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Abstract

Animal exchanges are considered the major pathway for between-farm transmission of

many livestock infectious diseases. Yet, vehicles and operators visiting several farms during

routine activities can also contribute to disease spread. Indeed, if contaminated, they can

act as mechanical vectors of fomites, generating indirect contacts between visited farms.

While data on animal exchanges is often available in national databases, information about

the daily itineraries of trucks and operators is rare because difficult to obtain. Thus, some

unavoidable approximations have been frequently introduced in the description of indirect

contacts in epidemic models. Here, we showed that the level of detail in such description

can significantly affect the predictions on disease dynamics. Our analyses focused on the

potential spread of a disease in a dairy farm system subject of a comprehensive data collec-

tion campaign on calf transportations. We developed two temporal multilayer networks to

model between-farm contacts generated by either animal exchanges (direct contacts) and

connections operated by trucks moving calves (indirect contacts). The complete model

used the full knowledge of the daily trucks’ itineraries, while the partial informed one used

only a subset of such available information. To account for various conditions of pathogen

survival ability and effectiveness of cleaning operations, we performed a sensitivity analysis

on trucks’ contamination period. An accurate description of indirect contacts was crucial

both to correctly predict the final size of epidemics and to identify the seed farms responsible

for generating the most severe outbreaks. The importance of detailed information emerged

even more clearly in the case of short contamination periods. Our conclusions could be

extended to between-farm contacts generated by other vehicles and operators. Overcoming

these information gaps would be decisive for a deeper understanding of epidemic spread in

livestock and to develop effective control plans.
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Introduction

The spread of infectious diseases in livestock can cause serious negative impacts both from

economic and social points of view, due to animals culling, reduced production, costs of the

implemented control measures, and loss of consumer trust in the food supply chain [1–3]. The

2001 UK Foot-and-Mouth Disease (FMD) outbreak highlighted the widespread consequences

of livestock epidemics, with overall costs for the public sector estimated over £2.8 billion, and

around 6.5 million animals slaughtered to eradicate the infection [4]. In the context of disease

management and control, quantitative epidemiological studies can play a significant role in (a)

identifying the key factors underlining the disease transmission patterns, (b) supporting the

design of effective biosecurity measures, and surveillance and management activities, and (c)
predicting the effects of disease control interventions [5]. In particular, network models are

commonly adopted tools to represent the spread of infectious diseases in farm systems, where

nodes and links indicate, respectively, farms and the potential transmission routes of the path-

ogen [6,7]. Obviously, to correctly evaluate the effectiveness of preventive and control mea-

sures, a detailed knowledge of the potential pathogen transmission routes is needed.

Movement of infected animals is considered the major pathway for disease introduction

and spread between livestock farms for a large number of infections [8,9]. In particular, in the

early phase of the 2001 FMD outbreak, the exchange of infected animals (mainly sheep) before

the imposition of national movement controls was claimed to be directly responsible of the

introduction of infection into several disease-free geographical areas [10–12]. For this reason,

as prescribed by EU regulations and directives (European Parliament and European Council

Regulation 1760/2000/EC; Council Regulation 21/2004/EC; Council Directive 2008/71/EC),

extensive databases were developed in different European countries to track the movements of

farmed animals and the patterns of such movements have been largely investigated [13–17].

Diseases can also spread because of the indirect contacts: vehicles and operators visiting

several farms during their routine activities can get contaminated and act as mechanical vec-

tors between the farms they visit. Although indirect contacts are known to be less infectious

than direct ones [9,18], they occur more frequently [19–23] and, thus, they can potentially play

an important role in case of epidemics. Moreover, Rossi and colleagues [23] showed that the

effect of direct and indirect contacts can occur on different spatial scale: while indirect contacts

were responsible of the infection spread at local scale, the role of direct ones was clear only at

wider spatial scale. This result confirmed what already highlighted by Brennan and colleagues

[22], who interviewed 56 farmers in North-West England and found out that contiguous

farms were more likely to establish social relationships, facilitating sharing of equipment, vehi-

cles and personnel. Indirect contacts can emerge not only because of visitors but also in the

case of animal movements. Indeed, besides the enhanced contamination risk due to the intro-

duction of already infected animals in other farms, animal movements can contribute to dis-

ease spread through the trucks used in the transportation themselves [19,21,22,24–29].

Epidemiological evidence of the role of contaminated transportation vehicles in farm-to-farm

spread of infections has been collected for many diseases in different species, such as swine,

ovine, and bovine (see [28] and references therein). This route of transmission can be particu-

larly effective when trucks collect animals at several farms before unloading all of them in a

single site. In the context of dairy farms in European countries, the role of contaminated trucks

as ways of disease transmission is especially important in the case of calf transportation, where,

in a single shipment, calves are collected in several dairy farms, held together in a single vehicle

and finally sent to beef farms. Conversely, in the case of adults, shipments usually involve ani-

mals coming from a single farm and trucks are cleaned and disinfected after each shipment.

