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For meta-analysis of studies that report outcomes as binomial proportions, the
most popular measure of effect is the odds ratio (OR), usually analyzed as
log(OR). Many meta-analyses use the risk ratio (RR) and its logarithm because of
its simpler interpretation. Although log(OR) and log(RR) are both unbounded,
use of log(RR) must ensure that estimates are compatible with study-level event
rates in the interval (0, 1). These complications pose a particular challenge for
random-effects models, both in applications and in generating data for simu-
lations. As background, we review the conventional random-effects model and
then binomial generalized linear mixed models (GLMMs) with the logit link
function, which do not have these complications. We then focus on log-binomial
models and explore implications of using them; theoretical calculations and sim-
ulation show evidence of biases. The main competitors to the binomial GLMMs
use the beta-binomial (BB) distribution, either in BB regression or by maximiz-
ing a BB likelihood; a simulation produces mixed results. Two examples and an
examination of Cochrane meta-analyses that used RR suggest bias in the results
from the conventional inverse-variance–weighted approach. Finally, we com-
ment on other measures of effect that have range restrictions, including risk
difference, and outline further research.
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1 INTRODUCTION

For meta-analysis of studies that report binary outcomes
(usually summarized as the number of subjects who had
an event and the number who had no event, in a treatment
group and a control group), the most popular measure of
effect is the odds ratio (OR), usually analyzed in the log
scale, as the difference in log-odds between the two groups.
Many meta-analyses, however, use the risk ratio (RR), the
ratio of the probability of an event in the treatment group
(𝜋T) to that in the control group (𝜋C). Importantly, the
benefits of analyzing log(RR) are offset by the restrictions

𝜋C < 1 and 𝜋T < 1, which need to be explicitly applied
to their estimates, unlike in the analysis of log(OR). Thus,
one must balance the mathematical convenience of the
OR against the simpler interpretation of the RR.

When 𝜋C and 𝜋T are small (eg, < 0.1), OR ≈ RR. If
𝜋C or 𝜋T is not small, however, RR (also called the rel-
ative risk) is often considered a better measure of effect
than OR, despite the latter's mathematical convenience.
In applications, the RR and its complement, the percent-
age reduction in risk, have a direct interpretation. Fleiss
et al1 point out that Cornfield2 proposed the OR, in 1951,
only because it provided a good approximation to the
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relative risk (interestingly, Cornfield2 did not use the term
odds ratio). In general, when 𝜋T < 𝜋C, OR < RR < 1;
and when 𝜋T > 𝜋C, OR > RR > 1.3 That is, OR is always
farther from 1 than RR. Various authors have discussed
reasons for choosing RR instead of OR and the ease with
which OR can be misinterpreted (eg, Sinclair and Bracken,4

Sackett et al.,5 Altman et al.,6 Deeks,7 and Newcombe8).
The OR is necessary in case-control studies (where the
RR cannot be estimated directly), and it readily allows
adjustment for covariates via logistic regression, but those
applications are usually separate from meta-analysis.

When a population consists of strata, it may be possible
to summarize an effect more simply if the measure for the
entire sample adequately represents the stratum-specific
measures, that is, if the measure of effect can be col-
lapsed over the strata. The RR for the entire sample must
lie within the range of the stratum-specific RRs, but the
OR for the entire sample can be closer to 1 than the OR for
any of the strata.9 Even in ideal cases in which the RR or
OR is the same in all strata, however, the corresponding
measure for the entire population may not equal that com-
mon value. Certain conditions must hold for collapsibility
of the RR or the OR.10

Methods for meta-analysis of RRs have received much
less attention than methods for ORs, in part because anal-
ysis of their performance involves complications arising
mainly from the restrictions on the ranges of �̂�C and �̂�T .
The impact of those complications on actual meta-analyses
is not widely understood and may not be apparent to
users. We discuss the role of the restrictions in models for
fixed-effect and, especially, random-effects meta-analysis,
examine their impact on generation of data for simulation
studies and on the results, and deduce their likely con-
tribution to bias in examples and in a sizable number of
Cochrane reviews. As background, Section 2 reviews the
conventional random-effects model (REM), which uses
the sample log-odds-ratio or log-risk-ratio as the measure
of effect.

To avoid the assumptions and approximations in the
conventional methods, an alternative approach bases the
analysis on the likelihood for pairs of independent bino-
mial distributions. Section 3 discusses this approach, an
application of generalized linear mixed models (GLMMs)
with the logit and log transformations as the usual link
functions and normal as the usual distribution of random
effects. In REMs for the log-risk-ratio, the constraint on
𝜋T imposes a truncation on the distribution of the random
effects; we use simulation to explore the impact on esti-
mation of the between-study variance (𝜏2) and the overall
log-risk-ratio.

The main alternative to the binomial GLMMs is
beta-binomial (BB) regression. The BB distribution arises
as a mixture of binomial distributions in which the

probability of an event, p, follows a beta distribution.
Section 4 reviews the BB distribution and BB regres-
sion and discusses its application in meta-analysis of
log-risk-ratios. In Section 5, we analyze two examples
to compare conventional procedures and the procedures
based on BB distributions. Using a collection of 1286
meta-analyses of RR, in a 2004 Cochrane Library issue,
we explore (in Section 6) several practical implications of
the restriction on the range of the binomial rates (repre-
sented by truncation of the distribution of random effects).
Finally, the discussion in Section 7 puts our investigation
and results in perspective. We have focused on the RR,
but other measures of effect also have range restrictions,
including risk difference, response ratio (ie, the log of the
ratio of means), and arcsin(

√
p) for binomial proportions;

methods for these need further research.

2 CONVENTIONAL REM

Random-effects meta-analysis aims to estimate an over-
all effect, 𝜃, defined as the mean of a distribution of
study-level effects whose variance is 𝜏2. When 𝜏2 = 0,
the REM reduces to the fixed-effect model. For the usual
choice of a normal distribution, the effects in the indi-
vidual studies are 𝜃j ∼ N(𝜃, 𝜏2), j = 1, … ,K. Study j
yields the estimate yj of 𝜃j, along with an estimate, s2

𝑗 , of
its within-study variance, 𝜎2

𝑗 . For some measures of effect,
such as mean difference (ie, the difference between the
mean outcome in the treatment group and the mean out-
come in the control group), yj and 𝜃j are in the same scale
as the data. For other measures, yj comes from applying a
transformation to the data of study j or to a summary mea-
sure based on those data. In the most common example, y
is the log of the sample OR for the occurrence of an event.

The theory associated with the conventional
random-effects analysis assumes that the distribution of
yj can be adequately approximated by N(𝜃𝑗, 𝜎2

𝑗 ). In the
resulting normal-normal model, the marginal distribu-
tion of yj is N(𝜃𝑗, 𝜎2

𝑗 + 𝜏2). The conventional approach
then estimates 𝜃 by a weighted mean of the yj with
inverse-variance weights. Theory yields the optimal
weights, 1∕(𝜎2

𝑗 + 𝜏2), but both 𝜎2
𝑗 and 𝜏2 are unknown.

Thus, applications use s2
𝑗 instead of 𝜎2

𝑗 and estimate 𝜏2,
producing the weights w𝑗 = 1∕(s2

𝑗 + 𝜏
2). A key assumption

is that one can substitute s2
𝑗 for 𝜎2

𝑗 without allowing for its
variability. Despite its documented shortcomings,11,12 this
approach has remained an acceptable part of research on
random-effects meta-analysis, and it serves as the basis
for most applications. For the log-odds-ratio, for example,
the logit transformation yields the logit-normal-normal
model: if njC and yjC denote the sample size and number
of events in the control group of study j and njT and yjT
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are the corresponding data in the treatment group, the log
of the sample OR is

𝑦𝑗 = log(p𝑗T∕(1 − p𝑗T)) − log(p𝑗C∕(1 − p𝑗C))

= logit(p𝑗T) − logit(p𝑗C),

where pjT = yjT∕njT and pjC = yjC∕njC, which results in
the estimate of the log-odds-ratio

𝑦𝑗 = log
(
𝑦𝑗T∕(n𝑗T − 𝑦𝑗T)
𝑦𝑗C∕(n𝑗C − 𝑦𝑗C)

)
,

and the customary estimate of its variance is

s2
𝑗 =

1
𝑦𝑗T

+ 1
n𝑗T − 𝑦𝑗T

+ 1
𝑦𝑗C

+ 1
n𝑗C − 𝑦𝑗C

(though in common use, these estimates are biased13); if
the 2 × 2 table contains one zero cell, 0.5 is usually added
to all four cells; if the 2 × 2 table contains two zero cells,
study j is omitted from the analysis. The assumption of a
normal distribution for yj in typical finite samples, how-
ever, has little empirical support, and correlation between
yj and s2

𝑗 is a potential source of bias.
Similarly, the log of the sample RR,

𝑦𝑗 = log(p𝑗T) − log(p𝑗C),

results in the estimate

𝑦𝑗 = log
(
𝑦𝑗T∕n𝑗T

𝑦𝑗C∕n𝑗C

)
,

and the customary estimate of its variance is

s2
𝑗 =

1
𝑦𝑗T

− 1
n𝑗T

+ 1
𝑦𝑗C

− 1
n𝑗C

(as above, these estimates are biased14).

