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OBJECTIVE—Ca2�-regulated K� channels are involved in nu-
merous Ca2�-dependent signaling pathways. In this study, we
investigated whether the Ca2�-activated K� channel of interme-
diate conductance SK4 (KCa3.1, IK1) plays a physiological role in
pancreatic �-cell function.

RESEARCH DESIGN AND METHODS—Glucose tolerance
and insulin sensitivity were determined in wild-type (WT) or SK4
knockout (SK4-KO) mice. Electrophysiological experiments
were performed with the patch-clamp technique. The cytosolic
Ca2� concentration ([Ca2�]c) was determined by fura-2 fluores-
cence. Insulin release was assessed by radioimmunoassay, and
SK4 protein was detected by Western blot analysis.

RESULTS—SK4-KO mice showed improved glucose tolerance,
whereas insulin sensitivity was not altered. The animals were not
hypoglycemic. Isolated SK4-KO �-cells stimulated with 15 mmol/l
glucose had an increased Ca2� action potential frequency, and
single-action potentials were broadened. These alterations were
coupled to increased [Ca2�]c. In addition, glucose responsive-
ness of membrane potential, [Ca2�]c, and insulin secretion were
shifted to lower glucose concentrations. SK4 protein was ex-
pressed in WT islets. An increase in K� currents and concomitant
membrane hyperpolarization could be evoked in WT �-cells by
the SK4 channel opener DCEBIO (100 �mol/l). Accordingly, the
SK4 channel blocker TRAM-34 (1 �mol/l) partly inhibited KCa
currents and induced electrical activity at a threshold glucose
concentration. In stimulated WT �-cells, TRAM-34 further in-
creased [Ca2�]c and broadened action potentials similar to those
seen in SK4-KO �-cells. SK4 channels were found to substantially
contribute to Kslow (slowly activating K� current).

CONCLUSIONS—SK4 channels are involved in �-cell stimulus-
secretion coupling. Deficiency of SK4 current induces elevated
�-cell responsiveness and coincides with improved glucose tol-
erance in vivo. Therefore, pharmacologic modulation of these
channels might provide an interesting approach for the develop-
ment of novel insulinotropic drugs. Diabetes 58:1835–1843,
2009

S
K4 channels are Ca2�-activated K� channels of
intermediate conductance (synonymous with IK1
and KCa3.1) encoded by the KCNN4 gene. They
are primarily expressed in cells of the hematopoi-

etic system, where they represent the Gardos channel (1).
Channel activation requires Ca2� increase and determines

the cell volume of T-cells and erythrocytes by elevating K�

efflux. In organs regulating salt and fluid transport (e.g.,
colon, salivary glands, and lung), SK4 current provides the
driving force for secondary electrogenic ion transport
(2–4). SK4 channels are suggested to be involved in mast
cell stimulation (5), and channel upregulation is important
for lymphocyte activation and cell proliferation (6,7). For
enteric neurons, SK4 channels seem to mediate the late
after-hyperpolarization (8). In 1997, SK4 channels were
cloned from human pancreatic tissue (9). A detailed
investigation of mRNA and protein expression of KCa
channels of intermediate (SK4) and small conductance
(SK1–3) was performed by Tamarina et al. (10) showing
mRNA expression of these channels in murine islets.

In the past, ATP-sensitive K� (KATP) channels were
considered to be essential for glucose homeostasis. Con-
sequently, KATP channel inhibitors are important drugs to
augment insulin secretion in type 2 diabetic subjects.
However, with the generation of two KATP channel-
deficient mouse models (SUR1 and Kir6.2 knockout), it
was shown that KATP channels are not indispensable for
glycemic control (11–14). Neither SUR1 nor Kir6.2 knock-
out mice show severe hypoglycemia or any symptoms of
insulin hypersecretion. Several reports provide evidence
that efficient blood glucose regulation and even glucose-
dependent insulin secretion (15–17) is possible despite
KATP channel ablation. In the search for compensatory
mechanisms, modulation of insulin release by other K�

channels gains particular interest.
Besides KCa channels, pancreatic �-cells express K�

channels exclusively regulated by voltage (Kv channels)
(10,18,19). Several studies indicate that Kv channel activa-
tion plays a role in action potential (AP) repolarization
(20–22). Blocking these channels broadens APs and in-
creases insulin secretion (23–25). Recently, it was shown
that Kv2.1 ablation drastically reduces Kv currents of
isolated �-cells (26). Interestingly, this coincides with
improved glucose tolerance pointing to a specific role for
Kv2.1 in the regulation of insulin secretion.