Data regarding on-farm truck visits is rarely registered in harmonized databases, and, to date,
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information has been obtained through surveys [19,21,22], reducing the potential for more in-

depth analyses of their role in disease spread. Lack of data and the reduced infectiousness of

indirect contacts compared to direct ones are the main reasons why animal movement net-

works, in general, do not explicitly consider the complete truck itineraries through the several

visited farms and only account for direct operations from the loading sites to the unloading

ones. By doing so, intermediate transit movements of trucks in farms without any animal

unloading are neglected.

To date, indirect contacts due to transportation trucks have been included in a few disease

spread models, most of them regarding the swine industry [27,29–32]. In these studies, the

authors obtained from official databases [27,29] or from questionnaires [31,32] data on daily

animal movements, including also the unique identifiers of the trucks in charge of the trans-

ports. Based on these data, the indirect contact network was modeled as either a two-mode

network with two sets of nodes representing farms and tucks or rounds, or as the projection of

such network in the space of farms [29,31]. Salines and colleagues [27] proposed a new model-

ling approach, that they called Transit Model (TM), accounting for the chronological sequence

of loading/unloading operations in a single round.

Similar approaches have been used also to describe other types of indirect contacts occur-

ring in livestock systems. For example, two-mode networks have been adopted to describe the

relationship between farms and markets [33–35]. The one-mode projection on the farm space

of these networks generates the so called commercial networks, where links between farms are

due to the presence of common contractors among farms. However, this approach can lead to

a coarse-grained description of the contact networks, since a common contractor does not per
se imply common personnel and vehicles visiting a pair of farms. In addition, in absence of

knowledge of the daily itineraries travelled by individual operators and vehicles belonging to a

single contractor, the temporal sequences of between-farm contacts are lost. However, detailed

representations of indirect between-farm contacts are only possible in the rare situations when

information about the temporal sequence of the on-farm visits of each operator can be

obtained [23,27].

Here, we analyzed how different levels of detail in the representation of indirect contacts

may affect the description of the epidemic spread process and influence the identification of

the farms responsible for generating the most severe epidemics. The final goal of this work was

to compare different assumptions and modelling approaches for the description of indirect

contacts and to show that they can lead to contrasting conclusions from the epidemiological

point of view. Since epidemiological models are commonly used as decision support system to

guide the design of biosecurity plans, this could result in non-trivial implications on disease

control.

Materials and methods

Data

In dairy farm systems, calves are a large proportion of live animals transported. In Italy, usu-

ally, a single truck loads calves at several farms and can either unload them at other farms or,

more frequently, at special facilities called assembly centers. Calves generally stay in assembly

centers for less than 24 hours, then they are either sold to beef farms or transferred to

slaughterhouses.

For this study, we considered all the nine assembly centers listed in the Italian National

Bovine Database (BDN, Commission Decision 2006/132/EC) located in the Province of Parma

(Northern Italy) and analyzed the complete calf transportation system towards them occurred

during a 3-month-period, from September 1st to November 30th, 2014. From the BDN, we
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extracted the following information about each of the 8,618 animals that entered the nine

assembly centers during the study period: a unique ID for the animal, the IDs of the two farms

of transport origin and destination, and the movement date.

As many EU countries, Italian law imposes livestock truck drivers to fill out a document for

each animal loaded, here called Modello 4 (M4, Council Directive 1992/102/EEC), with

detailed information about the loading/unloading operations. In addition to the key elements

present in the BDN, each M4 contains also the exact time of animal loading, the ID of the

truck and the ID of the transportation company owning it. Based on this information, it is

thus possible to reconstruct the daily round of each truck, i.e., the sequence of loading/unload-

ing operations occurred in a single day. This allows gaining insights that might unveil the

between-farm contact structure generated by consecutive on-farm visits by the same truck

(defined as indirect contact network). Unfortunately, despite M4s being available in Italy since

1996 (Presidential Decree 1996/317), data recorded through this traceability system is to date

mainly paper-based, therefore has never been used in disease spread models.

Here, we integrated the information about calf transportation obtained from the BDN with

data collected through the M4s. Only a small set of hand-filled M4s (156 out of 8,618, 2% of

data) posed issues due to interpretation of incoherent information or presence of missing data

and were unusable. Records describing direct movements from one assembly center to another

one (914 records) were also excluded from our analysis. In such cases, groups of calves were

moved without involving any farms in the system, and the health of farms is the subject of our

modelling interest. In the end, the effectively usable dataset resulted made of 7,548 records of

unique animal movements towards assembly centers, originating from 902 dairy farms, which

constituted our study population (Fig 1).

From the BDN, we also obtained data about the farm-to-farm cattle movements (defined as

direct contacts) occurred in the study population during the period of interest. In this way, we

identified 736 between-farm movements, each characterized by: a unique ID of the exchanged

animal, the IDs of the two farms of transport origin and destination, and the movement date.

Network models

To describe the potentially infectious between-farm contacts generated by the movement oper-

ations of live animals, we developed two temporal multiplex network models [36,37], differing

in the level of detail in the description of the indirect contacts. With ’temporal multiplex net-

work’ we intended a network that is either temporal, and thus can be interpreted as a sequence

of snapshots (i.e. static networks), and multiplex, because within each snapshot links are

grouped into different layers with the same set of nodes. In our study, in order to capture daily

changes of the contact network structure, we built our models starting from a sequence of 91

daily snapshots (covering the period of interest). Each snapshot was composed of 902 nodes

(i.e. the farms), connected by links grouped in two layers according to the type of contacts they

represented (direct or indirect ones). We considered farms as discrete units, discarding any

additional details about the within-farm course of infection, as commonly done in theoretical

studies investigating epidemic spread in livestock systems [15,38–42].