3 BINOMIAL GLMMS

For the important class of applications in which the indi-
vidual outcome is binary, the available data from each
study usually include the sample size and number of
events in each group. Then, a likelihood-based analysis
can avoid the assumptions and approximations of using
a normal distribution for yj. For simplicity, we consider
only GLMMs based on the summary data available from
K 2 × 2 tables (ie, the numbers of events YjC and YjT out
of njC and njT binomial trials, with probability of an event
𝜋jC and 𝜋jT, respectively). In their discussion of these mul-
tilevel models, Turner et al15 use the term individual data
methods when the individual subjects' data are binary
(and summary data methods when the measure of effect is
the sample log-odds-ratio), but their analyses use the data
from 2 × 2 tables.

This section reviews logistic linear mixed models
(LMMs), discusses log-binomial models and their com-

plications, and examines the consequences of using the
log-binomial-normal model to generate data.

We assume that, given the probabilities 𝜋ji,

Y𝑗i|𝜋𝑗i ∼ Binomial(n𝑗i, 𝜋𝑗i) for

i = C,T and 𝑗 = 1, … ,K.
(1)

For link function g, the basic GLMM for random-effects
meta-analysis of treatment versus control is

g(𝜋𝑗i) = 𝛼𝑗 + (𝜃 + b𝑗)xi, (2)

where, for study j, 𝛼j is the control group effect; 𝜃 is the
overall treatment effect; bj is the random treatment effect,
representing the departure of Study j's true treatment effect
(𝜃j) from 𝜃; and xi is an indicator variable for the treat-
ment group (xC = 0, xT = 1); the bj are independent, and
usually bj ∼ N(0, 𝜏2).

The most common link function is the logit transfor-
mation g(𝜋) = logit(𝜋) = log(𝜋∕(1 − 𝜋)). The resulting
mixed-effects logistic regression, with log-odds-ratio as
the effect measure, belongs to the class of GLMMs, dis-
cussed in meta-analysis by Turner et al15 and Stijnen et al.16

We also consider the log link, which corresponds to the
log-risk-ratio. Meta-regression models expand Equation 2
to include study-level covariates.

For actual analyses and for simulation studies of
log-odds-ratios, the two-level logit-binomial-normal
model is attractive, for several reasons: log-odds is com-
patible with binomial likelihoods, the values of 𝜃 are not
bounded, and it is not necessary to rely on asymptotic
normality of the sample log(OR). This model is logistic
regression with a random effect. Conveniently, it can be
fitted by all modern software for GLMMs. Alternatively,
one can use a conditional hypergeometric-normal model,
implemented in SAS NLMIXED16 and in R in metafor.17

3.1 Logistic LMMs
As background for examining the log link function and the
log-binomial models for the log-risk-ratio, we review the
more-familiar logistic LMMs.

3.1.1 Fixed-effects logistic model
The standard fixed-effects logistic model does not account
for heterogeneity of the ORs between studies. Assuming a
binomial distribution in the two arms, the model is (j =
1, … ,K)

log
(

𝜋𝑗i

1 − 𝜋𝑗i

)
= 𝛼𝑗 + 𝜃xi, (3)

where the 𝛼j are fixed control group effects (usually
regarded as nuisance parameters) and 𝜃 is the overall
log-odds-ratio. The K + 1 parameters of this model can be
estimated using maximum likelihood (ML).
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3.1.2 Logistic LMMs
A basic mixed-effects logistic regression model fits fixed
effects for the studies' control groups and accounts for het-
erogeneity in ORs among studies. Given the binomial dis-
tributions in the two arms (1), the model is (j = 1, … ,K)

log
(

𝜋𝑗i

1 − 𝜋𝑗i

)
= 𝛼𝑗 + (𝜃 + b𝑗)xi, (4)

where the 𝛼j are fixed control group effects (usu-
ally regarded as nuisance parameters), 𝜃 is the overall
log-odds-ratio, bj ∼ N(0, 𝜏2) are random effects, and 𝜏2

is the between-study variance. The fixed study-specific
intercepts 𝛼j have to be estimated, along with 𝜃 and 𝜏2.
These K + 2 parameters are estimated iteratively, using
marginal quasi-likelihood, penalized quasi-likelihood, or a
first- or second-order Taylor-expansion approximation. A
fixed-effect meta-analysis corresponds to 𝜏2 = 0.

As K becomes large, it may be inconvenient, even prob-
lematic, to have a separate 𝛼j for each study. One can
replace those fixed effects with random effects 𝛼 + uj,
centered at 𝛼:

log
(

𝜋𝑗i

1 − 𝜋𝑗i

)
= 𝛼 + u𝑗 + (𝜃 + b𝑗)xi. (5)

As before, 𝜃 is the overall log-odds-ratio, and bj ∼
N(0, 𝜏2). Now uj ∼ N(0, 𝜎2), and uj and bj can be correlated:
Cov(uj, bj) = 𝜌𝜎𝜏. Heterogeneity of log-odds in the control
groups is represented by the variance 𝜎2, and in the treat-
ment groups, by 𝜎2 + 2𝜌𝜎𝜏 + 𝜏2. In contrast, the conven-
tional REM, which works with the sample log-odds-ratios,
involves only a single between-study variance, 𝜏2. Turner
et al 15 point out that 𝜌 should be estimated. Assuming that
𝜌 = 0 would impose the potentially inappropriate restric-
tion that the variation among trials for control groups (𝜎2)
must be less than or equal to the variation among trials for
treatment groups (𝜎2 + 𝜏2).

Estimation of 𝛼, 𝜇, 𝜎2, 𝜏2, and 𝜌 is similar to estimation
of the parameters in Model (4) (Turner et al15). The related
bivariate logistic-normal model discussed by Stijnen et al16

assumes a bivariate normal distribution for log-odds in the
two arms of each study.

3.2 Log-binomial models
This section examines the use of the log link function in
binomial GLMs and GLMMs.

3.2.1 Fixed-effects log-binomial model
The log-binomial model is a constrained GLM with the log
link function

log(𝜋𝑗C) = 𝛼𝑗 ≤ 0,

log(𝜋𝑗T) = 𝛼𝑗 + 𝜃 ≤ 0.
(6)

As in the logistic model, the 𝛼j are nuisance parame-
ters; here, 𝜃 is the overall log-risk-ratio. The linear con-
straints in (6) guarantee that 𝜋jC < 1 and 𝜋jT < 1.
Likelihood-based methods must ensure that the estimates
satisfy these restrictions. They may cause convergence
problems, but neglecting them may lead to wrong esti-
mates. Luo et al18 provide a brief review of the exist-
ing methods and the requisite R code. They propose an
adaptive-barrier approach to ML estimation that is easily
implemented in R, and they compare several methods by
simulation. An approach by Donoghoe and Marschner19

based on the EM algorithm is implemented in the R pack-
age logbin.20 Marschner21 gives a comprehensive review of
contemporary ML and alternative methods, mostly based
on unconstrained quasi-likelihood estimation procedures.

3.2.2 Log-binomial LMMs
To the authors' knowledge, no theoretical developments
so far have produced log-binomial mixed models. The
main reason, in our opinion, is the restricted param-
eter space. We now examine this in more detail. In
Model (4), mechanically replacing the logit link func-
tion by the log link produces the following model for the
log-risk-ratio:

log(𝜋𝑗i) = 𝛼𝑗 + (𝜃 + b𝑗)xi, b𝑗 ∼ N(0, 𝜏2);

𝑗 = 1, … ,K; i = C,T.
(7)

Here, the 𝛼𝑗 = log(𝜋𝑗C) < 0, but the restriction 𝜋jT < 1
implies that

b𝑗 < − log(𝜋𝑗C) − 𝜃, 𝑗 = 1, … ,K. (8)

The probability that bj satisfies this restriction is
Φ((− log(𝜋𝑗C) − 𝜃)∕𝜏), where Φ is the cumulative distribu-
tion function of the standard normal distribution. Thus,
as written, the model in Equation 7 is improper. If 𝜋jC

and 𝜃 are very small, this probability may be almost 1, so
that the restriction has little impact; but for moderate 𝜋jC

and/or larger values of 𝜃, it becomes a serious issue. As an
example, for 𝜏2 = 1 and 𝜃 = 0, the probability is 0.989
when 𝜋jC = 0.1 and 0.886 when 𝜋jC = 0.3, decreasing
to 0.904 and 0.581 when 𝜃 = 1. These probabilities apply
to an individual bj. For 𝜏2 = 1, 𝜃 = 0, and 𝜋jC = 0.1,
for example, the probability that all K of the bj satisfy the
restriction is (0.989)K, which equals 0.948 when K = 5,
0.898 when K = 10, and 0.807 when K = 20. To sum-
marize, restriction (8) is not compatible with model (7),
which needs to be replaced by an appropriate model. A
simple modification by Warn et al,22 in the context of
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Bayesian modeling of RR and RD, replaces Equation 7 by

log(𝜋𝑗i) = 𝛼𝑗 +
(
𝜃 + bU

𝑗

)
xi, b𝑗 ∼ N(0, 𝜏2);

bU
𝑗 = min(− log(𝜋𝑗C) − 𝜃, b𝑗); 𝑗 = 1, … ,K;

i = C,T.

