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Abstract

Background: Molecular networks act as the backbone of molecular activities within
cells, offering a unique opportunity to better understand the mechanism of diseases.
While network data usually constitute only static network maps, integrating them
with time course gene expression information can provide clues to the dynamic
features of these networks and unravel the mechanistic driver genes characterizing
cellular responses. Time course gene expression data allow us to broadly “watch” the
dynamics of the system. However, one challenge in the analysis of such data is to
establish and characterize the interplay among genes that are altered at different
time points in the context of a biological process or functional category. Integrative
analysis of these data sources will lead us a more complete understanding of how
biological entities (e.g., genes and proteins) coordinately perform their biological
functions in biological systems.

Results: In this paper, we introduced a novel network-based approach to extract
functional knowledge from time-dependent biological processes at a system level
using time course mRNA sequencing data in zebrafish embryo development. The
proposed method was applied to investigate 1α, 25(OH)2D3-altered mechanisms in
zebrafish embryo development. We applied the proposed method to a public
zebrafish time course mRNA-Seq dataset, containing two different treatments along
four time points. We constructed networks between gene ontology biological
process categories, which were enriched in differential expressed genes between
consecutive time points and different conditions. The temporal propagation of 1α,
25-Dihydroxyvitamin D3-altered transcriptional changes started from a few genes
that were altered initially at earlier stage, to large groups of biological coherent
genes at later stages. The most notable biological processes included neuronal and
retinal development and generalized stress response. In addition, we also investigated
the relationship among biological processes enriched in co-expressed genes under
different conditions. The enriched biological processes include translation elongation,
nucleosome assembly, and retina development. These network dynamics provide new
insights into the impact of 1α, 25-Dihydroxyvitamin D3 treatment in bone and cartilage
development.
(Continued on next page)
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Conclusion: We developed a network-based approach to analyzing the DEGs at
different time points by integrating molecular interactions and gene ontology
information. These results demonstrate that the proposed approach can provide insight
on the molecular mechanisms taking place in vertebrate embryo development upon
treatment with 1α, 25(OH)2D3. Our approach enables the monitoring of biological
processes that can serve as a basis for generating new testable hypotheses. Such
network-based integration approach can be easily extended to any temporal- or
condition-dependent genomic data analyses.

Background
The active form of Vitamin D3 - 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] – have

demonstrated playing a critical role in calcium and phosphorus homeostasis by in-

creasing intestinal calcium and phosphorus transport, thereby maintaining normal

serum calcium and phosphorus concentrations and allowing bone mineralization to

proceed [1, 2]. In previous works, we have shown that 1α,25(OH)2D3 alters expression

of hundreds to thousands of genes at different developmental stages in early zebrafish

embryos in vivo [3]. However, it is challenging to digest and interpret the regulatory re-

lationships among these differentially expressed genes at adjacent developmental stages.

Novel informatics approaches are needed to fill in the gap how to interpret these thou-

sands of differentially expressed genes at different time points in a systematic manner.

Biological systems are highly dynamic and responsive to the external environment.

The gene expression in these systems is a temporal process. Different genes are

required to play different functional roles under different conditions. This is highly

regulated by a complex regulatory system of diverse molecular interactions, such as

protein-protein interactions (PPIs), protein-DNA interactions (PDIs), and metabolic

signaling pathways [4]. Taking a snapshot of the gene expression profile in a biological

system (e.g., cell cycle system and development) under a certain condition can reveal

some of the genes that are specially expressed under this condition. However, to inves-

tigate how all the genes are regulated in the context of a biological system, and to

determine the interaction relationships between these genes, it is necessary to measure

the gene expression profile in a time series manner [5]. This can also provide the dis-

tinct possibility of unraveling the mechanistic drivers characterizing cellular responses

[6]. Time series gene expression data have been widely applied to study a wide range of

biological systems, including cell cycle [7], genetic interaction and knockouts [8, 9], and

development [10]. Despite their unique features, many computational challenges still

remain in analyzing such gene expression profiles. For instance, it is difficult to study

the relationships among differentially expressed genes (DEGs) at each time point in a

case–control time series experiment, due to large number of DEGs and limited time

points available. To address such challenges, algorithms are required that are speci-

fically designed to improve the interpretability of these data by integrating multi-source

prior biological evidence.