As regards the direct contact layer, we used the dataset on cattle movement and we adopted

the same modeling approach for both the network models. In each daily snapshot, a directed

link was traced from a farm to another one if at least one animal was moved from the first to

the second one on that day.

The two proposed models differed in the description of indirect contacts, which were

accounted for at two levels of detail, as sketched in Fig 2, but derived from the dataset on on-

farm truck visits. First, we built a simpler network representation, denoted as Common
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Contractor Model (CCM), based only on the coarse information concerning the commercial

relations between farms and transportation companies occurred at a daily temporal scale,

which is commonly available for farm operations [32,43]. In this model, each daily snapshot

was built projecting on the space of farms the bipartite network of commercial relations

between farms and transportation companies occurred in that day (see central panels in Fig 2).

Thus, farms visited in a single day by trucks belonging to a single transportation company con-

stituted an undirected full graph. In other words, we assumed that in the CCM model the

transportation company could act as mechanical vector of pathogens, regardless of how many

trucks it owned. Second, taking advantage of the data derived from the M4s, we could also

build a more detailed model that we called Transit Model (TM, named as such after Salines

[27]). Here, a daily snapshot was built through directed links assigned from each farm to all

Fig 1. Study area and population. Dots represent dairy farms included in our analysis. A very limited set of farms (25 out of 902) is located outside the three

highlighted Provinces and thus not shown. Map elaborated using data from www.istat.it.

https://doi.org/10.1371/journal.pone.0223652.g001
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the farms later visited by the same truck during the same day (right panels in Fig 2). The daily

snapshots were built as weighted networks, both in CCM and TM. Specifically, we assigned to

each link a weight equal to the number of transportation companies (in the CCM) or trucks

(in the TM) responsible for that daily connection. It is worth remarking that CCM and TM dif-

fered not only in the directionality but also in the number of links, since some transportation

companies owned more than one truck.

Considering as potentially infectious contacts only the links generated in the daily snap-

shots underlies the assumption that trucks may remain contaminated by a pathogen for a sin-

gle day at most. However, the time a truck can remain contaminated, i.e. its contamination
period (h), depends both on the ability of the pathogen to survive in fomites and on the fre-

quency and effectiveness of the disinfection operations [38,44,45]. In order to assess how the

contamination period h could affect the disease dynamics, we explored different scenarios. We

assumed as a baseline the case of h = 0, which means that a contaminated truck could spread

the infection only between farms visited in a single day. Then, we compared the simulation

outcomes with what obtained with h = 1, 2, 3 and 4 weeks. Considering contamination periods

longer than one day led to a building up of between-farm contact networks with directed links

Fig 2. Two ways for representing indirect contacts: The Common Contractor Model (CCM) and the Transit Model (TM). The top row of panels shows a simplistic,

but illustrative example, with the actual rounds of 3 trucks (left panel) belonging to 2 companies (color coded white and black, left panel). In the CCM model (central

panel), all farms visited by trucks belonging to the same transportation company are connected, thus constituting a full undirected network. In the TM model (right

panel), directed links are traced only from each farm to those later visited by the same truck in the same day. In this representation the contamination period is assumed

equal to 0. The bottom row of panels represents the actual rounds occurred on September 9th, 2014 (left), together with its network representation using CCM (center)

and TM (right).

https://doi.org/10.1371/journal.pone.0223652.g002

Modelling between-farm indirect contacts at different levels of detail

PLOS ONE | https://doi.org/10.1371/journal.pone.0223652 October 17, 2019 6 / 20

https://doi.org/10.1371/journal.pone.0223652.g002
https://doi.org/10.1371/journal.pone.0223652


among different daily snapshots. More specifically, as regards CCM, a farm with commercial

relations with a given transportation company on day t could be potentially infected by farms

with commercial relations with the same transportation company in the previous h weeks.

Analogously for the TM, farms visited on day t by a certain truck could receive the disease

from farms visited by the same truck in the previous h weeks.

Epidemic model

The disease spread in the farm system was modeled on both CCM and TM through a boolean

Susceptible-Infectious (SI) compartmental model, where we assumed that farms could not

recover once infected over the simulation time horizon. We kept the description of the disease

diffusion process as simple as possible since the aim of the present study was to remark the

crucial role played by the information available in building the contact networks rather than

accurately describe the spread of a specific disease. Although a crude assumption, simplicity in

the epidemiological (reaction) side of the process could thus help us avoiding potential con-

founding effects. Nonetheless, to assess the robustness of our results, in the baseline scenario

(defined in the next paragraph) we simulated the disease spread on both CCM and TM with a

Susceptible-Infectious-Removed (SIR) model, varying the infectious period of farms (details

on the methods and on the results are reported in the S1 Text).

We first considered the baseline scenario with contamination period h = 0, then we

repeated the simulations and the analysis on the outcomes for different values of h (from 1 to 4

weeks) to generalize our findings to cases of low frequency/effectiveness of disinfection opera-

tions and/or strong resistance of the pathogen in the fomites.

