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Abstract: Obesity is a chronic metabolic disease caused by multiple factors and is considered

to be a risk factor for type 2 diabetes, cardiovascular disease, hypertension, stroke and various

cancers. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range

of biological effects. Mounting evidence has demonstrated that hesperidin possesses inhibitory

effect against obesity diseases. Our review discusses mechanisms of hesperidin in the treat-

ment of obesity. Hesperidin regulates lipid metabolism and glucose metabolism by mediating

AMPK and PPAR signaling pathways, directly regulates antioxidant index and anti-apoptosis,

and indirectly mediates NF-κB signaling pathway to regulate inflammation to play a role in the

treatment of obesity. In addition, hesperidin-enriched dietary supplements can significantly

improve symptoms such as postprandial hyperglycemia and hyperlipidemia. Further clinical

trials are also required for confirming lipid-lowering efficacy of this natural flavonoid and

evaluating its safety profile.

Keywords: citrus flavonoids, lipid metabolism, glucose metabolism, anti-oxidation, anti-

inflammatory

Introduction
Obesity refers to the pathological state in which the intake of energy is greater than

the consumption,1 causing excessive body fat2 and making the body weight more

than 20% of the standard body weight.3 Obesity is a metabolic syndrome4 that is

prevalent in today’s society,5 and its prevalence is increasing worldwide.6 According

to research, the global obese or overweight population has more than 30% of the

global population,7 and it has reached epidemic proportions globally.8 Obesity has

become a major public health problem worldwide.9

The prevalence of obesity continues to rise throughout the world, mainly due to

lifestyle changes,10 urbanization11 and genetic factors,12 such as eating habits and lack of

exercise.13 Food is one of the main environmental factors inducing obesity,14 excessive

consumption of dietary fat leads to an increase in the number of fat cells (hyperplasia) and

size (hypertrophy).15 The increase in fat cell size and the inability to store triglycerides

under excessive feeding are critical for metabolic dysfunction and are characterized by

activation of the inflammatory and apoptotic pathways and secretion of pro-inflammatory

adipokines.16 Obesity promotes the infiltration of inflammatory cells into various tissues,

leading to the development of substantial and stromal cell interactions as well as cellular

and organ dysfunction.17 In addition, oxidative stress and injury are involved in the

pathophysiology of obesity and its metabolic complications.18 Insulin(INS) resistance is

a pathological condition in which insulin target tissues (muscle, liver, adipose tissue, and

hypothalamus) are insufficiently sensitive to normal levels of insulin.19 Excessive

accumulation of visceral fat is the main cause of inflammation20 and insulin resistance,9
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and is closely related to the occurrence of cardiovascular,21,22

cerebrovascular diseases, hypertension,23 type 2 diabetes,24,25

hyperlipidemia, sleep apnea syndrome26 and other diseases.27

It has also increased non-alcoholic fatty liver disease,9

cancer28 and other diseases, which seriously affect the health

of patients and even endanger their lives.7 Therefore, preven-

tion and treatment of obesity29 is the key to reducing the

increasing morbidity and mortality of humans.6

Flavonoids are a class of phenolic compounds widely dis-

tributed in plants. Currently, a large number of these com-

pounds are evaluated in the form of free state and

glycoside,30 and have some biological properties including

antioxidant,31,32 anticancer and anti-inflammatory33 effects.34

The adipose tissue is the primary regulator of energy balance

and nutrient homeostasis. White adipose tissue(WAT)35 is the

main site of excess energy storage in the form of triglycerides,

while brown adipose tissue(BAT)36 with multi-room fat cells

contains large amounts of mitochondria. Under some stimula-

tions such as high-fat diets, the content of mitochondria in

WATs increases dramatically, a process called “browning”.

Thus, it can prevent obesity and lipid accumulation through

induction of brown-like adipocyte formation.9,37 Citrus flavo-

noids have been proven to induce browning of white

adipocytes,38 reduce plasma lipid levels, improve glucose tol-

erance, and reduce obesity,39 and can also be used to prevent

postprandial hyperglycemia.40 Studies have shown that feed-

ing a high-fat, high-cholesterol diet for 12 weeks affects ather-

osclerosis, PPARs, lipoprotein receptors, and apolipoprotein-

related genes in monocyte chemoattractant protein-3 mice.41

During the differentiation of adipocytes, several transcription

factors, including CCAAT/enhancer binding protein(C/EBPs)