For decades, it was discussed whether KCa channels
participate in the regulation of �-cell activity (27). An early
report (28) described KCa currents that were periodically
activated by inositol-trisphosphate–dependent Ca2� mobi-
lization. The existence of large conductance KCa channels
(BK channels) in pancreatic �-cells and insulin-secreting
cell lines has been verified by several groups (29–31).
However, since blockage of BK channels does not alter
membrane potential oscillations (31,32), these channels
are not considered to play a major role in glucose-
stimulated insulin release. In 1999, a K� current activating
with increasing Ca2� influx during burst phases of glucose-
stimulated �-cells was detected (33). The current, termed
Kslow because of its delayed and slow onset, strongly
depends on [Ca2�]c. Further analysis suggested that �50%
could be ascribed to KATP current (34). However, the
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remaining sulfonylurea-insensitive component of Kslow
does not resemble the characteristics of any known KCa
channel (33), and its precise nature remains to be identi-
fied. It has been suggested that KCa channels of small
conductance (SK1–3) play a functional role in �-cells
(10,35), but at present, there is only limited information
about their contribution to glucose handling of the whole
organism.

Because up to now nothing is known about the signifi-
cance of SK4 channels in pancreatic �-cells, this study was
performed to elucidate whether SK4 channels are suitable
candidates for modulation of �-cell function. We demon-
strate that SK4 channels are expressed in murine islets and
investigated the influence of constitutive SK4 channel
knockout (SK4-KO) and of pharmacological SK4 channel
inhibition on glucose homeostasis, insulin sensitivity, and
the stimulus-secretion cascade of murine pancreatic
�-cells.

RESEARCH DESIGN AND METHODS

Animals and cell and islet preparation. Experiments were performed with
SK4-KO and wild-type (Sv129/C57Bl6 or C57Bl/6) mice. The principles of
laboratory animal care were followed (NIH publication number 85-23, revised
1985), and experiments were carried out according to German laws (Re-
gierungspräsidium Stuttgart, Germany, approval number PZ 1/08). SK4-KO
mice were generated as previously described (5). In brief, the targeting vector
was constructed by flanking the pore exon by a single loxP site and a floxed
neo/tk cassette. Correctly targeted L1/� clones were injected into C57Bl6
blastocysts. Resulting chimeras were mated with Sv129 mice to obtain
germ-line transmission. Heterozygous offspring were intercrossed with
C57Bl6 mice, yielding a Sv129/C57Bl6 hybrid background. For in vitro
experiments, mice were killed with CO2, and islets were isolated by collage-
nase digestion. Islets were dispersed in Ca2�-free medium and cultured for up
to 4 days in RPMI-1640 medium (11.1 mmol/l glucose) supplemented with 10%
FCS, 100 units/ml penicillin, and 100 �g/ml streptomycin.
Solutions and chemicals. The bath solution for [Ca2�]c and membrane
potential (Vm) was as follows (in mmol/l): 140 NaCl, 5 KCl, 1.2 MgCl2, 2.5
CaCl2, 15 glucose, and 10 HEPES, pH 7.4. The pipette solution for Vm

recordings (in mmol/l) was as follows: 10 KCl, 10 NaCl, 70 K2SO4, 4 MgCl2, 2
CaCl2, 10 EGTA, 5 HEPES, pH 7.15, and amphotericin B (250 �g/ml). The
pipette solution for inside-out recordings was as follows (in mmol/l): 130 KCl,
1.2 MgCl2, 2 CaCl2, 10 EGTA, and 20 HEPES, pH 7.4. Bath solution included
the following (in mmol/l): 130 KCl, 10 EDTA, and 20 HEPES, pH 7.2; free Ca2�

was adjusted to 10 �mol/l by CaCl2. Incubation medium for insulin secretion
was as follows (in mmol/l): 122 NaCl, 4.8 KCl, 2.5 CaCl2, 1.1 MgCl2, 10 HEPES,
and 0.5% BSA, pH 7.4. Lysis buffer for Western blot included the following (in
mmol/l): 125 NaCl, 1% Triton X-100, 0.5% Na-deoxycholate, 0.1% SDS, 10
EDTA, 25 HEPES, 10 NaPP, 10 NaF, 1 Na-vanadate, and protease inhibitor
cocktail (Roche), pH 7.3.