At the beginning of each simulation (i.e. September 1st, 2014), all farms were assumed to be

susceptible but one, hereafter called the epidemic seed. Within each day, an infected farm could

transmit the disease only to its susceptible nearest topological neighbors. Nodes’ status was

updated only at the end of each day, which means that a node getting infected in a certain day

was infectious only starting from the following day. In this way, we implicitly assumed that

within a day all incoming links to a node occurred after all its outgoing ones. The transmission

could independently occur through either direct or indirect contacts. Disease transmission

through a direct contact was assumed to be certain, i.e., the probability of infection due to

direct contacts was set equal to 1 (as in [23,42]). Conversely, we assumed a stochastic effect

due to indirect contacts and we referred to probability estimates proposed by Bates et al. [18].

Specifically, for each farm i and each day t, we extracted a value p(i, t) of probability of infec-

tion due to indirect contacts from a BetaPERT distribution with minimum, maximum, and

most likely values equal to 0.10, 0.90, and 0.50, respectively. An indirect contact from an

infected farm (I) to a susceptible one (J) occurring in day T could succeed in transmitting the

disease with probability p(J, T). The extraction of 91 daily values of indirect contact infection

probability for each farm (corresponding to 82,082 values) was defined as parameter setting.

For each parameter setting, we simulated the diffusion process on both CCM and TM on the

complete 3-month time horizon (Sept.—Nov., 2014), seeding the disease at each farm alterna-

tively. In other words, given a parameter setting, for each day t and each farm i we used the

same probability of infection p(i, t) in both CCM and TM. Keeping the same epidemiological

model, we could thus evaluate the effect of the network structure on the disease spread out-

comes. In order to reduce the computational time, we adopted the matrix-based approach

scheme proposed by Koher et al. [46], which allowed us to track the epidemics from all the

possible 902 initial conditions simultaneously. To assess the epidemiological role played by

each farm while acting as seed and average out the specific assignment of parameter settings,
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we performed 1,000 simulations from each epidemic seed, each one with a different parameter

setting.

For each parameter setting and each network models, namely CCM and TM, we computed

the total epidemic size generated by a given seed, counting infected farms at the end of the sim-

ulations, i.e. at the end of the time horizon of 91 days. We aggregated the 1,000 total epidemic

sizes generated by each seed on each model, computing the median of their distribution. The

farms were ranked separately in decreasing order of the median total epidemic size they gener-

ated when acting as seeds in CCM and TM, respectively. In order to assess the correlation

between the two rankings, we used the non-parametric test Kendall’s τ [47]. Nodes in the first

5% positions of the rankings were defined as the most influential seeds. We compared the

CCM and TM sets of the most influential seeds, using Jaccard index [48], to evaluate how

many of them belonged to the set of the most influential seeds set in both models. Finally, we

investigated the emergence of recurrent invasion paths generated by the seeds on both the pro-

posed models, extending the methodology proposed by Bajardi et al. [42] in order to account

for the stochasticity of our case study. Specifically, we built the Initial Conditions Similarity

Networks (ICSN), a complete weighted undirected network in which each node is an epidemic

seed and the link between two nodes is weighted by a measure of the similarity of their inva-

sion paths. We defined the invasion path νi
tot of node i as the set of nodes that were infected at

the end of at least one simulation in which node i acted as epidemic seed. Each node in νi
tot

was attributed a number indicating how many simulations seeded at i infected it. For each cou-

ple of nodes in the set of the most influential seeds, we computed the overlap between their

invasion paths using the abundance-based version of the Jaccard index as described in [49].

The ICSNs were then filtered to remove links with weights smaller than a given threshold (we

varied such threshold from 0.8 to 1 with increment equal to 0.005) and we evaluated the emer-

gence of seeds’ clusters, defined as the network components.

Finally, we analyzed how the distribution of the most influential seeds in the CCM and the

TM rankings were different, using the ROC curve method [50] and conventionally assuming

as ground truth the classification in most influential and non-influential seeds based on the

CCM ranking. To build the ROC curve, we compared the set of the CCM most influential

seeds with the first n nodes in the TM ranking, with n varying from 1 to 902. For each value of

n, we computed the True Positive Rate and the False Positive Rate respectively as the fractions

of the CCM most influential seeds and of the CCM non-influential seeds included in the first n
farms of the TM ranking (as in [51]).

Results

Summary of calf transportation

Overall, 558 truck rounds occurred in the study period. Each round was composed of several

loading operations and at least one unloading at an assembly center. In particular, the average

number of farms visited by a truck in a round was equal to 5.7, but it ranged from a minimum

of 1 to a maximum of 18. The number of times a farm was visited by a calf transportation

truck during the study period varied: 191 farms (21.1%) were visited only once, while only 3

farms were visited every week. On average, 2.4 calves were loaded at a single farm, while the

mean total number of calves transported in a given round was 13.5. Of the total 49 trucks [36

transportation companies], on average 10.5 [7.3] and 31.2 [24.8] resulted active on, respec-

tively, Mondays and Tuesdays, which are the two weekday in which calves were mainly

collected.
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Summary of cattle movement

During the study period, 218 batches were moved between the farms in the study population.