and peroxisome proliferator-activated receptor gamma(PPAR-

γ), activate lipogenesis.42 Extracts of citrus flavonoids inhibit
intracellular triglyceride and fat accumulation and reduce the

expression of PPAR-γ 243 Citrus flavonoids inhibit oleic acid-
induced expression of miR-122 and miR-33, and their target

mRNAs fatty acid synthase(FAS) and carnitine palmitoyltrans-

ferase 1α(TNF-α) are likely to be themainmechanisms leading

to decreased lipid accumulation in HepG 2 cells.44 It has been

reported that the chemical structure of flavanones is the most

effective in inhibiting adipogenesis because flavonoids such as

hesperidin induce a significant decrease in triacylglycerol con-

tent in preadipocytes.45 Recent studies have shown that citrus

flavonoids play an important role in the treatment of dyslipi-

demia, insulin resistance, hepatic steatosis, obesity and athero-

sclerosis. Citrus flavonoids, including naringenin, hesperidin,

nobiletin and hesperetin, have become promising therapeutic

agents for the treatment of metabolic disorders.46

Hesperidin(C28H34O15) is a flavonoid glycoside47 which

was first isolated from citrus peel by the French chemist

Lebreton.48 The presence of this compound has also been

proven in the genus Rutaceae, the bergamot fruit,49 the

banana fruit, the lemon fruit, the lemon peel, etc.50 It may

also be present in the aerial part of the genus Rubiaceae and

the Cruciferous plant leeks, with roots and whole grasses.

Hesperidin has an aglycon (hesperetin or methyl eriodictyol)

bonded to rutinose [6-O-(α-l-Rhamnopyranosyl)-D-gluco-

pyranose] and/or [6-O-(α-l-Rhamnosyl)-D-glucose], as a dis-

accharide, in its structure47 (Figure 1).

Mechanisms Of Hesperidin In The
Treatment Of Obesity
Hesperidin has anti-inflammatory, anti-oxidative and anti-

cancer activities, can lower cholesterol levels and blood

pressure,28 and has anti-obesity activity.43 Hesperetin and

hesperidin can stimulate the release of cholecystokinin

(CCK), an appetite-regulating hormone, in enteroendocrine

STC-1 cells, which is ultimately used to treat obesity by

suppressing appetite.51 Dietary bioflavonoid hesperidin can

reduce cholesterol and triglyceride levels in broiler serum and

pectoral muscle, and positively improve fatty acid and lipid

metabolism in broiler breasts in a dose-dependent manner.52

The main types of HPDmetabolism in rats are mainly hydro-

lysis, demethoxylation, dehydration, dehydrogenation,

demethylation, glucuronide binding, sulfate binding and

N-acetylcysteine binding.53 HPD can significantly increase

Figure 1 Chemical structures of hesperidin (A) and hesperetin (B).
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the level ofα-KL in serum, liver and kidney tissues of diabetic

rats, and significantly reduce the levels of aspartate amino-

transferase(AST), alanine aminotransferase(ALT), blood

urea nitrogen(BUN) and creatinine in fibroblast growth fac-

tor-23(FGF-23) in kidney tissues and serum samples.54 High-

dose hesperidin up-regulates adenosine 5ʹ-monophosphate

(AMP)-activated protein kinase(AMPK) mRNA expression

inmicewith glycolipidmetabolismdisorder induced by high-

fat diet, affecting insulin signaling pathway (insulin receptor

(INSR), insulin receptor substrate 1(IRS-1), GLUT2/4) and

lipid metabolism-related genes (sterol regulatory element-

binding protein 1c(SREBP1c) and FAS and acetyl-CoA car-

boxylase(ACC)) gene expression also activates PPAR-α

mRNA expression.55 In addition, HPD enhances the expres-

sion of genes encoding LDL receptors, which are some of the

possible mechanisms by which HPD reduces blood lipids.56

The details on weight loss effect of hesperidin are

shown in Table 1.

The Effect Of Hesperidin On Lipid

Metabolism
Changes in body fat content beyond a certain limit can cause

obesity,73 so obesity is closely related to fat metabolism.

Hesperidin can improve lipid metabolism74 (Figure 2).