(9)

This introduces a point mass of probability 1 − 𝛷(𝛽) at c∗𝑗 ,
equal to or just below c𝑗 = − log(𝜋𝑗C)−𝜃, for 𝛽 = (c∗𝑗 −𝜃)∕𝜏
and, equivalently, imputes the values of 𝜋jT at or just below
1. Rhodes et al23 use this model for Bayesian analysis of
inconsistency in the Cochrane database.

An alternative truncates the normal distribution of ran-
dom effects (bj) from the right at A𝑗 = − log(𝜋𝑗C) − 𝜃.
We denote the normal distribution N(𝜇, 𝜎2) truncated from
above at A by TN(𝜇, 𝜎2,A). Then the model is

log(𝜋𝑗i) = 𝛼𝑗 + (𝜃 + b𝑗)xi, b𝑗 ∼ TN(0, 𝜏2,− log(𝜋𝑗C) − 𝜃);

𝑗 = 1, … ,K;

i = C,T.
(10)

Instead of implementing the restriction in Equation 8, an
impossible task, both models distort the distribution of 𝜃j.
Restrictions depending on the values of 𝜋jC and 𝜃 make
both models very artificial.

In both models, the expected value of the log-risk-ratio,
E(𝜃j), no longer equals 𝜃, the overall log-risk-ratio in
Equation 7. The expected value of 𝜃j in model (9) is

E(𝜃𝑗) = 𝜃 − 1√
2𝜋𝜏2 ∫

∞

c∗
x exp(−((x − 𝜃)∕𝜏)2)dx

+ c∗(1 − Φ(𝛽)) < 𝜃,

where 𝜙 is the probability density function of the stan-
dard normal distribution and c∗ = − log(𝜋𝑗C). A parallel
calculation yields E(𝜃2

𝑗 ) and hence var(𝜃j).
Next, we determine the corresponding mean and vari-

ance of 𝜃j in model (10). For X having a TN(𝜇, 𝜏2,A) dis-
tribution, let 𝛽 = (A − 𝜇)∕𝜏. Then (see, eg, Barr and
Sherrill24),

E(X) = 𝜇 − 𝜏 𝜙(𝛽)
Φ(𝛽)

and

Var(X) = 𝜏2

[
1 − 𝛽 𝜙(𝛽)

Φ(𝛽)
−
(
𝜙(𝛽)
Φ(𝛽)

)2
]
.

In our context, A = − log(𝜋C𝑗), 𝜇 = 𝜃, and 𝛽 =
(− log(𝜋C𝑗) − 𝜃)∕𝜏. Therefore, the mean of 𝜃j is less than
𝜃, and it decreases with increasing 𝜋jC. The variance of 𝜃j
is noticeably smaller than 𝜏2, decreasing as 𝜋jC increases.
This model is also clearly not satisfactory.

Importantly, in both models, the expected values of the
log-risk-ratios 𝜃j depend on the individual values of 𝜋jC,
making the meta-analysis of the 𝜃j rather pointless.

In Section 3.3, we consider in more detail what happens
when model (7) is used and the restrictions are neglected.

As we shall see, this mistake results in considerable biases.
Overall, we find the log-binomial LMMs with fixed 𝛼j not
suitable for modeling the RR.

The analog of model (5), with random effects for the
control groups, is

log(𝜋𝑗i) = 𝛼 + u𝑗 + (𝜃 + b𝑗)x𝑗i, b𝑗 ∼ N(0, 𝜏2),

u𝑗 ∼ N(0, 𝜎2), and Cov(u𝑗 , b𝑗) = 𝜌𝜎𝜏.
(11)

This model involves even more restrictions:

u𝑗 < − log(𝜋𝑗C) − 𝛼, b𝑗 + u𝑗 < − log(𝜋𝑗C) − 𝛼 − 𝜃,

𝑗 = 1, … ,K,
(12)

so it also is not suitable.
To summarize, we do not think that a GLMM with the

log link is a feasible option for modeling relative risk.

3.3 Generating data from
the log-binomial LMM
In this section, we discuss the consequences of using
the log-binomial-normal mixed model, Equation 7, to
generate data, and we use a small simulation study for
illustration.

3.3.1 Practicalities
In practice, the studies in a meta-analysis come from a sys-
tematic review, bringing with them the underlying pairs
of event probabilities, (𝜋jC, 𝜋jT). For REMs, it is convenient
to regard the (𝜋jC, 𝜋jT), and hence the (log𝜋𝑗C, log𝜋𝑗T),
as a sample from some bivariate distribution. We can
also approach the joint distribution of (𝜋jC, 𝜋jT) via the
marginal distribution of 𝜋jC and the conditional distribu-
tion of 𝜋jT given 𝜋jC and a value of 𝜃. Thus, to obtain
data from the log-binomial LMM for meta-analysis of
log-risk-ratio, we can choose values of 𝜋jC, generate study
effects 𝜃j from N(𝜃, 𝜏2), calculate the 𝜋𝑗T = 𝜋𝑗C exp(𝜃𝑗),
generate observations YjC from the Binomial(njC, 𝜋jC)

distributions, and generate observations YjT from the
Binomial(njT, 𝜋jT) distributions (this approach parallels a
common method of generating data for meta-analyses of
ORs).

However, this process may produce values of 𝜋jT > 1.
As a remedy, one has two practical options: either impute
values of 𝜋jT at or slightly below 1 or reject values of 𝜃j that
are too large and generate replacement values of 𝜃j. The
first option is equivalent to using model (9), and the second
option (rejection sampling) is equivalent to truncating the
normal distribution of random effects (bj) as in model (10).
Both options introduce bias; that is, E(𝜃j) no longer
equals 𝜃, the overall log-risk-ratio in Equation 7. The first
option appears to be more popular in meta-analysis.
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IntHout et al25 use it in their simulations. The second
option seems uncommon, but many authors who use sim-
ulation in meta-analysis do not report details of implemen-
tation. Some authors use truncate but create a point mass

(eg, Panityakul et al26). Pedroza and Truong27 use trun-
cation in simulating risk difference in multicenter trials.
Both options aim to approximate the actual situation, in
which 𝜋jC < 1 and 𝜋jT < 1. The basic difficulty lies

FIGURE 1 Relation of estimates of the between-studies variance (𝜏2) to the overall log-risk-ratio (𝜃) in K studies, each of total sample size
n, when data come from the binomial-normal model with point mass for 𝜏2 = 1 and 𝜋jC = 0.1 (solid lines) and 0.3 (dashed). The
Mandel-Paule (circle), REML (triangle), and DerSimonian-Laird (plus) estimators are compared with the true variance (cross). Light gray
line at 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Relation of estimates of the between-studies variance 𝜏2 to the overall log-risk-ratio (𝜃) in K studies, each of total sample size n,
when data come from the binomial-normal model with truncation for 𝜏2 = 1 and 𝜋jC = 0.1 (solid lines) and 0.3 (dashed). The Mandel-Paule
(circle), REML (triangle), and DerSimonian-Laird (plus) estimation methods are compared with the true variance (cross). Light gray line at 1
[Colour figure can be viewed at wileyonlinelibrary.com]

in using a normal distribution for the random effects. A
different approach is required to obtain unbiased infer-
ence, or the bias needs to be estimated and eliminated.

3.3.2 Simulation study
To evaluate the size of these biases in conventional
random-effects meta-analysis (ie, the log-normal-normal
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model, Section 2), we conducted a small simulation study
of the two options for generating data from a log-binomial
LMM. We used equal sample sizes njC = njT = n∕2 and
the same value of 𝜋C for all studies. We set K = 5, 10, 20;
n = 100, 200, 500; 𝜃 = −1.5,−1,−0.5, 0, 0.5, 1, 1.5; 𝜋jC =
0.1 or 0.3; and 𝜏2 = 0.1 and 1. If a study had YT + YC = 0
or n, we followed customary practice by discarding it and
reducing K accordingly. We estimated 𝜏2 by three meth-
ods: DerSimonian-Laird,28 Mandel-Paule,29 and restricted
maximum likelihood (REML). From 1000 replications, we
studied estimation of 𝜏2 and 𝜃 and the coverage of confi-
dence intervals for 𝜃 based on the normal approximation.