The batch dimension was on average 3.4, varying from 1 to 39. Cattle trade activities occurred

almost every day and, thus, were not characterized by periodicity as the calf transportation.

Total epidemic size and most influential seeds

The results of the simulations of the SI model on our two network models in the baseline sce-

nario of contamination period h = 0 are presented in Fig 3. Fig 3A shows two violin plots–i.e.,

mirrored density plots displayed in the same way as boxplots–representing the distributions of

all 902,000 total epidemic sizes generated when the disease spread was simulated assuming

that the potentially infectious contacts were drawn from CCM (in blue) and TM (in green).

These two distributions were significantly different, both quantitatively and qualitatively, as

confirmed by the results of the permutation test on the difference between the medians

(100,000 permutations) and of the Kolmogorov-Smirnov test (p-values lower than 10−5 in

both cases). In particular, the simulations performed using CCM led to higher values of total

epidemic size with respect to the ones obtained with TM. The total epidemic sizes predicted

using the CCM ranged between a minimum of 1 (when only the seed itself was infected at the

end of a simulation) to a maximum of 404 infected farms (median: 64; interquartile range: 26–

138). Conversely, the results obtained with the TM were comprised between 1 and 139 infected

farms (median: 13; interquartile range: 4–28). Moreover, when simulations were performed

using CCM, only 5 seeds resulted to be not able to infect other nodes (i.e. the total epidemic

size was equal to 1 in all simulations seeded at them), while the corresponding set using TM

was composed of 54 seeds. As reported in the supplementary information S1 Text, also when

the disease spread was simulated using a SIR model, we obtained significantly larger total epi-

demic sizes in the CCM than in the TM.

The farms were ranked separately in decreasing order of the median total epidemic size

they generated when acting as seeds in CCM and TM, respectively. Each point of the x-axis of

Fig 3B represents a position in the ranking. Over each x point there are two boxplots: the blue

one shows the distribution of the total epidemic sizes obtained in the 1,000 simulations on the

CCM seeded at the farm in that position of the CCM ranking; the green one is the analogous

for the TM. The rankings of the seeds derived from CCM and TM, although significantly posi-

tively correlated (Kendall’s τ = 0.41, p-value < 2.2e-16; Kendall’s τ obtained over 1,000 ran-

dom comparisons: median = 0.000 and IQR = 0.031), were not at all coincident and nodes

never maintained their position in both. The comparison between the sets of the most influen-

tial seeds in CCM and TM (defined as the top 5% of seeds in each ranking, i.e., positions from

1 to 45) resulted in a Jaccard coefficient equal to 0.25, corresponding to only 18 farms in com-

mon (Jaccard coefficient obtained over 1000 random comparisons: median = 0.023 and

IQR = 0.023). As illustrated in Fig 3B, the set of CCM most influential seeds, which we repre-

sented by red circles in both boxplots to evidence the unexpected results obtained, were dis-

tributed all over the TM ranking. Similar findings were also obtained using an SIR model to

describe the disease diffusion process, as reported in S1 Text.

We then analyzed the characteristics of the epidemics generated by the most influential

seeds identified using the CCM and the TM. Fig 4 allows a graphical comparison between the

shape of the distributions of total epidemic sizes generated by 1,000 simulations seeded in the

two sets of most influential seeds. The curves associated to the CCM most influential seeds

(Fig 4A) appear to be grouped in clusters, while TM most influential seeds generated more het-

erogeneous distributions (Fig 4B).
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We further investigated the characteristics of the epidemics generated by the most influen-

tial seeds, analyzing the two Initial Conditions Similarity Networks (ICSNs). The similarities/

dissimilarities between the invasion paths of all 902 seeds, i.e., the weight of the links of the

ICSNs, are shown in the heatmaps in Fig 5, where seeds on the axes are ranked in the same

order as on the x-axis of Fig 3B, with the most influential seeds in the top-left corner. When we

Fig 3. Distribution of the total epidemic sizes obtained simulating the disease spread on the CCM (blue) and on the TM (green). Panel A shows the violin plots

(see text) describing the distributions of all total epidemic sizes obtained with the two models. In panel B, seed farms are ranked in decreasing order of the median

total epidemic size they generated and each x-axis point represents a position in the rankings. The blue [green] boxplot over each x-axis point shows the distribution

of the 1,000 total epidemic sizes generated by the seed in such position in the CCM [TM] ranking on the corresponding network model. Red dots represent the

position of the CCM most influential seeds in both rankings. For each boxplot, the darker point is the median of the total epidemic size, the lower and upper hinges of

the surrounding darker area are the first and third quartiles, respectively. The lighter area represents the whiskers: the upper [lower] whisker extends from the hinge

to the largest [smallest] value no further than 1.5 x IQR from the hinge, where IQR is the interquartile range. Outliers, i.e., data beyond the end of the whiskers, are

not plotted.

https://doi.org/10.1371/journal.pone.0223652.g003

Fig 4. Distribution of the total epidemic sizes generated by the CCM (panel A) and the TM (panel B) most influential seeds. Each blue [green] curve of the top

[bottom] panel shows the distribution of total epidemic sizes generated by 1,000 simulations seeded at one of the most influential seeds for the CCM [TM].

https://doi.org/10.1371/journal.pone.0223652.g004
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filtered the two networks with a threshold value equal to 0.9, which is representative of what

mostly happened within the whole range explored, the most influential seeds of the CCM and

TM grouped into to 4 and the 8 different clusters respectively (the results obtained in corre-

spondence of other thresholds are reported in the S3 Text). This results highlighted that the

CCM most influential seeds generated invasion paths that were more similar than those origi-

nated by the TM ones. Thus, we could conclude that differences between the two sets of the

most influential seeds emerged not only in their composition, but also in the characteristics of

the epidemics they generated.