Adipose tissue stores lipids in the form of triglycerides,

which secrete and regulate a variety of adipokines and cyto-

kines. During obesity, in order to compensate for excessive

lipid load, adipose tissue rapidly expands.46 Hesperidin

(0.08%) reduces hepatic steatosis, adipose tissue and liver

weight, and decreases serum total cholesterol and retinol

binding protein(RBP) 4 concentrations in high-fat diets.60

Heart fatty acid–binding protein(H-FABP)and cutaneous

fatty acid–binding protein(C-FABP) are thought to play key

roles in fatty acid metabolism, such as fatty acid storage and

transport.62 Hesperidin may improve hypercholesterolemia

and fatty liver by inhibiting cholesterol synthesis and absorp-

tion, regulating RBP, C-FABP and H-FABP mRNA

expression.60 HPD reduced systolic blood pressure(SBP),75

plasma total cholesterol and TG levels in obese hypertensive

rats, attenuated plasma fatty acid synthase(FFA) through its

anti-lipolytic activity, significantly increased high density

lipoprotein-cholesterol(HDL-C), and decreased plasma low

density lipoprotein-cholesterol(LDL-C) and very low density

lipoprotein-cholesterol(VLDL-C).63

Hesperidin inhibits genes involved in the three stages of

adipogenesis, C/EBPβSREBP1c, PPAR-γ and perilipin.68

Hesperidin-treated animals showed decreased expression

levels of three key adipogenesis-related genes, SREBP1,

FAS68 and stearoyl-CoA desaturase(SCD),32 and normaliza-

tion of PKLR gene expression.8 Hesperidin showed specific

inhibitory activity on 3T3-L1 preadipocytes in the intermedi-

ate stage of differentiation.32 HPD increases the expression

of messenger RNA by hormone-sensitive lipases and stimu-

lates the breakdown of mature adipocytes.76 Hesperidin sig-

nificantly down-regulates the expression of stearoyl-CoA

desaturase, fatty-acid desaturase(FAT-6 and FAT-7), and

reduces the expression of other genes involved in lipid meta-

bolism, including acetyl-CoA carboxylase-2(POD-2), med-

iator subunit-15(MDT-15), acyl-CoA synthetase-2(ACS-2)

and 3-ketoacyl-CoA thiolase-1 (KAT-1), thereby reducing

fat accumulation.72 Dietary bioflavonoid hesperidin can posi-

tively improve fatty acid and lipid metabolism in broiler

breasts in a dose-dependent manner.52 Therefore, hesperidin

can treat obesity to a certain extent by regulating adipokines,

cytokines, genes, and the like in lipid metabolism.

The Effect Of Hesperidin On Glucose

Metabolism
Obesity has a certain degree of impaired glucose tolerance77

and insulin dysfunction.78 Impaired glucose metabolism-

related genetic variants likely interact with obesity-modifi-

able factors in response to glucose intolerance.79 Glucose

provides most of the carbon used to construct the essential

molecules of daughter cells, such as amino acids, fatty acids

and nucleotides.80 Hesperidin shows moderate and selective

alpha-glucosidase inhibitory activity,81 and it can inhibit the

digestion of amylose and amylopectin and significantly

reduce glucose-6-phosphatase activity in HepG2 cells.40

Docking simulations showed that hesperetin and hesperidin

block enzyme entry into the channel, preventing the produc-

tion of pyruvate, alpha-ketoglutarate and oxaloacetate, inhi-

biting hepatic gluconeogenesis, thereby impeding the

progression of diabetes.58 In addition, hesperidin stimulates

glycogenolysis and glycolysis in isolated perfused rat liver57

and reduces glucose levels induced in porcine streptozotocin-

induced diabetic and diabetic rat models.82 The postprandial

glycemic response of orange juice can be adjusted by par-

tially inhibiting the intestinal glucose transporter according

to the concentration of sugar and hesperidin,83 indicating that

hesperidin can be used to prevent postprandial

hyperglycemia.40

PPAR-c is a nuclear protein transcription factor that reg-

ulates lipid and glucose metabolism, and hesperidin main-

tains glucose metabolism by regulating PPAR-c activation
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Table 1 Studies Demonstrating The Weight Loss Effect Of Hesperidin