Figures 1 and 2 show the results for estimation of 𝜏2 (ie,
var(𝜃j)) when 𝜏2 = 1. Similar results for 𝜏2 = 0.1 appear
in Figures S1 and S2 (Appendix B.1). The substantial biases
(usually negative) in estimation of 𝜏2 for both options have
two sources. For the larger values of 𝜃, they arise from the
restriction𝜋jT < 1, which has greater impact for𝜋jC = 0.3
than for 𝜋jC = 0.1. As the traces for the theoretical value
of 𝜏2 show, this source of bias plays a steadily decreasing
role as 𝜃 decreases from 1.5 to −1.5. For the smaller (ie,
more negative) values of 𝜃, the source of the bias is progres-
sively small values of 𝜋jT as 𝜃 becomes more negative. For
example, when𝜋jC = 0.1, and 𝜃 = −0.5, the median value
of𝜋jT is 0.0607, for 𝜃 = −1, the median value is 0.0368, and
for 𝜃 = −1.5, it is 0.0223. For sparse data, the distribution
of log(risk) and hence log(RR) is not well approximated by
a normal distribution. It is well known that the standard
REM does not perform well in these circumstances.30

In relation to 𝜃, the point-mass option (Figure 1) has
similar patterns of bias in 𝜏2 for the three methods as K
increases and as n increases. The MP method consistently
has the smallest bias, followed by REML and then DL.
As K increases, the patterns for each n change little. As n
increases, the traces for each K move closer to 1, and the
trace for REML moves closer to that for MP. In contrast, the
traces for DL generally move farther away from the other
estimators.

For the truncation option, the plots of bias in 𝜏2 ver-
sus 𝜃 (Figure 2) are qualitatively similar to those for the
point-mass option (Figure 1), with several main differ-
ences. For 𝜋jC = 0.1 and each combination of n and K,
the biases are larger than those in Figure 1, especially for
𝜃 ≥ 0. For 𝜋jC = 0.3 and 𝜃 > 0, the slopes are not as
steep, and the biases at 𝜃 = 1.5 are not as large, as in
Figure 1.

Biases in estimating 𝜃 are almost the same for the three
methods of estimating 𝜏2. Therefore, Figure 3 shows the
results for the Mandel-Paule method and, for comparison,
the theoretical expectations. For both options and both val-
ues of 𝜋jC, the bias in �̂� is strongly related to 𝜃. When
𝜋jC = 0.1, the two options produce the same bias for
𝜃 ≤ 0: positive at 𝜃 = 0 and roughly linear in 𝜃, with

negative slope, for 𝜃 < 0 (we expect the restriction 𝜋jT <

1 to have little impact). For 𝜃 > 0, the traces for the
two options diverge; the point-mass option has bias of rel-
atively small magnitude, and the truncation option has
increasingly negative bias as 𝜃 increases. When 𝜋jC = 0.3,
both traces show substantial curvature. For 𝜃 ≤ − 0.5,
truncation often produces smaller (and positive) bias than
the point-mass option, but for 𝜃 ≥ 0, its bias is nega-
tive and considerably larger in magnitude. These patterns
change little with K and only slightly with n.

In summary, neither the point-mass option nor the trun-
cation option responds satisfactorily to bj sampled from a
random-effects distribution that produces 𝜋jT > 1. The
resulting biases in estimating 𝜃 and 𝜏2 are often unaccept-
ably large. Our choice of 𝜏2 = 1 as the true value may
have magnified the biases, but it serves to illustrate the dif-
ficulties, and the same general patterns in estimating 𝜏2

are present when 𝜏2 = 0.1. The biases seen in this small
simulation raise questions about the results of numerous
meta-analyses that have employed the REM for RRs. We
explore this further in Section 6.

4 BB MODEL

In this section, we explore the main alternative to the
binomial GLMMs, BB regression, and its application to
meta-analysis of RRs.

4.1 The BB distribution
The BB distribution arises as a mixture of binomial distri-
butions, Binom(n, p), according to a beta distribution for
p. If Y ∼ Binom(n, p) and p ∼ Beta(𝛼, 𝛽), then, uncondi-
tionally, Y follows a BB distribution with parameters n, 𝛼,
and 𝛽 (Johnson et al,31, p.270). It is convenient to parametrize
this distribution as BetaBinom(n, 𝜋, 𝜌), where 𝜋 = 𝛼∕(𝛼 +
𝛽), 𝜌 = 1∕(𝛼 + 𝛽 + 1), 𝛼 > 0, and 𝛽 > 0. Then, the beta
distribution has mean 𝜋 and variance 𝜋(1 − 𝜋)𝜌, and

E(Y ) = n𝜋, Var(Y ) = n𝜋(1−𝜋)(1+ (n− 1)𝜌) , (13)

which shows overdispersion relative to Binom(n, 𝜋). The
distribution of the sum of n Bernoulli(𝜋) random variables
with intra-cluster correlation (ICC) 𝜌 has the same mean
and variance, but its actual shape may be very different.32

4.2 BB regression
Like the conventional REM and the binomial GLMMs,
BB regression is a two-stage REM. Assume that, as in
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FIGURE 3 Relation (to the overall log-risk-ratio, 𝜃) of bias in the conventional method of estimating the log-relative-risk, 𝜃, in the
binomial-normal model from K studies, each of total sample size n, with truncation (circle) or point-mass (triangle) option, when 𝜏2 (true
value, 𝜏2 = 1) is estimated by the Mandel-Paule method, compared with true bias from truncation (cross) and point mass (diamond).
𝜋jC = 0.1 (solid lines) and 0.3 (dashed). Light gray line at 0 [Colour figure can be viewed at wileyonlinelibrary.com]

a randomized controlled trial, the treatment and control
groups of each study are independent, and that within
the two groups, conditional on the probabilities, the

numbers of events follow binomial distributions. Allow-
ing beta-distributed variation of the probabilities among
the studies, the resulting marginal distributions are BB
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distributions. If (for simplicity) they have the same 𝜌 for
both groups and all studies, then

Y𝑗C ∼ BetaBinom(n𝑗C, 𝜋C, 𝜌) and

Y𝑗T ∼ BetaBinom(n𝑗T , 𝜋T , 𝜌).
(14)

That is, as in the binomial model, the two groups differ
only on𝜋 (and n). The corresponding beta distributions are

p𝑗i ∼ Beta(𝜋i(𝜌−1 − 1), (1 − 𝜋i)(𝜌−1 − 1)). (15)

Importantly, because the GLMMs and BB regression make
very different distributional assumptions about the ran-
dom effects, their results may differ. Bakbergenuly and
Kulinskaya33 considered meta-analysis of ORs under a
BB model. A more general model uses a bivariate beta dis-
tribution, and therefore may have different values of 𝜌 in
the two groups, and also correlation between the groups.34

Like GLMMs, the BB model can incorporate a matrix of
covariates X by using an appropriate link function g for the
effect measure of interest, so that g(𝜋) = X𝜃 for a vector
of unknown parameters 𝜃.

For BB meta-analysis,

g(𝜋i) = 𝛼 + xi𝜃;

as before, xi is a treatment indicator, and 𝜃 is a treatment
effect. Thus, BB regression yields a REM in which 𝜃 deter-
mines the association between pjT and pjC (through the
link function).

Most, if not all, BB regression programs use the logit
link,35,36 so the probabilities 𝜋 = expit(X𝜃). The logit link
function guarantees that the probabilities 𝜋 lie in the inter-
val (0, 1). The log link encounters the same complications
as in the log-binomial model, because the estimation pro-
cess needs to incorporate the constraint X𝜃 < 0 . We are not
aware of any theoretical work for this log-beta-binomial
model.

4.3 Using standard BB regression for RR
In a single study, the RR can be estimated as the ratio
�̂�T∕�̂�C of the ML estimators of 𝜋T and 𝜋C or from the esti-
mated logits obtained by using a BB regression with the
logit link.

The likelihood for the BB model (14) is

K∏
𝑗=1

2∏
i=1

(
n𝑗i

Y𝑗i

) Beta(𝜋i(𝜌−1 − 1) + Y𝑗i, (1 − 𝜋i)(𝜌−1 − 1) + n𝑗i − Y𝑗i)
Beta(𝜋i(𝜌−1 − 1), (1 − 𝜋i)(𝜌−1 − 1))

, (16)

where Beta(u, v) is the beta function. The parameters
𝜋T, 𝜋C, and 𝜌 can be estimated by maximizing the
log-likelihood. This process may encounter computational
problems because the BB distribution does not belong to

an exponential family.37ML estimation requires numeri-
cal methods such as the Newton-Raphson method. The
approximate covariance matrix of the parameter estimates
is obtained by evaluating the inverse of the Hessian matrix
at those estimates.