The analysis of the two heatmaps presented in Fig 5 also revealed that the invasion paths

generated by the seeds when the disease spread was simulated over the CCM were in general

more similar than those simulated over the TM. As regards the ICSN of the CCM (Fig 5A), red

blocks can be identified along the diagonal of the heatmap, showing the presence of group of

seeds characterized by high values of similarity not only within the most influential seeds but

along the whole ranking. Conversely, the seeds’ invasion paths on the TM resulted to be less

overlapped (Fig 5B), and, consequently, the ICSN was separated into more components. The

fact that seeds’ grouped into more and smaller clusters when the disease spread was simulated

over the TM showed that the epidemic outcomes were less predictable than what one would

have expected according to CCM outcomes.

We repeated all the analyses also on the simulation outcomes obtained in the other scenar-

ios considered, characterized by longer contamination periods, namely h = 1, 2, 3, 4 weeks.

Analogously to the baseline scenario, we used the Kolmogorov-Smirnov test to investigate

the difference between the distributions of the 902,000 total epidemic sizes obtained using the

CCM and the TM. The results revealed that CCM outcomes were significantly higher than TM

Fig 5. Heatmaps showing the overlaps between the invasion paths of the seeds in the CCM (panel A) and TM (panel B) assuming a contamination

period h = 0. In each heatmap, the color of the position [i,j] encodes to the value of the abundance based version of the Jaccard index computed on the

invasion paths generated by the seeds in the positions i and j. Nodes are sorted on the axes of the two heatmaps in decreasing order of the median total

epidemic size they generated on CCM (panel A) and on TM (panel B), as done for the x-axis of Fig 3B. The last 5 rows and columns of the CCM heatmap and

the last 54 rows and columns of the TM heatmap are white because the epidemics seeded at these nodes did not start (total epidemic size equal to 1) and, thus,

it was not possible to compute the overlap with the invasion paths generated by the other seeds.

https://doi.org/10.1371/journal.pone.0223652.g005
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ones in all scenarios, showing that a detailed description of the indirect contacts is important

to correctly predict the potential size of an outbreak also when pathogens can survive for lon-

ger in fomites (see S2 Text). The Kolmogorov-Smirnov test was also used to perform the pair-

wise comparisons between the distributions of the total epidemic sizes obtained in the five

scenarios with the CCM and the TM separately. As a general trend, we found that for increas-

ing values of h, the total epidemic sizes predicted by both CCM and TM were significantly

higher than the outcomes obtained in baseline scenario, confirming that frequent and effective

cleaning and disinfection operations can limit the outbreak severity. Moreover, the CCM and

the TM distributions of the total epidemic sizes obtained in the scenarios of contamination

periods longer than 0 resulted more similar within them than with the ones produced in corre-

spondence of h = 0 (see S2 Text).

Following the methodology adopted for the baseline scenario, we built two rankings of

nodes, one for the CCM the other for the TM, for each alternative scenario. The comparison

between the rankings revealed that when longer contamination periods were considered not

only the sets of most influential seeds were more similar (Jaccard indices ranging in 0.64–0.80

vs the value 0.25 obtained with h = 0), but also the whole rankings got closer (Kendall’s τ com-

prised in 0.70–0.77 instead of 0.41, all p-values < 2.2e-16). The ICSN analysis revealed that at

the threshold equal to 0.9, all the CCM most influential seeds were in the same cluster for the

contamination periods longer than 0. A similar tendency emerged while investing the ICSN of

the TM most influential seeds, where a large cluster included the majority of nodes, only few

of them being apart (details in S3 Text). This means that when pathogens with longer contami-

nation periods are accounted for, differences between the invasion paths generated by the top

5% seeds tend to become more predictable and there is a lower impact of confusing the actual

rounds operated by trucks (TM approach) with usually available trajectories from commercial

records (CCM).

In order to quantify to what extent the CCM and the TM rankings differed in the five sce-

narios of contamination period, we analyzed how the CCM most influential seeds were

mapped on the TM ranking through the ROC curve (see Methods and Fig 6). If the CCM and

TM classifications had been coincident for some of the analyzed contamination periods, the

corresponding ROC curve would have been composed by a vertical segment, a single step in

(0, 1) and then a horizontal segment to (1, 1). Therefore, the steepness of a ROC curve is

closely related to similarity in between the rankings. As already pointed out while commenting

the distribution of red dots in Fig 3B, in the case of contamination period equal to 0 the set of

the CCM most influential seeds was well distributed over the whole TM ranking (the blue dot-

ted line in Fig 6). Conversely, for increasing values of h, the ROC curves appear to be steeper,

therefore there is a closer match between the more influential seeds identified by the two

models.