Model Dose And Treat

Time

Described Effect Weight Loss Mechanism Ref

Sisolated perfused male wistar

rats, ad libitum with a standard

laboratory diet

300µM; 0–70min Glycogenolysis and glycolysis in the

liver↑; glucose phosphorylation

catalysed by GK↓

G-6-Pase↓ 57

Rats 1mL; 24h Enzyme activities↓; production of

pyruvate↓; hepatic gluconeogenes↓; α-

ketoglutarate and the oxaloacetate↓

Liver ALT↓; liver AST↓ 58

HIGH fat fed/streptozotocin-

induced type 2 diabetic rats

50mg/kg; 4w Serum glucose and glycosylated

hemoglobin↓; vitamin C and vitamin E↑

NO↓; IL-6↓; TNF-α↓; serum INS↑; GSH↑;

liver MDA↓; liver antioxidant enzymes↑

59

Male wistar rats, high-

cholesterol diet

25g/d; 12w Hepatic steatosis, adipose tissue and

liver weights↓; serum TC ↓

RBP, H-FABP, C-FABP in liver and adipose

tissue↓

60

Male wistar rats, high-fat/

sucrose (western) diet

100mg/kg; 8w Blood lipid profle↑; hepatic lipid

accumulation↓; non-alcoholic

steatohepatitis↓

SREBP1↓; PPAR-γ↓; SCD↓; FAS↓ 8

Type 2 diabetic rats, high fat

diet

50mg/kg; 4w White blood cell count↓; neutrophils↓;

monocytes↓; basophils↓

IL-6↓; adipose tissue ACDC↑ 61

Streptozotocin-induced

marginal type 1 diabetic rats

10g/kg; 4w Blood glucose↓; TC↓ Serum ACDC↑; TG↓; G-6-Pase↓; GK↑;

LDL-C↓; VLDL-C↓; HDL-C↑; serum INS↑;

56

Rats, high-cholesterol diet 8mg/d; 6–12w Body and liverand adipose tissue

weights↓; cholesterol synthesis and

absorption↓

Lipid-related factors (RBP4, H-FABP and

C-FABP)↓; ICAM-1↓; inflammatory-related

factors (MCP1, CCR2 and TNF-α)↓

62

Goto-Kakizaki weanling rats

with type 2 diabetes

0.01g/; 4w Lipids in the serum and liver↓; blood

glucose↓; HDL-C/TC↑

The genes coding for PPARs↑; HMG-CoA

reductase↓; the expression of genes

encoding LDL receptor↑;

serum ACDC↑; TG↓; INS↑

15

Rats with diabetes induced by

streptozotocin

100mg/kg; 2w Strong positive effects on diabetic

toxicity in the liver and kidneys

Liver, kidney and serum α-KL ↑; FGF-23↓;

MDA↓

20

Rats subjected to

isoproterenol- induced

cardiotoxicity

200mg/kg; 7d TC↓ LDL-C↓; TG↓; VLDL-C↓; FFA↓; plasma PL↓;

HDL-C↑; PL in the heart and liver↑

63

Rats, high-cholesterol diet 100mg/kg; 5d TC↓; HDL-C/TC↑; serum triglyceride

levels↓

GSH in the liver↑; serum and liver MDA↓ 64

Streptozotocin-induced

hyperglycemic mice

200mg/kg; 14d Blood glucose↓; lipid peroxidation and

total nitrate/nitrite↓

Bad/Bcl-2↑; Bad/Bcl-XL↑; SOD↑; GSH↑ 65

C57BL/6J mice, high-fat diet 100mg/kg/d; 4w Serum total antioxidant capacity↑; liver

TBARS levels↓; spleen mass↓;

fat accumulation↓; liver damage↓

IL-6↓; MCP-1↓; hs-CRP↓; LDL-C↓ 66

C57 mice, high-fat diet 100,200,400mg/kg/d;

16w

Body weight↓; body fat deposition↓;

serum glucose↓; serum lipid↓; HOMA-

IR index↓

mRNA of AMPK↑; serum INS↑; impact on

signaling pathway genes↑ (INSR, IRS-1,

GLUT2/4) and lipid metabolism pathway

genes (SREBP1↓, FAS↓, ACC↓,PPAR-α↑)