Molecular interactions such as PPIs and PDIs are essential for a wide range of cellular

processes and form a network of astonishing complexity. Until recently, our knowledge

of such complex networks was rather limited. The emergence of high-throughput

technologies has given us possibilities to systematically survey and study the underlying
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biological system. The molecular interaction maps have been built in model organisms

(e.g., S.cerevisiae [11], D.melanogaster [12] and C.elegans [13]), as well as in higher

vertebrate organisms (e.g., zebrafish [14], mouse [15] and human [16]). Evidently, the

generated interaction maps offer us a rich resource for systematic studies of molecular

networks and complement other types of biological data. However, current interaction

databases include a large amount of false positive and false negative interactions due to

the unreliability of interaction mapping technologies available. In addition, these

molecular interactions are static. There is little direct information available on the

temporal dynamics of these molecular interactions. To understand time-dependent

biological processes at network level, molecular networks need to be considered as

temporal and spatial rather than static information flow between molecules [17].

Recently, attempts have been made in integrating different types of biological data with

molecular network interactions to reveal the dynamics of molecular networks [18].

However, only a few studies have investigated the dynamics of the molecular network

interactions in time course gene expression data with limited success. For instance,

Tang et al. [19] proposed to reconstruct time course protein interaction networks

(TC-PINs) by incorporating time series gene expression into PPI networks. The func-

tional modules from TC-PINs were enriched in related gene ontology (GO) biological

processes than those from static PPI networks. However, the causal relationship

between TC-PINs across time points could not be inferred. Such causal relationships

are crucial to understand the underlying regulated biological processes in a time-

dependent and context-specific manner. A propagation of such interactions from gene

level to biological process/pathway level (e.g., gene ontology information) will help us

identify the altered biological processes during the time in which these gene expres-

sions are examined.

The gene ontology (GO) Consortium [20] has developed three separate ontologies-

molecular function (MF), biological process (BP) and cellular component (CC) - to

describe the attributes of gene products. Several studies have demonstrated that the

molecular interactions and GO provide substantially congruent yet subtle different view

of biological systems [21]. The hypothesis is that the interaction between any two

proteins/genes indicates a general likelihood that these two proteins are functionally

coupled or involved in the same biological process. Identifying enriched interactions

between any two GO terms based on molecular interactions between genes assigned to

these two GO terms are more statistically reliable: interactions reflect statistically

enriched temporal connections between multiple genes of one GO term and multiple

genes of another. However, this could not tell the temporal directionality in these

connections. By incorporating time series gene expression data, the causal relations can

be inferred in this GO network by highlighting information flow between GO biological

processes enriched in DEGs at consecutive time points.

In this paper, we developed a novel network-based computational approach to study

causal relationships between DEGs at consecutive time points in a case–control time

series experiment. To overcome the limitation that the intervals of time series experi-

ments usually would not fit the time scale of functional communications between most

genes and the statistical power from only several time points would be too low for ro-

bust analysis, we constructed networks of GO biological process terms connected by

significant interactions between DEGs on sequential time points. This enables us to
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understand the biological processes at GO scale, in which relations between nodes

(representing GO terms) are more statistically stable. This is more statistically signifi-

cant and biologically meaningful compared to single co-expressed links. The detail of

the proposed approach is presented in Fig. 1. The proposed method was applied to

time series mRNA-Seq data set to determine the influence of 1α,25(OH)2D3 treatment

on gene expression patterns in zebrafish embryo development and the causal relation-

ship between DEGs at consecutive time points. The resulting networks suggest that

well-studied as well as novel molecular mechanisms are regulated by 1α,25(OH)2D3

treatment.

Results
In this section, we present: (1) a description of generation and initial characterization

of the mRNA-seq dataset obtained from zebrafish embryos altered by 1α,25(OH)2D3

treatment; (2) an overview the interactome-based analysis that we proposed; (3) a

Fig. 1 Overview of the proposed approach
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chronologically organized analysis of the transcriptome changes and interactome

dynamics altered by 1α,25(OH)2D3 treatment during early zebrafish development.

Figure 1 illustrates the overview of the proposed analysis workflow.