Fura-2AM was obtained from Molecular Probes (Eugene, OR). RPMI-1640
medium was from PromoCell (Heidelberg, Germany) and penicillin/strepto-
mycin from GIBCO/BRL (Karlsruhe, Germany). All other chemicals were
purchased from Sigma (Deisenhofen, Germany) and Merck (Darmstadt,
Germany).
Glucose tolerance and insulin sensitivity. In vivo experiments were
performed with male SK4-KO mice and WT littermates aged 12, 24, and 36
weeks. Glucose (2 g/kg body wt) or insulin (0.7 IU/kg body wt) was injected
intraperitoneally. Changes in plasma glucose concentration were monitored
for 120 or 60 min, respectively. Mice were fasted for 16 h before glucose
tolerance testing.
Measurement of [Ca2�]c. [Ca2�]c was measured in single cells or small
clusters by the fura-2 method (36) using equipment and software from TILL
photonics (Gräfelfing, Germany). Cells were identified as �-cells when [Ca2�]c

was not decreased by 15 mmol/l glucose as described for �-cells (37). Cells
were loaded with fura-2AM (5 �mol/l) for 30 min at 37°C. Fura-2 was excited
alternately at 340 or 380 nm. The emitted light was filtered (LP515 nm) and
measured by a digital camera. [Ca2�]c was calculated after an in vitro
calibration with fura-2 K� salt (36).
Electrophysiology. Patch pipettes were pulled from borosilicate glass cap-
illaries (Clark, Pangbourne, U.K.). Vm was recorded at 32°C with an EPC-9
patch-clamp amplifier (HEKA, Lambrecht, Germany). K� currents were elic-
ited by 10 mV voltage steps (300 ms) from a holding potential of �70 mV. Kslow

currents were determined according to the methodology of Göpel et al. (33):

after a 30-mV depolarizing step, a train of 26 voltage ramps (�40 to 0 to �40
mV within 200 ms) was applied and followed by at least 10 s at �40 mV before
the voltage step back to �70 mV. Data were analyzed with “Chart” software
(ADInstruments, Spechbach, Germany). Inside-out recordings were per-
formed at a holding potential of �50 mV.
Insulin secretion. Batches of five islets were incubated for 60 min at 37°C.
Insulin was determined by radioimmunoassay using rat insulin (Linco Re-
search, St. Charles, MO) as the standard.
Western blot analysis. For determination of SK4 channel protein, �300
islets per genotype were collected, rinsed with PBS, and homogenized in lysis
buffer (see above). Protein amount was determined by a Bradford assay. The
homogenates (100 �g per lane) were separated on a 12.5% SDS-PAGE.
Peptides were blotted on a polyvinylidene difluoride membrane. The primary
antibody was directed against the COOH-terminus of SK4 (1:200; Santa Cruz
Technology, Santa Cruz, CA). PKB was used as loading control (1:1,000; Cell
Signaling, Beverly, MA).
Presentation of results. [Ca2�]c and electrophysiological experiments are
illustrated by representative recordings. At least three different cell prepara-
tions were used for each series. Means � SE are given in the text for the
indicated number of experiments. Western blots were performed in duplicate.
Statistical significance of differences was assessed by a one-sample or
Student’s t test for paired values; multiple comparisons were made by ANOVA
followed by a Student-Newman-Keuls test. For AP characteristics, five APs of
each experiment were averaged. Peak values were set to t � 0 ms, and data
were analyzed every 50 ms within the preceding and following 200 ms (Fig. 1B

and D). Dose-response curves of [Ca2�]c were fitted with the Hill equation.
Curves were defined by the following parameters: P(D) � 1/[1 � (D50/D)c],
where P(D) is the probability of glucose-induced stimulation, D50 is the dose
level with 50% response probability, D is the glucose concentration (in
mmol/l), and c reflects the slope of the concentration-response curve. The
equation was adjusted by a maximum-likelihood procedure. A P value of
	0.05 was considered significant.

