongkolsapaya et al. 2003).
A recent study with cases of dengue hemorrhagic fever has shown that some
T cell responses were of a higher avidity to a strain of dengue virus other than
the one causing the disease. The interpretation is that weakly effective T cells
dominated the repertoire to a second dengue virus infection because of their
high frequency in thememorypool after an infectionwithadifferent serotype.

7
Why Private Specificities Are Important in Pathogenesis

Studies have shown that immunologically naïve mice, while using different
TCRs to mount an immune response, generate responses with similar epitope
hierarchies, similar effector functions, and similar outcomes. This is because
primary responses are likely to select for T cells with suitable CDR1 and
CDR2 and which have CDR3 amino acid motifs at positions important for
engagement of the peptide MHC complex. The other CDR3 amino acids
reflected in the private specificities of the response may be less relevant for
those epitopes, which will select the best T cell fits from the highly diverse
naïve TCR repertoire. The relevance of the private specificities may increase
when a cross-reactive epitope generated by a second virus engages the TCRs
of expanded pools of memory cells (Fig. 4). Expanded clones harboring these
non-motif amino acids would vary from host to host, a result of the private
specificity of the repertoire, but these other amino acids could have great
impact on a cross-reactive read-out. Cross-reactive stimulations may result
in repertoires not ideal to fight infection, but they are generated nevertheless
because of the high frequency of those cells in the memory pool.
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Fig. 4 Model demonstrating how private specificities can alter and narrow the reper-
toire in a cross-reactive memory response but not in a primary naïve response. Here
the color and shape of the epitope determine its specificity. Three naïve mice generate
quantitatively similar but qualitatively different repertoires against an immunodom-
inant (blue) and subdominant (red) epitope. When challenged with a cross-reactive
heterologous virus, which responds to either “square” or “black,” the private specifici-
ties of the memory response dictate immunodominance and epitope specificity and
repertoire diversity. T cells specific to non-cross-reactive epitopes are deleted, while
cross-reactive T cells can become dominating and oligoclonal

The potential consequences of this stimulation, depicted in Fig. 4, are sum-
marized in Table 1. Exposure of a memory T cell population to a cross-reactive
epitope from a heterologous virus may cause a suppression or immunodomi-
nation of T cell responses to normally protective epitopes (an effect subdued
somewhat by the early lymphopenia). Thus, an immune response to a poorly
presented epitope might dominate and be ineffective at eliminating the virus.
The T cell response may have a very narrow repertoire, possibly leading to
the selection of escape variants. That subset of T cells that is selected may be
skewed in terms of its functional capacities and may be ineffective at control-
ling infection. An immune deviation of type 1 or type 2 cytokines could also
ensue. Depending on the private specificities of the host’s memory pool, it is
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possible that either a strong protective response or a response more likely to
cause immunopathology would develop (Table 1).

8
Revisiting the Interactions Between Innate and Adaptive Immunity

Innate immunity is thought to provide the host with time for the differen-
tiation and proliferation of low-frequency antigen-specific clones of naïve T
and B cells to reach sufficient numbers to attack and clear the pathogen. Cy-
tokines produced by innate effector mechanisms may retard the replication of
the pathogen and influence the deviation of an immune response into a type 1
or type 2 direction. These distinctions between the timing and the roles of
innate vs adaptive immunity are not so clearly delineated in the context of
heterologous immunity, a phenomenon that we would argue is quite common.
A cross-reactive memory cell population may be constitutively effective and
not need the time for clonal expansion that a naïve population does. If the
cross-reactive memory population is deviated in a type 1 or type 2 direction,
it, rather than innate mechanisms, may dictate the deviation of the immune
response in the newly developing T and B cells. The laws of innate immune
system effects on antigen-presenting cells for the generation of immunodom-
inance hierarchies become perverted in the presence of high frequencies of
pre-existing cross-reactive T cell clones. One might also suspect that the rapid
production of memory T cell cytokines, such as IFN-γ, might curb the repli-
cation of the pathogen, thereby reducing the induction of type 1 IFN and its
subsequent effects on lymphopenia, memory cell loss, DC suppression, and
NK cell activation. Superimposed on the uncertainty of these events is the
variation due to the memory pool’s private specificities that are unique to an
individual host.
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