55

Mice, high-fat diet 0.07mg/100g; 9w Body weight and liver and adipose

tissue weight↓

PPAR-γ↑ 67

C2C12 cells 0.07mg/100g; 6h Stimulated glucose↑ PPAR-γ↑

(Continued)
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and inhibiting fat accumulation.67 It has been demonstrated

in weaned Goto-Kakizaki rats that hesperidin and cyclodex-

trin-clathrated hesperetin normalize blood glucose levels by

altering the activity of glucose-regulating enzymes and low-

ering serum and liver lipid levels. These hypoglycemic and

hypolipidemic effects in type 2 diabetic rats are partially

altered by altering the expression of genes encoding PPAR,

3-hydroxy-3-methyl-glutatyl coenzyme A(HMG-CoA)

reductase and LDL receptors.15 RBP4 has been identified

as an adipokines involved in the regulation of glucose

metabolism.62 The activation of GLUT4 enhances glucose

uptake and increases the amount of intracellular glucose

available for metabolic conversion, thereby promoting

enhanced cell proliferation.80 Hesperidin can reduce the

expression of RBP4 and affect GLUT460 Insulin can promote

the synthesis of fatty acids in the liver, promote the entry of

Table 1 (Continued).

Model Dose And Treat

Time

Described Effect Weight Loss Mechanism Ref

Pre-adipocytes of

mesenchymal stem cells

1,10,25µM; 48h-8d Anti-adipogenic and delipidating C/EBPβ↓; SREBP1↓; perilipin↓;PPAR-γ↓ 68

Mature adipocytes from

mesenchymal stem cells

1,10,25µM; 48h-8d Anti-adipogenic effect and delipidating mRNA of ATGL↑; FAS↓;TG accumulation↓

3T3-L1 pre-adipocytes 1,10,25µM; 0-60h-8d Lipid accumulation↓; riacylglycerol

content in pre-adipocytes↓

SREBP1↓ 45

3T3-L1 adipocytes 20µM; 8d Lipid accumulation↓ ROS↓; PPAR-γ↓; C/EBPα↓; FABP4↓ 28

3T3-L1 cells 0.5mg/mL; 24h Induction of adipolytic activity↓; key

adipogenic transcription factors↓

C/EBPα↓; PPAR-γ↓; SREBP1↓ 42

3T3-L1 cells 10, 50, 100µM; 8d Anti-lipogenic capacity↑ Binding affinity for the PPAR-γ rceptor↓;

SCD↓; LPL↓

69

RAW264.7 and 3T3-L1 cells 1.8–8.3µM; 24h Anti-inflammatory activity↑ ACDC↑; IL-6↓; TNF-α↓; NO↓ 70

Enteroendocrine STC-1 cells 0.1,0.5,1.0µM; 60min Appetite-regulating hormones↑;

cholecystokinin release↑

Intracellular Ca(2+) concentrations↑ 51

Retinal ganglial cells −5 12.5,25,50µmol/L; 6h High glucose-mediated cell loss↓;

mitochondrial function↑;

Cell apoptosis↓

ROS, MDA and protein carbonyl↓; SOD↑;

CAT↑; GSH↑; caspase-9, caspase-3 and Bax/

Bcl-2↓

71

HepG2 cells 100ug/mL; 48h Lipid accumulation↓ miR-122 and miR-33 expression↓; CPT1α↑;

FAS↓

44

HepG-2 cells 50µM; 1min Digestive enzyme activities↓;

glycogen↑

GK activity↑; G-6-Pase↓ 40

Porcine pancreas 100µM; 1min Glucose consumption↑; glycogen↑;

glucokinase activity↑

α-amylase activity↓; α-glucosidase activity↓

Caenorhaditis elegans 50µM,100µM; 0–35d Fat accumulation↓; the ratio of oleic

acid/stearic acid↓

SCD↓; FAT-6↓; FAT-7↓; POD-2↓; MDT-15↓;

ACS-2↓; KAT-1↓

72

Broilers 20mg/kg; 42d Plasma antioxidant parameters↑; TC↓;

total antioxidant capacity↑

Total SOD↑; MDA↓; TG↓ 52

Note: ↓indicates inhibition/reduction while ↑indicates increase/promotion.

Abbreviations: ACDC, adiponectin; hs-CRP, High-sensitivity C-reactive protein; INSR, Insulin receptor; IRS-1, Insulin receptor substrate 1; ATGL, adipose triacylglyceride lipase; PL,
phospholipids; FFA, free fatty acids; TG, triglycerides; HDL-C, high density lipoprotein-cholesterol; LDL-C, low density lipoprotein-cholesterol; VLDL-C, very low density lipoprotein-

cholesterol; MDA, malondialdehyde; GSH, glutathione; G-6-Pase, glucose-6-phosphatase; HMG-CoA,3-hydroxy-3-methyl-glutatyl coenzyme A; α-KL, α-Klotho; FGF-23, fibroblast
growth factor-23; RBP4,retinol-binding protein 4; CCR2, C-C chemokine receptor type 2; MCP1, monocyte chemoattractant protein-1; TNF-α, tumor necrosis factor alpha; TBARS,