Characterization of mRNA-seq dataset during zebrafish embryo development

Genome-wide transcriptional profiling were performed using Illumina HiSeq sequencing

technique for four replicate cDNA libraries of 1α,25(OH)2D3- or vehicle-treated zebrafish,

48, 96, 144, and 168 hours post fertilization (hpf) as described in our previous publication

[3]. Overall, the RNA-seq data obtained from 32 independent zebrafish RNA libraries had

comparable number of total reads [3]. These reads were mapped to the latest zebrafish

genome assembly (zv9) from the UCSC website (http://genome.ucsc.edu/). The refFlat

annotation file from the University of California Santa Clara (UCSC) Table Browser was

used to generate raw reads mapped to each annotated gene in the annotation file. The

genes altered by 1α,25(OH)2D3 treatment at each time point were identified using the

negative binomial model as describe in [22]. A list of altered genes identified along with

the days on which they were differentially expressed is presented in Additional file 1:

Table S1. We also carried out the gene ontology (GO) enrichment analysis using the

GOMiner tool [23]. However, due to the limited number of DEGs identified at each time

point and the limitation associated with the Fisher’s Exact Test, the results of these ana-

lyses could not provide much indication of the biological processes being modulated in

response to 1α, 25(OH)2D3 treatment. To more efficiently derive biological insights from

the genome-wide transcriptomic response to the treatment, we proposed a network-based

analysis in the following sections.

Interactome-based analysis of differentially expressed genes during zebrafish

development

We overlaid the DEGs onto the zebrafish functional interactome from the FunCoup

database [14]. The DEGs were overlaid on their corresponding nodes in the interactome,

and related functional interactions between genes were extracted and reconstructed the

1α,25(OH)2D3 specific interactome. Many network interactions connect the few genes

altered on day 2 and many altered on later days. We found that there was a statistically

significant enrichment in links between genes that were 1α, 25(OH)2D3-altered earlier

and genes regulated later in the course of experiment. This suggested that treatment

affected signals were propagated along network routes from the initially affected genes

(on day 2) towards network regions that were perturbed later.

Specifically, 3134 genes were up- or down-regulated by 1α,25(OH)2D3 on at least one

of the four days in the experiment (adjusted P value less than 0.01). On day 2, only 77

genes were changed. 331 genes on day 4, 1672 genes on day 6, and 2673 genes on day

7 differentially expressed in response to 1α,25(OH)2D3 treatment (Fig. 2). The property

of these DEGs was investigated in the context of FunCoup network. The average degree

of DEGs is significantly higher than non-DEGs (14.9 versus 5.8, the P value of one-way

ANOVA less than 10−6). This indicated that DEGs were more enriched in hub genes

(genes with higher node degree). This can partially explain the initially altered genes on

days can pass the changes to more interacted genes on later days through the network

links/interactions.
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To gain a better perspective on what this temporal pattern in enriched connections

between 1α,25(OH)2D3-altered genes might mean, we analyzed the GO categories asso-

ciated with the connected nodes in the context of interactome.

Network propagation analysis of differentially expressed genes during zebrafish

development

The FunCoup network links among these genes can indicate a general likelihood how

they are functionally related, but don’t highlight the temporal directionality in these

connections. Causal relations can be suggested by examining temporal changes, i.e., if

information associated with gene A at time point t helps to predict the state of gene B

at time point (t + 1), then a causal relation A- > B might be inferred [24, 25]. However,

traditional network inference approaches could not identify such temporal regulatory

relationship due to limited time points available. The statistical power from only four

time points would be too low for robust analysis. To gain a better perspective on the

temporal pattern among 1α, 25(OH)2D3-altered genes, we generalized a network of GO

terms connected by the links between these DEGs on consecutive time points. At this

broader scale, relations between nodes (GO biological processes) are statistical reliable:

links reflect statistically enriched temporal connections between multiple genes of one

node with multiple genes of another. Thus, this GO-GO network highlights flow be-

tween GO biological processes altered by 1α, 25(OH)2D3 on different days.

1α, 25(OH)2D3-altered genes in individual gene-gene interactions in FunCoup inter-

actome were labeled with days when these genes were detected as differentially

expressed. We were particularly interested in identifying the links in which one gene

was altered earlier than the other. Thus, if there were a significant number of genes in

GO category X altered on day d interacting with gene in GO category Y altered on day

(d + 1), we hypothesize that a causative relation X - > Y. Limiting the output to only

enriched GO-GO connections allowed us to focus on the major changes of propagation

of 1α, 25(OH)2D3 and organismal response to it. Compared to the individual category

Fig. 2 Venn diagram showing the overlap of DEGs at different developmental stages. Genes were grouped
based on the day(s) they were differentially expressed. In four studied developmental stages 3134 genes
were defined as differentially expressed during at least one stage
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enrichment approach such as GOMiner, our approach yielded a much richer analysis

for interpretation of time series changes unique to time series gene expression data.

The Figs. 2–4 presented day-to-day enriched interactions at GO biological process

level. We provided a chronological interpretation on these findings below.