In R, the package bbmle provides a program for maxi-
mizing the BB likelihood.38 General BB regression with the
logit link function is implemented in a number of R pack-
ages, including gamlss39 and hglm.36 The use of the SAS
procedure NLMIXED is explained in Martinez et al.37

From the MLEs of 𝜋T and 𝜋C and estimates of their
variances Var(�̂�T) and Var(�̂�C) (say, from bbmle), the
delta method yields an approximation for the variance of
log(RR):

Var(log(RR)) ≈
[

1
�̂�T

]2

Var(�̂�T) +
[

1
�̂�C

]2

Var(�̂�C). (17)

Similarly, when using the logit link, output from
BB regression (say, gamlss) provides estimates of the
log-odds �̂�C = �̂� and �̂�T = �̂� + �̂� and their standard errors.
To obtain the estimate of the RR, the expit transformation
yields the estimated probabilities

�̂�C =
exp(�̂�)

1 + exp(�̂�)
and �̂�T =

exp(�̂� + �̂�)
1 + exp(�̂� + �̂�)

.

Then, log(RR) is given by log(�̂�T∕�̂�C)with variance approx-
imated by the delta method:

Var(log(RR)) ≈ Var
(

log
(

exp(�̂�T)
1 + exp(�̂�T)

)
− log

(
exp(�̂�C)

1 + exp(�̂�C)

))
=
[

1
1 + exp(�̂�T)

]2

Var(�̂�T)

+
[

1
1 + exp(�̂�C)

]2

Var(�̂�C).

(18)

The overdispersion in the BB model may be parametrized
in various ways: bbmle estimates 𝛾 = (1 − 𝜌)∕𝜌, and
gamlss estimates 𝛾 = log(𝜌). In Supporting Information
(Appendix A), we provide R functions for using bbmle and
gamlss for meta-analysis of RR.

4.4 Conventional meta-analysis
of RRs under the BB model
Conventional meta-analysis calculates the sampleRRs,
�̂�𝑗 = �̂�𝑗T∕�̂�𝑗C, and their logarithms, �̂�𝑗 , and uses
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inverse-variance weights based on estimated
variances of the �̂�𝑗 . To obtain an unbiased (to O(n−2))
estimate of 𝜃j and an unbiased (to O(n−3)) estimate of

Var(�̂�𝑗) under a binomial distribution, Pettigrew et al14

add 1∕2 to the number of events and the total in each
group:

FIGURE 4 Relation (to the overall log-risk-ratio, 𝜃) of bias in estimating 𝜌 from K studies, each of total size n, in the beta-binomial model
for 𝜌 = 0.1 and 𝜋C = 0.1 (solid lines) and 0.3 (dashed). The methods are Mandel-Paule (circle), Breslow-Day (cross), bbmle (reverse
triangle), and gamlss (filled square). Light gray line at 0 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


BAKBERGENULY ET AL. 409

�̂�𝑗 = log
(Y𝑗T + 1∕2

n𝑗T + 1∕2

)
− log

(Y𝑗C + 1∕2
n𝑗C + 1∕2

)
; (19)

we retain this estimate. When YjC and YjT have BB dis-
tributions, Equation 14, the approximate variance of �̂�𝑗 ,
obtained via the delta method, is

FIGURE 5 Bias in estimating the overall log-risk-ratio, 𝜃, from K studies, each of total size n, in the beta-binomial model for 𝜌 = 0.1 and
𝜋C = 0.1 (solid lines) and 0.3 (dashed). The log-relative-risk is estimated by using inverse-variance weights. The methods for estimation of 𝜌
are Mandel-Paule (circle), Breslow-Day (cross), bbmle (reverse triangle), and gamlss (filled square). Light gray line at 0 [Colour figure can be
viewed at wileyonlinelibrary.com]
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Var (�̂�𝑗) ≈
1 − 𝜋T

n𝑗T𝜋T
(1 + (n𝑗T − 1)𝜌)

+ 1 − 𝜋C

n𝑗C𝜋C
(1 + (n𝑗C − 1)𝜌).

(20)

Substituting the variances of the �̂�i from the line above (13)
yields the same variance as in Equation 17. Setting 𝜌 = 0
in (20) yields the within-study variance of �̂�𝑗 for binomi-
ally distributed data, so under the BB model (𝜌 > 0), this
variance is inflated. In a direct parallel, in the conventional
REM, compared with the fixed-effect model, the variances
of the �̂�𝑗 are inflated by an additive variance component,
𝜏2. Thus, the BB model is similar to the conventional REM,
but the variance inflation is multiplicative instead of addi-
tive; it is of order O(1) and increases with 𝜌; the variance
also may be large when 𝜋C or 𝜋T is close to 0.

The conventional REM uses inverse-variance weights to
obtain an estimate of the overall effect. Estimating 𝜋jT and
𝜋jC as in (19) yields the estimated variance

V̂ar(�̂�𝑗) =
(

1
𝑦𝑗T + 1∕2

− 1
n𝑗T + 1∕2

)
(1 + (n𝑗T − 1)�̂�)

+
(

1
𝑦𝑗C + 1∕2

− 1
n𝑗C + 1∕2

)
(1 + (n𝑗C − 1)�̂�).

(21)
To use these estimated variances, however, we must esti-
mate 𝜌.

4.5 Estimation of 𝜌
To estimate 𝜌, we modify two established methods:
a method-of-moments estimator based on Cochran's Q
statistic, similar to the DerSimonian-Laird28 estimator of
𝜏2, and an REML estimator. According to Viechtbauer,40

these two approaches perform best for estimation of the
between-studies variance 𝜏2 in the additive REM. We also
use a version of the method of Mandel and Paule29 to esti-
mate 𝜌 from the large-sample approximation of Q by a
chi-squared distribution. All three methods were proposed
by Kulinskaya and Olkin,41 but they have not previously
been explored by simulation. We refer to these estimators
as �̂�MoM, �̂�REML, and �̂�MP, respectively. However, in finite
samples the chi-squared distribution is a poor approxima-
tion to the distribution of the Q statistic,42 and we propose a
new method for point and interval estimation of 𝜌 based on
inverting the modified Breslow-Day (BD) test,43�̂�BD. Bak-
bergenuly and Kulinskaya33 proposed a similar method in
meta-analysis of ORs. The detailed derivations for these
four estimators of 𝜌 are given in Supporting Information
(Appendix A1).

4.6 Simulation study
To explore the performance of BB methods for
meta-analysis of RRs, we conducted a small simulation
study. We used equal sample sizes njC = njT = n∕2, the
same value of 𝜃 for all studies, and 𝜋T = 𝜋C exp(𝜃) for 𝜃 <
− log(𝜋C). The data in the treatment and control groups
were generated from independent BB distributions. Paral-
lel to Section 3.3.2, we set K = 5, 10, 20; n = 100, 200, 500;
𝜃 = −1.5,−1.0,−0.5, 0, 0.5, 1, 1.5; 𝜋C = 0.1 or 0.3;
and 𝜌 = 0.1. As in our simulation study for the
log-binomial LMM (Section 3.3.2), when a study had
YT + YC = 0 or n, we discarded it and reduced K
accordingly.

We estimated 𝜌 by the modified MoM and MP methods,
REML, and the BD-based method. The estimates of 𝜃 used
inverse-variance weights, and their CIs used the normal
approximation. We also included bbmle and gamlss, the
latter with logit link. For all methods, we estimated bias
in estimation of 𝜃 and 𝜌 and coverage of confidence inter-
vals for 𝜃. For the nine combinations of n and K, Figures 4,
5, and 6 plot (versus 𝜃) the estimated bias for �̂� and �̂�

and the coverage of 𝜃, respectively. Because the results are
almost the same for the MP, MoM, and REML methods,
the figures show only the MP results.

For bbmle and gamlss, the bias in �̂� does not vary appre-
ciably with 𝜃, 𝜋C, or n. It is roughly −0.02 for K = 5, and
it approaches 0 as K increases. The bias of the other meth-
ods is generally negative, unrelated to n, and only weakly
related to K. The relation of those biases to 𝜃 is roughly lin-
ear, with similar positive slopes (except for high positive
values with BD when 𝜋C = 0.3). When 𝜋C = 0.1, the
bias of MP rises from −0.0855 at 𝜃 = −1.5 to −0.0386 at
𝜃 = +1.5; it is closer to 0 by roughly 0.05 when 𝜋C = 0.3.
The trace for BD when 𝜋C = 0.1 closely resembles that for
MP when 𝜋C = 0.3, and it shifts upward by roughly 0.035
when 𝜋C = 0.3. Since the true value of 𝜌 is 0.1, these biases
are substantial.