thiobarbituric acid reactive substances; ROS, reactive oxygen species; CAT, catalase; GK, glucokinase; C/EBPβ, CCAAT/enhancer-binding protein beta; PPAR-γ, peroxisome proliferator-

activated receptor gamma; SREBP1, sterol regulatory element-binding protein 1; RBP, lipid metabolism–related proteins; H-FABP, heart fatty acid–binding protein; C-FABP, cutaneous

fatty acid–binding protein; IL-6,interleukin-6; NF-κB, nuclear factor kappa B; SCD, stearoyl-CoA desaturase; TC, Total cholesterol; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; CPT1α, carnitine palmitoyltransferase 1α; FAS, fatty acid synthase; LPL, lipoprotein lipase; FAT-6/7, Fatty-acid desaturase 6/7; ACS-2, acyl-CoA synthetase-2; KAT-1,

ketoacyl-CoA thiolase-1; POD-2, acetyl-CoA carboxylase-2; MDT-15, mediator subunit-15.
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glucose into fat cells and convert it into triacylglycerol for

storage, while inhibiting the activity of lipase and reducing

the decomposition of fat.84 Insulin resistance caused by

obesity inhibits insulin absorption of glucose and fat in

muscle and muscle tissue.19 Hesperidin indirectly affects

insulin resistance and stimulates intestinal microbial growth

to increase the production of short-chain fatty acid(SCFA),

thereby regulating adipose tissue, skeletal muscle and liver

tissue function, and improving glucose homeostasis and

insulin sensitivity.85 Hesperidin directly or indirectly regu-

lates the metabolism of glucose and insulin (Figure 3) to

improve the interaction between obesity and glucose meta-

bolism disorders (such as hyperglycemia, diabetes, etc.),

which is one of the effective ways to treat obesity.

The Effect Of Hesperidin On Oxidation

And Inflammation
The serum oxidative index of young obese subjects increased

significantly, and the antioxidant index decreased

significantly, suggesting that accumulation of oxidative pro-

ducts in serum may be one of the causes of obesity.86,87

Hesperidin decreases the contents of glucose, glycosylated

hemoglobin(HbA1c%), MDA and NO in diabetic rats, and

increases levels of serum insulin, GSH, vitamin C and vita-

min E. It has a protective effect on oxidative damage induced

by hyperglycemia.59 The combination of hesperidin and

alpha amylase has low antioxidant activity.88 Hesperidin

can prevent the increase of reactive oxygen species(ROS)

production in rats by exhaustive exercise, and avoid the

decrease of SOD and catalase activity in thymus and spleen,-
89 which can effectively inhibit the formation of superoxide

and oxygen.90 Hesperidin reduces ROS, MDA, caspase-9,

caspase-3 and Bax/Bcl-2 levels and inhibits apoptosis,

thereby protecting RGC-5 cells from high glucose-induced

oxidative stress.71 Dietary application of different levels of

hesperidin has a significant effect on the antioxidant capacity

of mutton during cold storage,91 and can also increase plasma

antioxidant parameters of broilers, including total antioxidant
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Figure 2 The effect of hesperidin on lipid metabolism.

Note: indicate inhibition/reduction while indicate increase/promotion.
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capacity, malondialdehyde(MDA) production, and total

superoxide dismutase(SOD) activity.52 Medium doses of

hesperidin(100 mg/kg) and high doses of hesperidin(200

mg/kg) improved and increased the level of endogenous

antioxidant enzyme glutathione(GSH) in the liver of hyper-

lipidemic rats.64 Hesperidin can alter the oxidative state in

hepatocytes by affecting parameters related to hepatic fatty

acid oxidation, namely oxygen uptake, citrate cycling activ-

ity and ketone production.92 The bioflavonoid mixture of

curcumin, hesperidin and rutin improves hepatic oxidative

stress caused by streptozotocin- induced hyperglycemia,

thereby improving liver function and glucose regulation.65

Obesity is a systemic low-level chronic persistent inflam-

matory state.93 It is currently believed that the pathophysio-

logical basis of obesity is the early inflammatory changes in

adipose tissue.94 PPAR-γ is a nuclear transcription factor

involved in the inhibition of nuclear factor kappa B(NF-κB)