Chronological analysis of the interaction network altered by 1α, 25(OH)2D3 at gene

ontology level

The approach described above enabled flexible and deep monitoring of 1α,

25(OH)2D3 altered changes in the transcriptome at GO level in the context of func-

tional interactome. To show time-dependent information flow in embryonic deve-

lopment altered by 1α,25(OH)2D3 treatment, GO networks of enriched GO-GO

interactions were reconstructed.

Day 2 to day 4 transition

The network of GO terms between DEGs on day 2 and 4 suggested a cascade initiated by

changes in xenobiotic metabolism genes and leading to genes involved in ion transport

and transcription regulation (Fig. 3(a)). The “eye development” category is enriched on as

early as day 2, indicating that eye development was changed by 1α, 25(OH)2D3 treatment.

The eye development of zebrafish starts as early as 28 hpf [26]. The vitamin D receptor

has been shown to express in various tissues and organs including retina. This confirms

the finding using our proposed approach.

Day 4 to day 6 transition

Day 4 was marked by the most significant increase of linkage from transcription factors

altered on day 4 towards others altered later. The most central node on day 4 is organ

development, which became connected to multiple biological processes, such as cardio-

vascular system development, blood vessel development, immune system process, heart

development, brain development, tube development, and others. This observation sug-

gests that vitamin D treatment can alter biological processes involved in the development

of many organs. One network of GO terms between day 4 and 6 is presented in Fig. 3(b).

Day 6 to day 7 transition

The organ morphogenesis was identified as a central node in the GO network of day

6 - > 7, connecting to multiple biological processes, such as nervous system develop-

ment, circulatory system development, vasculature development, epithelium develop-

ment, retina development in camera type eye, and many embryonic development

terms including cartilage development and neuron generation. One network of GO

terms between day 6 and 7 is presented in Fig. 3(c).

To better interpretate the causal relationships between enriched GO categories on

consecutive days, we presented a GO level information flow by combining the GO-GO

networks across all four days (Fig. 4). The interactome was altered in the regions scat-

tered in the interactome to many biological processes that are clustered together in the

interactome. This suggests that the effect of 1α, 25(OH)2D3 treatment can be as early

as 48 hpf in early zebrafish development.
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Condition-specific GO network analysis

We also constructed the condition-specific meta-flow network based on co-expressed

links identified. The statistics of three types of condition-specific links is presented in

Table 1. A meta-flow network of GO terms was constructed for each condition-specific

Fig. 3 Network of GO terms enriched in 1α,25(OH)2D3 -altered genes between consecutive days. a GO
network of day 2 - > 4; b GO network of day 4 - > 6; c GO network of day 6 - > 7. Color represent the fraction of
the gene in that node that were regulated by 1α,25(OH)2D3 on any day (green is low and red is high). Edge
thickness and opacity represent the number of gene-gene links between two GO terms and significance score
(−log10(P value)), respectively
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coexpression network. For instance, in 1α,25(OH)2D3-specific GO network (Fig. 5),

several calcium metabolism-related GO terms were inferred by our approach including

calcium ion transport, one-carbon compound metabolic process. Specifically, the response

to hypoxia has been reported to be inhibited by 1α,25(OH)2D3 in human cancer cells [27].

In addition, there were quite a few developmental-related processes altered by

1α,25(OH)2D3 treatment, such as translation elongation, nucleosome assembly, and retina

development. All these enriched GO terms indicated that 1α,25(OH)2D3 altered several

pathways in developing eukaryotes.

Discussion
In this work, we have developed a network-based computational approach that analyzes

time series mRNA-seq gene expression profiles in the context of molecular interactome

and GO information to reveal temporal transcriptional changes altered by 1α,25(OH)2D3

in zebrafish embryo development. This enabled us to review the progression of

1α,25(OH)2D3-induced changes in gene expression and the network structure itself in

zebrafish embryo development. The efficiency of our analysis of 1α,25(OH)2D3-alered

Fig. 4 Overview of associations among GO terms enriched in 1α,25(OH)2D3 -altered genes at each time point

Table 1 Statistics of co-expressed links

Link type Gene # Link # Co-expressed link

1α, 25(OH)2D3–related 4025 13945 5622

Ethanol–related 4233 14590 5321

Developmental 2245 10344 2432
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global gene expression was enhanced by the interactome approach, as the network-based

analysis approach were superior to their single-gene approach in terms of both statistical

power and biological interpretability, A variety of interesting biological hypotheses were

derived from our analysis. The significant biological processes include iron metabolism,

neuronal and retinal development, and many organ development related pathways. Our

approach is useful for discovering candidate biological processes that can serve as a basis

for generating new testable hypotheses. Such network-based integration approach can be

extended to any temporal- or condition-dependent genomic data analyses. Other types of

interaction or ontology data can also be incorporated into this approach.