The bias in �̂� follows two patterns, both of which change
little with N or 𝜋C. One pattern (RR estimated with bbmle
or gamlss) goes linearly from small negative bias at 𝜃 =
−1.5 to small positive bias at 𝜃 = 1.5, and its mag-
nitude decreases as K increases. The other pattern (MP,
BD, and other inverse-variance methods) goes, roughly lin-
early, from around 0.3 at 𝜃 = −1.5 to around −0.3 at
𝜃 = 1.5, when K = 5; and the traces become steeper
as K increases. All of the methods have essentially no bias
at 𝜃 = 0, but otherwise MP and BD underestimate the
magnitude of 𝜃 by about 20%. This is due to the effect of
transformation bias, which is almost linear in 𝜌. Section
6.2.3 in Bakbergenuly and Kulinskaya33 gives a detailed
explanation of the similar bias in BB meta-analysis of log-
odds-ratio.
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FIGURE 6 Coverage of the overall log-risk-ratio, 𝜃, from K studies, each of total size n, in the beta-binomial model for 𝜌 = 0.1 and
𝜋C = 0.1 (solid lines) and 0.3 (dashed). The log-relative-risk is estimated by using inverse-variance weights. The methods for estimation of 𝜌
are Mandel-Paule (circle), Breslow-Day (cross), bbmle (reverse triangle), and gamlss (filled square). Light gray line at 0.95 [Colour figure can
be viewed at wileyonlinelibrary.com]

The confidence intervals for bbmle have the best cov-
erage of 𝜃, slightly below the nominal 95% when K =
5 (particularly when 𝜃 = −1.5) but differing little
from 95% when K = 10 and K = 20. Coverage

of the gamlss intervals is lower, especially when 𝜋C =
0.3, and it declines steadily as 𝜃 increases from −1.5
to +1.5; the pattern changes little with n or K. The
inverse-variance–based methods give close to nominal cov-
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erage when 𝜃 = 0, but they deteriorate rapidly as 𝜃 departs
from 0 in either direction, and that pattern becomes worse
as K increases (for example, when K = 20, coverage of the
MP interval is near or below 50% at 𝜃 = −1.5 and 𝜃 = 1.5,
for all three values of n). Patterns of bias such as those in
Figure 5 would lead us to expect the patterns of coverage
in Figure 6.

Overall, the inverse-variance methods do not help with
estimation of RR in the BB model, as it requires the same
constraints as the log-binomial model. BB regression per-
forms much better in estimation of 𝜌 and RR, especially for
K ≥ 10. However, the use of the logit link, as in gamlss,
does not provide sufficient coverage of RR, and only bbmle
provides a viable option when the data follow a BB model.
We discuss model misspecification issues in Sections 6
and 7.

5 EXAMPLES

In this section, we re-analyze the data from two med-
ical meta-analyses, comparing two conventional REMs
(DL and REML) with the six methods developed for
the BB model that we discussed in Section 4. The first
meta-analysis on the effect of diuretics on pre-eclampsia44

considered the beneficial effects of treatment (ie, the RR
of benefit), whereas the second meta-analysis focused on
side-effects of low-dosage tricyclic antidepressants in acute
depression45 (ie, the RR of harm).

5.1 Example 1: Effect of diuretics
on pre-eclampsia
A meta-analysis of nine trials, with a total of 6942 patients,
evaluated the effect of diuretics on pre-eclampsia, a serious
complication in pregnancy.44 These data (Table 1) have also
been analyzed (as ORs) by Thompson and Pocock,46 Hardy
and Thompson,47 Biggerstaff and Tweedie,48 Whitehead,49

Viechtbauer,50 Makambi and Lu,51 and Kulinskaya and
Olkin.41 The incidence of pre-eclampsia in the control
group shows considerable heterogeneity: from 1.9% in
study 8 to 50.0% in study 3. The incidence in over half of
the studies is large enough that the OR does not provide
a satisfactory approximation for the RR. The study-level
estimates of log(RR) (�̂�𝑗 from (19)) range from −1.33 to
+0.91.

For various methods, Table 2 shows the estimated values
of 𝜏2 for the conventional REM and of 𝜌 in the BB model.
In the conventional REM, the DerSimonian-Laird estimate
of 𝜏2 is 𝜏2

DL = 0.156, and 𝜏2
REML = 0.199. Viechtbauer50

gives Q-profile confidence intervals for DL, and Hardy and
Thompson47 give profile-likelihood confidence intervals
for the REML method.

TABLE 1 Data from nine trials of diuretics for treatment of
pre-eclampsia in pregnancy. The study-level estimate of log(RR), �̂�𝑗 ,
comes from Equation 19

Study YjC njC YjC∕njC YjT njT �̂�𝑗

1 14 136 0.103 14 131 0.0373
2 17 134 0.127 21 385 −0.8471
3 24 48 0.500 14 57 −0.6947
4 18 40 0.450 6 38 −0.9953
5 35 760 0.046 12 1011 −1.3290
6 175 1336 0.131 138 1370 −0.2619
7 20 524 0.038 15 506 −0.2447
8 2 103 0.019 6 108 0.9083
9 40 102 0.392 65 153 0.0969

For the BB model, six methods provide estimates of 𝜌:
0.138 for bbmle and 0.139 for gamlss, and 0.008 to 0.019 for
the method-of-moments, REML, MP, and BD estimators.
The separation between results from BB regression meth-
ods (bbmle/gamlss) and the inverse-variance BB methods
is in the direction that we would expect from the simu-
lation results on bias in Figure 4, but the magnitude of �̂�
from BB regression methods is greater (perhaps because
of the particular mixture of values of the incidence of
pre-eclampsia in the control group).

In bbmle, the ML-based estimates of the means of the
two BB distributions are �̂�T = 0.143 and �̂�C = 0.185,
which result in RR = 0.774. The confidence intervals for
estimates of probabilities and the overdispersion parame-
ter 𝛾( = (1 − 𝜌)∕𝜌 = 𝛼 + 𝛽) are based on the standard
errors obtained from the inverse of the observed infor-
mation matrix. The standard error for the log-risk-ratio is
obtained by the delta method as a function of 𝜋T and 𝜋C,
Equation 17.

In gamlss, the estimates for probabilities are obtained
from the BB regression model with logit link function. The
estimates for probabilities obtained by inverting the logit
link function, �̂�T = 0.143 and �̂�C = 0.185, yield RR =
0.773. In gamlss, the intracluster correlation is defined as
𝜌 = 𝜎∕(𝜎 + 1), where 𝜎 = 1∕(𝛼 + 𝛽) is the overdisper-
sion parameter. The parameter 𝜎 has a log link function.
Standard errors and confidence intervals for 𝜎 are obtained
in the log scale. The relation between 𝜌 and 𝜎 yields a
confidence interval for 𝜌.

The estimate of the overall RR is highest (0.774) in the
bbmle model, and its confidence interval is the longest
(1.275). The estimate of the RR is lowest (0.645) in the
conventional REM with 𝜏2

REML = 0.199.
The results of this example can be compared with sim-

ulation results for K = 10 (in Figure 5), since it has nine
studies. Thus, for �̂�bbmle = −0.257, the bias of bbmle and
gamlss is about 0.20, which leads to the estimate �̂�True =
−0.257 − 0.20 = −0.457. For �̂�BD = −0.321, the bias of the



BAKBERGENULY ET AL. 413

TABLE 2 Point estimates and confidence intervals for 𝜏2, 𝜌, log-risk-ratio (LRR), and risk ratio (RR) in the example of
diuretics in pre-eclampsiaa

Model Method Overdispersion L U LRR L U Length RR L U
Parameter of CI

𝜏2

FEM −0.305 −0.449 −0.161 0.288 0.737 0.638 0.851
REM DL&IV 0.156 0.049 1.582 −0.437 −0.768 −0.107 0.661 0.646 0.464 0.899
REM REML&IV 0.199 0.032 0.989 −0.439 −0.799 −0.079 0.720 0.645 0.450 0.924

𝜌

BB MoM&IV 0.008 0.002 0.093 −0.297 −0.563 −0.032 0.530 0.743 0.570 0.969
BB REML&IV 0.010 0.001 0.061 −0.305 −0.595 −0.014 0.581 0.737 0.551 0.986
BB MP&IV 0.016 0.002 0.093 −0.316 −0.644 0.012 0.632 0.729 0.525 1.011
BB BD&IV 0.019 0.003 0.106 −0.321 −0.668 0.025 0.693 0.725 0.513 1.026
BB bbmle 0.138 0.077 0.258 −0.257 −1.008 0.495 1.504 0.774 0.365 1.640
BB gamlss 0.139 0.057 0.300 −0.257 −0.948 0.433 1.381 0.773 0.388 1.542

Note. FEM is the fixed-effect model, REM is the random-effects model, and BB is the beta-binomial model. bbmle and gamlss are beta-binomial
maximum-likelihood-based and generalized-additive-regression models. The heterogeneity parameter is 𝜏2 in REM and 𝜌 in the BB model. L
and U denote the lower and upper limits of the 95% confidence intervals (CIs).

Breslow-Day method for estimating 𝜌 is 0.10, which leads
to the estimate �̂�True = −0.321 − 0.10 = −0.421.

5.2 Example 2: Side effects of low-dosage
tricyclic antidepressants in acute-phase
depression
Systematic review45 in the Cochrane Library compared
the effects and side effects of low-dosage tricyclic antide-
pressants (TCA) with placebo and with standard-dosage
tricyclics in acute-phase treatment of depression. Compar-
ison 2 Outcome 6 is the meta-analysis of the rate of side
effects in the low-dosage TCA group vs placebo. Table 3
gives the data on numbers of patients experiencing at least
one side effect.