RESULTS

Role of SK4 channels in glucose-induced stimulus-
secretion coupling. To elucidate whether SK4 channels
interact with �-cell function, we tested whether knockout
of SK4 channels influences �-cell activity in response to
glucose. SK4-KO was accompanied by several alterations
in glucose responsiveness (Fig. 1). SK4-KO �-cells stimu-
lated with 15 mmol/l glucose showed an increased fre-
quency of Ca2� APs (74 � 11 AP/min in WT cells, n � 18,
vs. 97 � 5 AP/min in SK4-KO cells, n � 53, P � 0.05; Fig.
1A) and the plateau potential at which APs started was
more depolarized (WT: �50 � 2 mV, n � 12, vs. SK4-KO:
�43 � 1 mV, n � 11, P � 0.001). Further analysis
demonstrated that single APs were broadened (Fig. 1B):
the width at half-maximum amplitude averaged 23 � 3 ms
in WT (n � 12) and 37 � 3 ms (n � 11) in SK4-KO �-cells
(P � 0.01). Membrane depolarization represents the link
between glucose metabolism and Ca2� influx. Conse-
quently, the loss of SK4 channels should alter [Ca2�]c. The
increased electrical activity of SK4-KO �-cells was re-
flected by an augmented [Ca2�]c response (Fig. 1C). In
SK4-KO �-cells, the area under the curve (AUCCa) for the
first rise of [Ca2�]c after elevating glucose from 0.5 to 15
mmol/l increased by �34% (AUCWT: 56 � 4 arbitrary units
[a.u.] min, n � 26, vs. AUCKO: 75 � 8 a.u. min, n � 31, P �
0.05, Fig. 1C). These data show that in SK4-KO �-cells, the
elevated electrical activity is paralleled by Ca2� influx.
Influence of pharmacological modulation of SK4
channels on �-cell function. To test whether drug-
induced alterations of SK4 channel activity influences
�-cell stimulus-secretion coupling, the SK4 channel
blocker TRAM-34 (38) was investigated for effects on
electrical activity and [Ca2�]c. In stimulated �-cells, the
SK4 channel inhibitor induced similar changes in the
shape of Ca2� APs, as observed in SK4-KO �-cells (com-
pare Fig. 1B and D). TRAM-34 (1 �mol/l) elevated the
width at half-maximum amplitude from 19 � 4 to 29 � 3
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ms (n � 5, P � 0.05), and the plateau potential was shifted
from �51 � 1 to �47 � 1 mV (n � 5, P � 0.05).
Importantly, [Ca2�]c was also modulated by blocking SK4
channels (Fig. 1E). In this series of experiments, 1 �mol/l
TRAM-34 was added to �-cells stimulated with 11.1 mmol/l
glucose. Acute application of the SK4 channel blocker
abrogated the oscillatory pattern of [Ca2�]c that charac-
terizes glucose-stimulated �-cells (39) and clearly aug-
mented [Ca2�]c. Quantification of the AUCCa for 4 min
before changes in the bath solution showed that TRAM-34
increased the AUCCa 1.8-fold vs. control conditions (i.e., 

of 22 � 3 �mol/l min, n � 5, P � 0.001). For specificity
testing, SK4-KO �-cells were also treated with TRAM-34,
yielding a slight change in the pattern of oscillations but no
increase in [Ca2�]c. On average, the AUCCa in G11.1 was

21 � 4 �mol/l min without and 25 � 5 �mol/l min with 1
�mol/l TRAM-34, respectively (i.e., 
 of 5 � 2 �mol/l min,
n � 5, NS vs. control, not shown).