Discussion

The analysis of the interplay between direct and indirect contacts in the diffusion of livestock

epidemics is a complex, still open issue. Many epidemiological studies considered only direct

contacts [15,41,52,53], not only because they are commonly recognized as the main disease

transmission route and in many cases they resulted to have the strongest influence [10,12], but

also because livestock movements are fully recorded with a daily resolution in several Euro-

pean countries. Conversely, detailed databases about on-farm visits by personnel and vehicles

are lacking. To overcome the absence of accurate information, indirect contacts have been fre-

quently described by introducing some unavoidable approximations [33–35]. The goal of this

study was to assess how and to what extent the level of detail in the description of indirect
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contacts could influence the outcomes of epidemic spread in farm systems, both qualitatively

and quantitatively. In order to gain a general understanding of the importance of accurate

information about indirect contacts, we introduced some approximations, especially in the

description of the course of infection. Given these limitations, caution must be applied in the

interpretation of our findings. We therefore suggest to consider the qualitative trends emerg-

ing from our analyses rather than the specific quantitative numerical outcomes.

In our study, we focused on the potentially infectious farm-to-farm contacts generated by

the sharing of the trucks used in calf transportation in an important dairy farm system in the

Parma province (Northern Italy). However, the outcomes we obtained might be easily general-

izable to all the operators and vehicles of the livestock sector that visit several farms during

their daily activities, e.g. veterinarians, hoof trimmers, deadstock collectors, AI technicians,

animal feed trucks.

In livestock systems, truck sharing may play a crucial role especially in the transmission of

pathogens related to highly contagious diseases, such as the foot and mouth disease, the por-

cine epidemic diarrhea and the Salmonella [24,32,54]. As regards the cattle industry, surveys

on the routine farm activities showed that the movement of vehicles among farms could poten-

tially play a key role in the disease diffusion, because they are associated to both not negligible

probabilities of transmission and high frequency of occurrence [18,21]. However, to our

knowledge, there are no studies that account for the role of trucks movements in epidemic dif-

fusion in cattle farms with a similar level of details as investigated here. This is probably due to

Fig 6. ROC curves relative to the comparison of CCM and TM classification of most influential seeds, in different

scenarios of contamination period (h). For each value of h (see the color legend), we assumed as “ground truth” the

classification in most influential and non-influential seeds based on the CCM ranking, i.e. based on commercial data,

and we compared it with the classification based on the TM ranking (actual rounds) using the ROC curve method. The

grey area represents the 95% confidence region generated on 1,000 simulations in which the TM ranking was

randomly extracted. The black dots are the median behavior of a random classificatory: the x-coordinate of each point

is the median of the 1,000 False Positive Rates obtained in correspondence of a value True Positive Rate.

https://doi.org/10.1371/journal.pone.0223652.g006
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a substantial lack of fine scale information about the daily rounds and on-farm visits in avail-

able databases. Epidemiological models developed to describe the spread of FMD (namely,

AusSpread, InterSpread Plus and the North American Animal Disease Spread Model) do

incorporate in their framework different types of indirect contacts, including the ones generat-

ing by transportation trucks. However, the sequence of actual contacts occurred between

farms cannot really be accounted for in those models, if not in terms of probability of links

being present or not [55].

Here, we compared the outcomes obtained simulating the epidemic spread through a sim-

ple, boolean SI model on two temporal multiplex network models, differing in the description

of indirect contacts generated by the calf transportation trucks. On the one hand, what we

named the Common Contractor Model (CCM) was built assuming only a partial knowledge

of the system (namely, the commonly available commercial relations between farms and trans-

portation companies occurred in a day). On the other hand, our Transit Model (TM) was built

by explicitly taking into account for all the rounds actually travelled by each individual truck

during a period of three months. The contrasting assumptions at the basis of the two data-

driven models led to differences in the number and directionality of links.

Our results showed that the modelling approach adopted for the description of indirect

contacts can highly affect the simulation outcomes, both in quantitative and qualitative terms,

highlighting the crucial role played by the network topology in the disease spread dynamics.

The epidemic diffusion patterns predicted through the two models, namely CCM and TM,

were substantially different, especially when we assumed a short time period in which trucks

stay contaminated, i.e. their contamination period. On the other hand, the differences were

less evident when longer contamination periods of trucks were considered, meaning that

detailed information are particularly important to model all cases where pathogens are able to

survive in fomites for short time period and/or in which the frequency and effectiveness of dis-

infection operations are high.

Numerical simulations showed that the CCM systematically led in higher values of total epi-

demic size, regardless of the seed farm considered (Fig 3 and S2 Text). This implies that if

CCM outcomes were used to define the risk associated to large epidemics, misleading conclu-

sions would be derived both in terms of probability of occurrence and in terms of severity. As

a consequence, biosecurity measures implemented in response to this type of events would

probably generate an unjustified high levels of alarmism and employed resources.