The incidence of side effects in the placebo group is sub-
stantial; only two of the 16 studies have YjC∕njC < 10%,
and the highest is 75%. Again, the OR does not provide a
satisfactory approximation for the RR. One would expect
more patients in the treatment group to report side effects
(RR > 1, 𝜃 > 0). The values of �̂�𝑗 show substantial het-
erogeneity, and they suggest a mixture of four groups: eight
values from −0.001 to 0.435, six values from 0.744 to 1.043,
one at 1.494, and one at 1.769.

Table 4 shows the estimated values of 𝜏2 in the
conventional REM and of 𝜌 in the BB model. The
DerSimonian-Laird estimate is 𝜏2

DL = 0.047, and 𝜏2
REML =

0.068. For the BB model, the six estimates of 𝜌 again sepa-
rate into two clumps: the method-of-moments, REML, MP,
and BD estimates range from 0.006 to 0.031, and bbmle and
gamlss both produce 0.175. From the simulation results
in Figure 4 (especially those for n = 100 and K = 20),
we might expect such a separation, but the values of the

TABLE 3 Data on numbers of patients experiencing at least one
side effect in studies of low-dosage tricyclic antidepressants vs
placebo. The study-level estimate of log(RR), �̂�𝑗 , comes from
Equation 19

Study YjC njC YjC∕njC YjT njT YjT∕njT �̂�𝑗

1 17 28 0.607 16 24 0.667 0.092
2 7 10 0.700 12 12 1.000 0.336
3 3 12 0.250 8 13 0.615 0.810
4 30 62 0.484 29 60 0.483 −0.001
5 14 53 0.264 34 60 0.567 0.744
6 5 21 0.238 14 20 0.700 1.017
7 13 46 0.283 37 45 0.822 1.043
8 45 60 0.750 56 60 0.933 0.217
9 31 82 0.378 52 95 0.547 0.364
10 0 10 0.000 3 16 0.188 1.494
11 9 47 0.191 51 110 0.464 0.846
12 5 20 0.250 8 20 0.400 0.435
13 3 16 0.188 7 15 0.467 0.825
14 43 72 0.597 63 72 0.875 0.378
15 1 29 0.034 8 28 0.286 1.769
16 5 23 0.217 5 17 0.294 0.295

other parameters in the simulations are not close to the
estimated values in this example.

Both bbmle and gamlss yield �̂�T = 0.593, �̂�C = 0.347,
and hence RR = 1.708. This is likely to be a reasonable
estimate of RR. From the simulation results in Figure 5,
we would expect the other BB estimates to have negative
bias. The estimates from the REM are also likely to be low.
Of bbmle and gamlss, the latter has a substantially wider
confidence interval.
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TABLE 4 Point estimates and confidence intervals for 𝜏2, 𝜌, log-risk-ratio (LRR), and risk ratio (RR) in the example of
side effects of low-dosage tricyclic antidepressants vs placeboa

Model Method Overdispersion L U LRR L U Length RR L U
parameter of CI

𝜏2

FEM 0.355 0.258 0.452 0.194 1.426 1.294 1.571
REM DL&IV 0.047 0.005 0.329 0.461 0.286 0.636 0.350 1.586 1.331 1.889
REM REML&IV 0.068 0.005 0.275 0.480 0.286 0.674 0.388 1.616 1.331 1.961

𝜌

BB MoM&IV 0.028 0.002 0.107 0.368 0.217 0.520 0.303 1.445 1.242 1.682
BB REML&IV 0.031 0.004 0.109 0.369 0.214 0.525 0.311 1.447 1.238 1.690
BB MP&IV 0.026 0.002 0.107 0.368 0.219 0.517 0.298 1.445 1.245 1.676
BB BD&IV 0.006 −0.008 0.073 0.359 0.246 0.473 0.227 1.432 1.279 1.604
BB bbmle 0.175 0.107 0.276 0.535 0.384 0.686 0.302 1.708 1.469 1.987
BB gamlss 0.175 0.102 0.284 0.535 0.326 0.745 0.419 1.708 1.384 2.107

FEM is the fixed-effect model, REM is the random-effects model, and BB is the beta-binomial model. bbmle and gamlss are beta-binomial
maximum-likelihood-based and generalized-additive-regression models. The heterogeneity parameter is 𝜏2 in REM and 𝜌 in the BB model. L
and U denote the lower and upper limits of the 95% confidence intervals (CIs).

6 RR IN COCHRANE REVIEWS

To explore the practical implications of the restricted
range in meta-analyses of RR, we reviewed random-effects
meta-analyses that used RR in Cochrane Library Issue
4, 2004. As in the Cochrane Collaboration's Review
Manager,52 we used inverse-variance–weighted meta-
analysis and estimated the between-study variance 𝜏2 by
the DerSimonian-Laird method. We also included the
BB-based analysis using bbmle.

We considered only the 2115 meta-analyses with K ≥ 3
studies. Among those, 1286 MAs had 𝜏2 > 0 (by our cal-
culations, using metabin from the R package meta). Those
1286 MAs included 8940 studies with nC ≥ 5 and nT ≥ 5.

For Study j in MA m, we calculated the estimated
log(RR), �̂�m𝑗 , from (19) and its within-study variance vmj

from (21) with 𝜌 = 0. (These calculations aim to mini-
mize bias in �̂�m𝑗 and vmj. They add 1∕2 to each cell of the
2 × 2 table for each study, whereas the conventional ones
add 1∕2 only when the 2 × 2 table contains a zero cell.)
The FE weights are wF

m𝑗 = 1∕vm𝑗 , and the RE weights are
wR

m𝑗 = (vm𝑗 + 𝜏2
m)−1. For the FEM and the REM, we set wmj

equal to wF
m𝑗 and wR

m𝑗 , respectively, to obtain the combined
effects �̂�m and their estimated variances 1∕

∑
𝑗wm𝑗 .

For the FEM and the REM, we calculated studentized
residuals rm𝑗 = (�̂�m𝑗 − �̂�m)∕sm𝑗 , now defining s2

m𝑗 =
Var(�̂�m𝑗 − �̂�m) = 1∕wm𝑗 − 1∕

∑
𝑗wm𝑗 for the respec-

tive weights. If, in the model for the log-risk-ratio, the
assumption bm𝑗 ∼ N(0, 𝜏2

m) holds for these Cochrane
reviews, these rmj should have approximately the stan-
dard normal distribution. Because no single meta-analysis
involves enough studies to assess the reasonableness of

that assumption, we combined the rmj from all studies in
MAs with �̂� ≥ 0 and 𝜏2 > 0. The Q-Q plot in Figure 7
shows that the distribution of the rmj is not well approx-
imated by a normal distribution. Although less striking,
the corresponding plot of the rmj from the studies in MAs
with �̂� < 0 and 𝜏2 > 0 (not shown) reinforces that mes-
sage. The example in Section 5.2 suggests an additional
departure: the studies' effects may come from a mixture of
distributions. This could help to account for the appear-
ance, in Figure 7, of a distribution whose tails are lighter
than normal.

Building on the analysis in Section 3.2, we also inquire
into the impact of the restriction in Equation 8. Because
conventional meta-analysis starts with the log of the sam-
ple RR, and the range of the log function is unbounded,
it might seem that the restriction would have no impact.
However, the basic data for each study include yjC and njC,
and under the usual binomial model �̂�𝑗C = 𝑦𝑗C∕n𝑗C is an
unbiased estimate of 𝜋jC. Thus, when �̂�𝑗T = 𝑦𝑗T∕n𝑗T >

�̂�𝑗C and hence �̂�𝑗 > 0, larger 𝜋jC (and hence − log𝜋𝑗C
closer to 0) will increase the impact of the restriction.
We investigate the impact by estimating the probability
of violating Equation 8, which we refer to as the trunca-
tion probability. For a normally distributed random effect
bmj, this is approximated by 1 −Φ((− log(�̂�m𝑗C) − �̂�m)∕𝜏m).
We grouped these estimated probabilities into 10 bins: <
0.05, [0.05 − 0.15), [0.15 − 0.25), … , ≥ 0.85. Table 5 shows
the numbers of studies in each bin.