Conclusions
We have developed a network-based analysis approach that integrated mRNA-seq gene

expression profiles with molecular network and GO annotation to reveal dynamic

propagation of 1α,25(OH)2D3-altered transcriptional changes from a few genes that al-

tered initially, to large groups of biologically coherent genes at later times. The most

notable biological processes included calcium and iron metabolism, neuronal and ret-

inal development, and generalized stress response. Such network-based integration ap-

proach can be extended to other condition-dependent studies. Also graph theory can

be incorporated to compare condition-specific coexpression networks and meta-flow

networks of GO terms can be inferred based on such information.

Fig. 5 Network of GO terms enriched in 1α,25(OH)2D3-specific co-expression links. Node color represent the
fraction of the gene in that node that were regulated by 1α,25(OH)2D3 on any day (green is low and red is
high). Edge thickness and opacity represent the number of gene-gene links between two GO terms and
significance score (−log10(P value)), respectively. Dotted line represents enriched co-expression relationships
between genes
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Material and methods
mRNA-Seq gene expression data

The mRNA-Seq profiling in four biological replicate samples of 1α,25(OH)2D3- or

ethanol-treated zebrafish, 2, 4, 6 and 7 days post-fertilization (hpf ) was obtained by

the Illumina HiSEQ 2000 platform. The generated 50-bp FASTQ sequence reads

were aligned to both the latest Zebrafish genome assembly (zv9) and our in-house

exon junction database using BWA [28]. The aligned sequence tags were counted

for each annotated genes/exons using custom scripts based on the UCSC genome

binning approach [29]. A total of 14267 genes were annotated using RefSeq data-

base and the raw read counts for genes were generated for further downstream

analyses.

Zebrafish molecular interaction network

The zebrafish molecular interaction network was downloaded from FunCoup database

(http://FunCoup.sbc.su.se/). In total, there are 1,999,529 interactions between 13033

proteins in the zebrafish interactome downloaded on January 3rd, 2012.

Gene ontology annotation in zebrafish

The gene ontology annotation was downloaded from the original website (http://

www.geneontolgy.org/) on Januray 20th, 2012. In this paper, we used the biological

process terms only since our goal is to identify the 1α,25(OH)2D3-altered mechanisms.

Differential gene expression analysis

For differential gene expression analysis between conditions, we eliminated genes with-

out any reads across all samples. We used DESeq package in R to test for differential

expression for all the remaining genes [22]. We conservatively accounted for multiple

testing, employing a Bonferroni correction, and yielding an adjusted p-value for dif-

ferential expression for each gene. A strict adjusted P value cut-off of 0.01 was used to

select significant DEGs.

Construction of time-dependent GO-GO networks

A network of GO terms was generalized from the network of DEGs at different devel-

opmental stages in zebrafish embryos. At GO scale, relations between nodes (repre-

senting GO terms) are more statistically stable. Links reflect statistically enriched

temporal connections between multiple genes in one specific GO term and multiple

genes in another one. Thus, this GO-GO network highlights information flow be-

tween GO biological processes affected by 1α,25(OH)2D3 at different developmental

stages. If there were a significant number of genes in GO term X first altered at one

time point interacting with genes in GO term Y first altered on the next time point,

we hypothesize that a causative relation exists X - > Y. We limited the network to only

enriched GO-GO connections, i.e. one with significant more gene-gene interactions

(given both genes were 1α,25(OH)2D3-altered) than expected by chance. This allows

us to focus on the major tendencies of propagation of 1α,25(OH)2D3 treatment and

organismal response to it. Compared to the individual category enrichment, this
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approach yielded a much richer analysis for interpretation. The detailed reconstruc-

tion step is as follows:

1) For any two GO terms, a link was counted if any two DEGs in these two GO terms

were connected in the original FunCoup network;

2) The GO-GO links were classified into time-dependent patterns according to the

days when the gene were differentially expressed for the first time:

a. Day 2 - > Day 4: one gene was differentially expressed on Day 2, while the other

on Day 4;

b. Day 4 - > Day 6: similar definition as in (a);

c. Day 6 - > Day 7: similar definition as in (a).