activation and IL-6 production, which can be induced by

adiponectin, while adiponectin pretreatment of porcine

macrophages inhibits NF-κB activation and inhibits TNF-α

secreted by LPS-stimulated macrophages.70 Injection of

hesperidin can increase the content of adiponectin, thereby

reducing lipid accumulation.56 Oral administration of 50

mg/kg hesperidin daily in type 2 diabetic rats for 4 weeks

significantly improved red blood cells, white blood cells and

their functional indicators, and significantly improved adipo-

nectin expression downregulation and IL-6 down-regulation

in adipose tissue Relationship. Hesperidin protects diabetes-

related anemia by affecting adipose tissue.61 In addition,

hesperidin can increase the serum total antioxidant capacity

of mice with high-fat diet, inhibit IL-6, macrophage che-

moattractant protein 1(MCP-1) and C-reactive protein(hs-
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CRP) to reduce liver thiobarba Bilobate-reactive substance

(TBARS) levels and spleen mass, and prevent mouse inflam-

mation and oxidative stress caused by a high-fat diet, thereby

preventing metabolic changes associated with cardiovascular

disease development in other animals.66 Hesperidin

improves the degree of inflammation and oxidative damage

caused by hyperglycemia and hyperlipidemia by directly

affecting oxidation- related index and inflammatory factors

(Figure 4), which indirectly plays a therapeutic role in the

treatment of obesity- related diseases.

Conclusions
Obesity is an abnormality in energy metabolism caused by a

variety of factors,84 which in turn affects various metabo-

lisms in the body, so the way to lose weight is also diverse. In

this review, the most relevant articles were evaluated to

reveal how hesperidin is effective in obesity through multi-

target ways. As a cellular energy sensor, AMP activates

protein kinase(AMPK), which not only restores energy bal-

ance between activities, but also plays an important role in

lipid metabolism.95 PPARs are nuclear receptor proteomes,

transcription factors that play important roles in lipid meta-

bolism and glucose homeostasis.67 Hesperidin mainly regu-

lates lipid metabolism and glucose metabolism by affecting

AMPK and PPAR signaling pathways, thereby exerting a

lipid-lowering effect. In addition, obesity is a systemic low-

level chronic persistent inflammatory state.93Hesperidin has

a therapeutic effect on obesity by mediating AMPK and

PPAR pathways to regulate NF-κB inflammatory signaling

pathways and reducing inflammation and apoptosis.

Hesperidin can also directly regulate the oxidation index,

inhibit apoptosis, thereby protecting against damage caused

by oxidative stress, and improving lipid peroxidation.

Furthermore, the above-mentioned lipid-lowering effect

of hesperidin can be extended to other similar flavonoids.

Naturally occurring extracts and biotransformed extracts

from citrus fruits can be used for the treatment of obesity,

natural extracts can be used to reduce new fat cell synthesis

and lipid accumulation, and biotransformation extracts can

be used to induce lipolysis of adipose tissue.96 For example,

citrus peel extract has potential antioxidant and lipid perox-

idation and lipoxygenase inhibition.97 Citri Reticulatae

Pericarpium has been investigated with a health promoting

properties,98,99 which can remove moisture and protect the

spleen,100 while reducing NO levels,101 exerting antioxidant

effects,38,102 and lowering the liver lipid content.103 Its

extract has anti-lipase activity,104 which can directly or indir-

ectly treat obesity. Moreover, given the various biological
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properties of hesperidin, this phytochemical may have a

wider range of biological applications in the future.

Therefore, research on natural drugs or foods containing

hesperidin can help expand the range of weight loss and

reduce the rate of obesity in the body. Further studies on

flavonoids similar to hesperidin can better reveal the preven-

tive and therapeutic effects of hesperidin on obesity.

Although the hypoglycemic and lipid-lowering activities

of hesperidin have been studied in some animals (such as

rats) or cells, the lack of clinical trials on the therapeutic

effect of hesperidin is a significant limitation that deserves

further study. Furthermore, little is known about the clinical

aspects of this compound, such as bioavailability, the appro-

priate dose, tolerance and efficacy of hesperidin and its

metabolites for human disease.15 More investigations should

be needed before hesperidin treatment is extended to

humans, especially reliable clinical trials, including large-

scale, rigorously controlled, and multicenter randomized

controlled clinical trials are needed to assess its long-term

safety.
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