Next, the effect of DCEBIO, a potent SK4 channel
activator (40), was investigated. In agreement with activa-
tion of a K� current, DCEBIO (100 �mol/l) rapidly hyper-
polarized Vm (Fig. 2A). This series of experiments was
performed in the presence of high glucose (15 mmol/l),
tolbutamide (1 mmol/l), and nifedipine (5 �mol/l) to
exclude any influence of KATP and Ca2� currents. [Ca2�]c
was elevated by 1 �mol/l ionomycin. On average, Vm was
altered from �37 � 2 to �56 � 4 mV after addition of
DCEBIO (n � 7, P � 0.001). The K� current elicited by a
10-mV depolarizing voltage step (from �70 to �60 mV)
amounted to 3.61 � 0.51 pA in the presence of DCEBIO
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FIG. 1. Genetic ablation or pharmacologic inhibition of SK4 channels influences electrical activity and [Ca2�]c of pancreatic �-cells. A: In the
presence of 15 mmol/l glucose, action potential frequency was increased in SK4-KO �-cells compared with WT controls. Data are given as means �
SEM of 18 WT and 53 SK4-KO �-cells tested. B and D: Analysis of single Ca2� action potentials in SK4-KO and WT �-cells. SK4 deficiency or
blockage with the SK4 channel inhibitor TRAM-34 (1 �mol/l) resulted in action potential broadening and depolarized the plateau potential from
which action potentials started. In the series with TRAM-34, the shape of action potentials before drug application was compared with action
potentials 3–4 min after addition of TRAM-34. The traces were compiled by averaging action potentials of 11 experiments with SK4-KO and 12
experiments with WT �-cells. The series with TRAM-34 results from five independent experiments. C: SK4-KO �-cells stimulated with 15 mmol/l
glucose display an augmented Ca2� response compared with WT �-cells. The figure shows an overlay of two representative traces of the first
increase in [Ca2�]c induced by switching glucose from 0.5 to 15 mmol/l (arrow). A total of 31 SK4-KO and 26 WT �-cells were analyzed. The values
for AUCCa � SEM of this series of experiments are summarized in the diagram. E: Blocking SK4 channels elevates [Ca2�]c in WT �-cells. �-Cells
exposed to 11.1 mmol/l glucose show regular oscillations of [Ca2�]c. Addition of TRAM-34 (1 �mol/l) increased [Ca2�]c and altered the pattern
of oscillations. The experiment is representative of five with similar results. The diagram summarizes the increase in the AUCCa analyzed for a
time period of 4 min in the presence of TRAM-34 compared with control conditions. *P < 0.05, **P < 0.001, ***P < 0.001.
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and was reduced to 1.60 � 0.17 pA after washout (n � 5,
P � 0.01). DCEBIO is not entirely specific for SK4 chan-
nels and has been reported to interact with Ca2� and Cl�

channels (40–42). Therefore, we performed analogical
experiments with SK4-KO �-cells (Fig. 2B). Vm was �38 �
3 mV under control conditions and �33 � 3 mV after
addition of DCEBIO (n � 13), strongly suggesting that the
hyperpolarization in WT �-cells was in fact due to SK4
channel activation. To directly show that SK4 channels are
present in �-cells, we performed inside-out single-channel
measurements (Fig. 2C). Besides BK and SK channels, we
identified a KCa channel with a single channel conductance
of 39 � 1 pS (n � 5), fitting with the properties of SK4
channels in other tissues (43,44). The expression of SK4
protein was confirmed in isolated WT islets by Western
blot analysis (Fig. 2D, left). Specificity of the antibody was
confirmed by the absence of immunostaining in SK4-KO
islets (Fig. 2D, right).

These data demonstrate that SK4 channels are operative

in �-cells and that pharmacological modulation influences
glucose-induced stimulus-secretion cascade.
Contribution of SK4 channels to Kslow currents. To
test whether SK4 channels contribute to the Ca2�-
regulated component of Kslow, �-cells were stimulated
with 15 mmol/l glucose, and a pulse protocol similar to
that described by Göpel et al. (33,34) was used to imitate
a burst of Ca2� APs (Fig. 2E, upper trace). The increase in
current amplitude induced by a train of 26 voltage ramps
was quantified in the absence and presence of TRAM-34
(Fig. 2E, lower trace, left and middle). The current elicited
by this protocol was significantly reduced by TRAM-34
(compare arrows and areas marked by the dashed lines).
Kslow was 13.3 � 2.1 pA under control conditions and 8.2 �
1.2 pA with 1 �mol/l TRAM-34 (n � 7, P � 0.01). After
washout, the current increased to 13.5 � 2.3 pA (n � 7, NS
vs. control). As SK4 channels have been reported to be
sensitive to charybdotoxin, a scorpion toxine widely used
to block BK channels (45), we tested whether Kslow was
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FIG. 2. Activation of SK4 currents in WT �-cells. A and B: Membrane potential was determined in the perforated-patch configuration in WT (A)
and SK4-KO (B) �-cells. Bath solution contained 15 mmol/l glucose (15 G). To eliminate any effect of KATP channels and to clamp the intracellular
Ca2� concentration, tolbutamide (1 mmol/l), nifedipine (5 �mol/l), and ionomycin (1 �mol/l) were present in the perifusion solution throughout
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TRAM-34 (the peak of the Kslow current is marked by the arrows) within 5–10 min after application of the drug. In SK4-KO �-cells, the Kslow