As regards the role played by seed farms in the diffusion process, we showed that the CCM

and TM rankings of farms based on the total epidemic size they generated when acting as

seeds were very different and that the two sets of the most influential seeds only barely over-

lapped. Thus, the approximated description of the epidemic spread derived from CCM failed

to predict the effective role of seeds in shaping the diffusion process, which confirms the

importance of a detailed reconstruction of the contact network to obtain reliable epidemiologi-

cal insights. Differences were particularly evident when comparing the epidemics generated by

the sets of most influential seeds in CCM and TM, in terms of both distributions of final sizes

(Fig 4) and recurrence of invasion paths (Fig 5). Specifically, the outbreaks seeded at the set of

CCM most influential seeds tended to display similar patterns of infected farms, while the epi-

demics generated by the set of TM most influential seeds showed an intrinsic variability as a

function of the initial conditions of the epidemic. This result might resemble that obtained by

Bajardi et al. [42] while analyzing the effect of considering different aggregating time windows

in building networks of cattle exchanges. They found that using large temporal aggregations to

define the contact matrices (such as monthly or yearly networks) leads to more recurring

infection patterns with respect to small temporal aggregations (such as daily networks). Then,

we can infer that coarse-grain representations of very different elements defining the farm-to-
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farm contacts, such as the temporal scale used or the farm interactions with provider compa-

nies, similarly lead to an artificial homogenization of the epidemic outcomes that does not

match with the strong variability observed with fine-grain models. This finding may have sig-

nificant consequences if the models were used as decision support systems for the definition of

livestock disease surveillance plans. For instance, the misidentification of spreading paths that

are persistent across simulations started at different initial conditions may lead to the conse-

quent misidentification of farms having a large probability of being infected from those paths

and that can logically, yet wrongly, be used as sentinels for disease surveillance. Further

research should thus be conducted in this direction to assess to what extent quality and quan-

tity of available information about livestock system in disease-free period can potentially affect

the efficacy of planned biosecurity interventions in case of outbreaks.

The differences between CCM and TM became less evident when we assumed higher values

of contamination period of the trucks (h). In these scenarios, not only the distributions of total

epidemic sizes generated through CCM and TM were more similar to each other with respect

to the scenario h = 0, but also the rankings of farms based on the total epidemic size they gen-

erated as seeds were less changeable (details in the Supporting Information). Thus, our analy-

ses suggest that high-resolution descriptions of the between-farm contacts are particularly

crucial to capture the total epidemic size in all scenarios. However, if the goal is to identify the

most influential seeds less burdensome descriptions can be effectively used in cases of longer

pathogen survivals.

Pathogen survival is strongly dependent on cleaning and sanitation of vehicles and equip-

ment and these are largely considered critical biosecurity steps [44,54]. Then, according to our

results, farm systems in countries with more stringent requirements on the disinfection of

trucks used in the movement of live animals need better data to provide a reliable description

of between-farm contacts. Our results confirmed the major impact of the assumptions on the

length of fomites contamination period on simulation outcomes, as already highlighted by

Rossi et al. [38] in a work focused on between-farm contacts generated by on-farm visits of vet-

erinarians in the same geographical region considered here.

We stress that numerical simulations performed in our study were conducted using a sim-

ple boolean Susceptible-Infected model, which was not implemented with the aim of accu-

rately describe the dynamics of specific diseases, but to help identifying general trends about

modelling farm networks even in case of simple epidemiological processes. Findings were

however robust against changes in the choice of the disease spread model. Indeed, the differ-

ences between the total epidemic sizes and the rankings of seeds generated with the CCM and

the TM in the scenario of short contamination period were evident also when we simulated

the spread process through an SIR model (details in S1 Text). Nonetheless, both the SI and SIR

models we considered overlook important aspects that could be significant in the dynamics of

specific epidemics. In this sense, disease-specific epidemiological compartments could be

included [38,56] as well as within-farm dynamics could be taken into account in the model

framework [17,56–58].

It is worth remarking that the analyses were conducted over a relatively short time horizon

(three months), corresponding to the time period covered by data on trucks’ itineraries. This

poses limitations on the extension of our results on long term patterns of disease spread. This

limitation could be substantial in the case of marked seasonal patterns of cattle exchanges.

However, the role of trucks as transmission route for infections is especially significant for the

diffusion of acute and highly contagious diseases, which are commonly associated to fast

spreading processes and short latent periods [24].

Our analyses were performed on a particular case study, the dairy farm system located in

the Parma province (Northern Italy) and the results we obtained are valid for the particular
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network we considered. However, since trucks and operators working in livestock systems

usually visit several farms during a single day [22,23,27,29,30], we think that our conclusions

could be extended to qualitatively characterize other analogous situations.

In this study, we analyzed the role of seed farms in the process of infectious disease spread.

However, it would be important to investigate also the contribution of nodes to the epidemic

spread process when they are not the seeds, and this will be the topic of future analyses.

In Italy, since September 2017 data on cattle trucks’ itineraries from pilot regions began to

be registered in a digitalized database at the Italian Ministry of Health (Health Minister

Decree, 2016). The availability in the near future of high-quality extensive data on the on-farm

visits of trucks for cattle movements at a national scale will lead to a better understanding of

the role of animal exchanges in the spread of livestock diseases.
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