3) The GO For each candidate GO-GO network link, its statistical significance was

evaluated by the permutation test, i.e. gene names were randomized in the

FunCoup network for 10,000 times. The links between GO terms with P value less

than 0.01 were considered statistically significant.

4) Enriched GO-GO links were kept in the GO-GO network, i.e. ones with P value

less than 0.01. The network was visualized in the Cytoscape tool [30].

Construction of condition-specific co-expressed interaction networks

To obtain the condition-specific expression information, a network called the co-

expressed interaction network (CEIN) was constructed. Correlation of gene expression

profiles between each pair of interacting proteins in FunCoup was evaluated by Pearson

correlation coefficient (PCC). PCC of paired genes X and Y, which encodes one pair of

interacting proteins, is defined as

PCC X;Yð Þ ¼ 1
n−1

Xn
i¼1

Xi−�X
σ Xð Þ

� �
Y i−�Y
σ Yð Þ

� �
ð1Þ

where n is the number of condition-specific samples; Xi and Yi is the expression level

of gene X(Y) in the sample i under a specific condition (1α, 25(OH)2D3 or ethanol

treated); �X (�Y ) represents average expression level of gene X (Y) and σ(X) σ(Y)) repre-

sents the standard deviation of expression level of gene X (Y). Large absolute value of

PCC indicates higher correlation between two gene pair evaluated. Besides correlation

relationship, when applied to a pair of gene expression profiles, the experimental design

allowed measuring effects of factors “1α, 25(OH)2D3 treatment”, “developmental stage”,

and “gene” as well as any of their combinations. The procedure was executed under the

terms of the standard 3-way factorial ANOVA. By combining PCC and ANOVA ana-

lyses, we defined three types of coexpression networks:

1α, 25(OH)2D3 – related coexpression network with strong correlation between

observed gene expression profiles only after 1α, 25(OH)2D3 treatment;

Ethanol – related coexpression network with strong correlation between observed

gene expression profiles only in ethanol treatment;

Developmental - related coexpression network with strong correlation between

observed gene expression profiles under both conditions and with a significant

developmental pattern and synchronous between two genes.
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The first two types of coexpression links were assigned if the following conditions

hold:

max PCCVD3 ;j jPCCethanolj jð Þ > minPCC ð2Þ

PCCVD3−PCCethanolj j
max PCCVD3 ;j jPCCethanolj jð Þ > dif f PCC ð3Þ

min FTREAT ; FTREAT�GENE; FTREAT�GENE�DAYð Þ > Fα¼0:05;1;19 ð4Þ

where PCCVD3 refers to the PCC value for the 1 α, 25(OH)2D3-treated samples, and

PCCethanol refers to the PCC value for the ethanol-treated samples. Eq. (2) insures that

at the least one of the PCC values exceed the threshold minPCC, while Eq. (3) requires

that the difference between two PCC values in different conditions is big enough, i.e.,

larger than diffPCC. Eq. (4) states that at least one of the three effects from ANOVA

analysis must be significant (i.e. P <0.05).

The third type of coexpression link was assigned given all the following conditions hold:

PCCall > fullPCC ð5Þ

FDAY > Fα¼0:05;3;19 ð6Þ

FDAY�GENE < Fα¼0:2;3;19 ð7Þ

where PCCall refers to the PCC value for all samples across all conditions, and fullPCC
is the minimum PCC value for a link to be considered coexpressed. In this paper, we

set the cutoff values 0.9, 0.6, 0.9 for minPCC, diffPCC and fullPCC.

Construction of condition-specific GO-GO networks

To generate the condition-specific GO-GO network view, a condition-specific network

of GO categories was reconstructed. It was based on the genes that were involved in

condition-specific network (e.g. 1α, 25(OH)2D3-sensitive coexpression network) and

assigned to at least one GO biological process. The reconstruction step is as follows:

1) For any two GO “biological process” categories, a link was counted if any two genes

in these two GO categories were connected in the condition-specific coexpression

network;

2) For each potential GO-GO network link, its statistical significance was evaluated

by the permutation test, i.e. gene names were randomized in the co-expression

network for 10,000 times. The links between GO biological process terms with

P value less than 0.01 were considered statistically significant.

Enriched GO-GO links were kept in the GO-GO network, i.e. ones with P value less

than 0.01. The network was visualized in the Cytoscape tool.

GoMiner analysis

The gene level Gene ontology enrichment analysis was performed using GoMiner [23]

on the DEGs that were identified at each time point.
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