currents elicited by the pulse protocol were markedly decreased compared with WT �-cells. The experiments are representative of seven (WT)
and five (SK4-KO) with similar results.
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affected by this drug. Up to 100 nmol/l charybdotoxin had
no inhibitory effect on Kslow (n � 4, not shown). To further
elucidate the involvement of SK4 channels in generation of
Kslow, the above-mentioned protocol was applied to
SK4-KO �-cells (Fig. 2E, right). SK4 ablation significantly
reduced Kslow. In this series of experiments, the current
averaged 10.3 � 1.8 pA in WT (n � 11) and 3.6 � 0.8 pA in
SK4-KO �-cells (n � 5, P � 0.05). Tolbutamide (1 mmol/l)
did not completely abolish but further reduced Kslow
(2.1 � 0.3 pA, n � 5, NS compared with control conditions
without sulfonylurea) in SK4-KO �-cells. These data
clearly show that a significant component of Kslow is
carried by SK4 channels.
Lack of SK4 channels leads to a left shift in glucose
responsiveness. Neither SK4-KO nor TRAM-34 influenced
the resting membrane potential, which was �77 � 1 mV in
0.5 mmol/l glucose and �76 � 1 mV with TRAM-34 (1
�mol/l, n � 3) compared with �75 � 1 mV in SK4-KO
�-cells (n � 7, not shown). To find out whether ablation of
SK4 channels affects glucose responsiveness, we investi-
gated whether stimulation of SK4-KO �-cells was shifted to
lower glucose concentrations. Cells were perifused with
bath solution containing 6 or 8 mmol/l glucose. In WT
�-cells, no electrical activity was observed with 6 mmol/l
glucose (n � 7), whereas 37.5% of the cells were depolar-
ized and Ca2� APs occurred with 8 mmol/l glucose (n � 8).
By contrast, in SK4-KO mice, 63.6% of the �-cells were

already stimulated by 6 mmol/l glucose (n � 11) and all
cells (100%) by 8 mmol/l glucose (n � 5) (Fig. 3A).
Consistent with the higher fraction of electrically active
�-cells, we observed a significant left shift of the glucose
concentration–response curve of [Ca2�]c in SK4-KO versus
WT �-cells (Fig. 3B). In these experiments, isolated �-cells
were perifused with bath solutions containing 0.5–15
mmol/l glucose. Cells were considered to be glucose
responsive if they displayed an increase in [Ca2�]c and/or
Ca2� oscillations. The D50 value (50% probability for
glucose responsiveness) was 6.37 mmol/l (95% CI 6.09–
6.68) for WT �-cells and was reduced to 5.67 mmol/l
(5.29–6.05) for SK4-KO �-cells. SK4-KO also affected insu-
lin secretion. Islets were incubated in 3, 6, or 8 mmol/l
glucose for 60 min. WT and SK4-KO islets had similar
insulin content (WT: 29 � 3 ng/islet; SK4-KO: 29 � 1
ng/islet, n � 8 different preparations for both genotypes),
and there was no significant change in insulin release
under basal conditions (3 mmol/l glucose) (WT: 33 � 7
pg/[islet h], SK4-KO: 33 � 10 pg/[islet h], n � 8 for both
genotypes). Compared with basal secretion in 3 mmol/l,
glucose stimulation of secretion occurred in all experi-
ments when glucose was elevated to 8 mmol/l irrespective
of the genotype (n � 8). However, in agreement with a left
shift in glucose responsiveness of Vm and [Ca2�]c, only
38% of the WT but 75% of the SK4-KO islet preparations
displayed an increase in secretion with 6 mmol/l glucose
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(Fig. 3C). These data clearly demonstrate that genetic
ablation of SK4 channels sensitizes the �-cells to glucose
stimulation.

Importantly, SK4 channel inhibition induced similar
changes in WT �-cells (Fig. 3D). In this series of experi-
ments, WT and SK4-KO �-cells, respectively, were peri-
fused with 10 mmol/l glucose before lowering glucose
below the threshold for Ca2� APs (5–6 mmol/l glucose).
After addition of TRAM-34 (1 �mol/l) to WT �-cells,
electrical activity occurred in four of five cells. On average,
Vm was �67 � 2 mV at the subthreshold glucose concen-
tration. With TRAM-34, the plateau potential at which Ca2�

APs started was �51 � 1 mV (n � 5, P � 0.001). In SK4-KO
�-cells, 1 �mol/l TRAM-34 had no depolarizing effect on Vm
(Fig. 3E). In this series of experiments, Vm was �67 � 2
mV after lowering glucose to a concentration terminating
electrical activity and �67 � 1 mV in the presence of
TRAM-34 (n � 3).