In total, 966 studies had truncation probability ≥ 0.05:
442 studies from 188 MAs with �̂� ≥ 0 and 524 studies from
241 MAs with �̂� < 0. These 429 MAs out of 1286 (exactly
one-third of the MAs using REM for RR) are likely to have
reported biased conclusions. For the MAs with �̂� ≥ 0 and
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FIGURE 7 Normal Q-Q plot of the studentized residuals for the studies from random-effects model (REM) meta-analyses of log-risk-ratio
with �̂� ≥ 0, 𝜏2 > 0 in Cochrane Library Issue 4

TABLE 5 Studies in 1286 meta-analyses in the Cochrane Database that used REM for
RR and had 𝜏2 > 0, cross-classified by the estimated probability of truncation for 𝜋T and
whether �̂� ≥ 0

Estimated Probability of Truncation of 𝜋T

< 0.05 [0.05 − 0.15) [0.15 − 0.25) [0.25 − 0.35) [0.35 − 0.45)

�̂� ≥ 0 1725 192 68 59 50
�̂� < 0 6249 362 88 56 18
Total 7974 554 156 115 68

[0.45 − 0.55) [0.55 − 0.65) [0.65 − 0.75) [0.75 − 0.85) ≥ 0.85
�̂� ≥ 0 16 22 16 14 5
�̂� < 0 0 0 0 0 0
Total 16 22 16 14 5

𝜏2 > 0, Figure 8 shows boxplots of the rmj in each of the ten
intervals of probability of truncation for 𝜋jT. The distance
between �̂�m𝑗 and �̂�m is strongly related to the truncation
probability. When the truncation probability is ≥ 0.35, the
median of the rmj is at or below−1. In these 123 studies, the
violation of the assumptions of the conventional REM is
likely to be greatest. Separate Q-Q plots of the rmj for the
studies with truncation probability < 0.35 and the stud-
ies with truncation probability ≥ 0.35 (not shown) support
this conclusion.

The three panels of Figure 9 plot the estimates of log(RR)
from the REM, the estimates of log(RR) from bbmle, and
the difference between them versus the estimates from the
FEM. For the 353 MAs with �̂�REM ≥ 0 and 𝜏2 > 0 in
panel A, the majority of REM estimates are above their
FEM counterparts, sometimes very substantially. This pat-
tern supports the impression that the positive RRs and
their significance reported from the conventional REM
are overestimates. We conclude that the positive values
of log(RR) estimated from REM are likely to be over-
estimates. Simulations performed previously to ascertain
the quality of those estimates are likely to have provided

downward-biased results, compensating for this overesti-
mation.

The bbmle estimates from the 713 MAs with �̂�bbmle ≥
0 and �̂� > 0 in panel B follow the same pattern, per-
haps even more so. There are more positive values of �̂�
from bbmle than from REM, and they appear to have
higher values. Relative to the estimates from the FEM,
the differences between the estimates from the REM and
those from bbmle, in panel C, are more often negative,
and they are often not small. A difference of 0.223 in
log(RR) corresponds to a factor of 1.25 in RR. These dif-
ferences may be due to the differences in the underly-
ing assumptions about the distribution of random effects
in the two models, and hence to model misspecifica-
tion in one of them, and/or to the biases discussed in
Sections 3 and 4.

At the suggestion of a referee, we repeated the analyses
of this section, restricting the participating meta-analyses
to only the 128 with K ≥ 10 studies, to guard against
imprecise estimation of 𝜏2 for small K. The results, in
Supporting Information (Figures S3-S5), are qualitatively
similar.
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FIGURE 8 Boxplots of studentized residuals by truncation probability, for the studies from random-effects model (REM) meta-analyses of
log-risk-ratio with �̂� ≥ 0, 𝜏2 > 0 in Cochrane Library Issue 4

FIGURE 9 Scatterplot (vs log-risk-ratio from fixed-effect model [FEM]) of the meta-analytic estimates of log-risk-ratio obtained by: (A)
random-effects model (REM), for the 353 REM meta-analyses of risk ratio (RR) with �̂� REM ≥ 0, 𝜏2 > 0; (B) bbmle, for the 713 meta-analyses
of RR with �̂�bbmle ≥ 0, �̂� > 0; (C) difference between log(RR) from REM and bbmle for the 353 meta-analyses with �̂� > 0 and �̂�bbmle ≥ 0 and
𝜏2 > 0 and �̂�REM ≥ 0

7 DISCUSSION

With models for log-odds-ratio as background, we have
focused on models for meta-analysis of log-risk-ratio, for
two main reasons. First, when the event probabilities are
not small, the RR is often more appropriate than the OR.

Second, in generating binomial data for study-level 2 × 2
tables under an REM for log-risk-ratio, one must impose
a restriction to ensure that 𝜋jT < 1 (in addition to hav-
ing 0 < 𝜋jC < 1). Thus, in the conventional REM,
we explored the consequences of the restrictions on the
parameter space. A small simulation study showed that
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they lead to bias in estimates of 𝜏2 and in the estimate of
the overall log-risk-ratio.

The alternative of obtaining the data in the 2 × 2 tables
from BB distributions, and using the log link function,
has the same complications as in the log-binomial model.
In order to use the conventional meta-analysis models
for log(RR), one can estimate the 𝜋jT and 𝜋jC in each
study by maximum likelihood or from the estimated log-
its in a BB regression with logit link. The variances of
the resulting estimates of log(RR) involve 𝜌 (intraclus-
ter correlation). We considered several ways of estimating
𝜌, but another small simulation study showed bias in esti-
mates of 𝜌 that was often unacceptable, though bbmle
provided reasonable point and interval estimates of the
overall log(RR) when the data were generated from BB
distributions.

Thus, neither the log-binomial model nor the BB model
is satisfactory for meta-analysis of (log of) RR. Because the
range of the log function is unbounded, it might seem that
conventional meta-analysis of log(RR) would avoid the
complications associated with restrictions on the param-
eter space, but it does not. Many meta-analyses use (log
of) RR as the effect measure (eg, in the Cochrane reviews
summarized in Section 6), however, so reliable methods
are needed.

Importantly, the standard log-binomial-normal model
and the BB model are based on different assumptions
about the unobservable mixing distributions. The results
from these and similar two-stage models are not always
robust against violations of distributional assumptions.
For instance, misspecification of the random-effects distri-
bution in GLMMs can induce bias in the estimates of the
linear predictor parameters and severe bias in estimates
of the variance components. Alonso et al 53 give a com-
prehensive discussion. For meta-analysis of ORs using BB
and REM, these misspecification biases are demonstrated
in Bakbergenuly and Kulinskaya33 (Supplementary Mate-
rial D). Unfortunately, it is very difficult to determine the
true data-generating mechanism for the random effects,
especially when dealing with sparse data; Drikvandi et al54

discuss some developments.
For the log-risk-ratio, the complications in the

log-binomial model, Equation 6, arise from the restric-
tion on 𝜃 introduced by the relation between 𝜃 and the
nuisance parameters, 𝛼𝑗 = log(𝜋𝑗C). More technically,
the joint range of 𝜃 and log(𝜋C) is a proper subset of
the set {(log(𝜋C), 𝜃) ∶ log(𝜋C) ≤ 0,−∞ < 𝜃 < +∞}.
By contrast, for the OR, −∞ < logit(𝜋C) < +∞,
−∞ < log(OR) < +∞, and the joint range of log(OR)
and logit(𝜋C) is the entire real plane. To circumvent
this difficulty with the log-risk-ratio, Richardson et al55

propose a new nuisance parameter, the log of the

odds-product (OP). The log-OP ranges from −∞ to +∞,
and this choice of nuisance parameter has the advantage
that both log(RR) and the transformed risk difference,
arctanh(RD) = log((1 + RD)∕(1 − RD)), can be mod-
eled independently of log(OP). The introduction of the
log of the odds-product as the nuisance parameter in
models of log(RR) opens up a promising approach that
should be the focus of substantial further research. How-
ever, it is plausible that this approach will suffer from
transformation bias and other biases, which are the
bane of the existing models for RR. In the interim, the
use of OR instead of relative risk appears to be a safer
option.

For the two examples in Section 5, the choice of method
seems to matter. Although the confidence intervals over-
lap, the estimates of the overall log(RR) separate into
three groupings: conventional REM with inverse-variance
weights, BB with inverse-variance weights, and BB max-
imum likelihood. In interpreting the estimates, however,
some caution is appropriate. The study-level estimates of
log(RR) in both examples suggest a mixture. Thus, a sin-
gle distribution (as in the REMs) may not be an adequate
description of the heterogeneity. Lin et al 56 argue that,
if heterogeneity is present, it should permeate the entire
collection of studies, instead of being limited to a small
number of outlying studies. We add that presence of dis-
tinct groupings also represents a departure from regular
heterogeneity. In such situations, it may be appropriate to
model a cluster structure by a finite-mixture distribution57

or a product-partition model58 or to consider a fixed-effects
analysis.59

For a sizable number of meta-analyses of RR in
Cochrane reviews, we derived studentized residuals from
the difference between the study-level estimate and the
overall estimate of the log-risk-ratio. When combined
across meta-analyses, the studentized residuals had a dis-
tribution that departed from a normal distribution, by
having lighter tails. And when categorized into intervals
of the estimated truncation probability, the studentized
residuals showed a strong association between larger trun-
cation probability and more-negative difference between
the study-level estimate and the overall estimate. Because
the vast majority of studentized residuals in meta-analyses
with �̂� ≥ 0 belonged to the bins where the truncation prob-
ability was < 0.35, we suspect upward bias in the overall
estimates.

Other effect measures have restrictions on their param-
eter spaces. We would expect similar results for risk
difference, response ratio, and arcsin(

√
p) for bino-

mial proportions. The development of appropriate
methodology for this important problem is an urgent
task.
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