Knockout of SK4 channels affects glucose tolerance
in vivo. Because the experiments described thus far
suggest that SK4 channels participate in regulation of
glycemic control, we investigated whether ablation of SK4
channels affects glucose homeostasis in vivo. Therefore,
an intraperitoneal glucose tolerance test was performed
on 12-week-old male WT and SK4-KO mice. After injection
of 2 g glucose/kg body wt, blood glucose was monitored
during 120 min. SK4-KO mice had significantly lower blood
glucose concentrations than WT mice (Fig. 4A and Table 1).
By contrast, blood glucose concentrations in the fasted and
fed state were similar in WT and SK4-KO mice, respectively
(Table 1).

The improved glucose tolerance of SK4-KO mice might
not exclusively represent a better secretory response of
pancreatic �-cells but could also result from improved
insulin sensitivity. To address this question, 0.7 IU insu-
lin/kg body wt was injected intraperitoneally, and the
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TABLE 1
Influence of SK4-KO on glucose tolerance and insulin sensitivity

Plasma glucose (mmol/l)
12 weeks 24 weeks

WT SK4-KO WT SK4-KO

Time after injection of:
Glucose

0 min (fasted) 5.8 � 0.6 6.6 � 0.5 5.6 � 0.4 6.4 � 0.3
15 min 15.7 � 1.6 10.0 � 0.6† 21.9 � 0.9 18.6 � 0.7*
30 min 18.9 � 1.7 10.7 � 0.6† 27.1 � 1.0 22.7 � 0.5†
60 min 18.0 � 1.8 8.6 � 1.0† 22.1 � 1.9 15.4 � 0.9†
120 min 9.5 � 1.2 6.2 � 0.5* 10.2 � 1.0 6.4 � 0.1†

Insulin
0 min (fed) 11.1 � 1.1 10.4 � 0.8 11.2 � 0.6 10.6 � 0.5
15 min 7.0 � 0.4 7.2 � 1.0 7.3 � 0.4 6.8 � 0.3
30 min 5.4 � 0.3 5.3 � 0.4 6.0 � 0.2 5.7 � 0.3
60 min 4.2 � 0.2 4.7 � 0.5 5.7 � 0.5 5.7 � 0.8

Summary of glucose and insulin tolerance tests obtained from 12- and 24-week-old SK4-KO and WT mice. Plasma glucose concentration was
monitored for 2 and 1 h after intraperitoneal injection of 2 g/kg body wt glucose or 0.7 IU/kg body wt insulin, respectively. (Five to six SK4-KO
and WT littermates were tested for each condition.) Glucose tolerance was tested subsequent to a 16-h fasting period. *P � 0.05, †P � 0.01.
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decrease of blood glucose concentration was followed for
60 min (Fig. 4B and Table 1). Insulin sensitivity of SK4-KO
mice was not different from their WT littermates (n �
5–6). To test whether these results were influenced by age,
glucose and insulin tolerance tests were repeated with
24-week-old animals (n � 5–6; data are summarized in
Table 1). Even in older animals (�36 weeks), the benefi-
cial effects of SK4-KO on glucose homeostasis still per-
sisted (blood glucose concentration 2 h after glucose
injection in WT animals: 8.7 � 0.7 mmol/l, n � 8; in SK4-KO
mice: 6.5 � 0.2 mmol/l, n � 8, P � 0.01). These experi-
ments demonstrate that SK4-KO ameliorates glycemic
control independent of age. To make sure that the im-
proved secretory response of SK4-KO mice was not ac-
companied by �-cell exhaustion, we determined the
insulin content in islets from animals at different ages (up
to 9 months). These experiments confirmed that insulin
content did not change with age (4.5–5.5 months: WT 25 �
6 ng/islet vs. KO 25 � 5 ng/islet, n � 3 different prepara-
tions per genotype; 6–7 months: WT 26 � 3 ng/islet, n � 5,
vs. KO 27 � 2 ng/islet, n � 3; 8–9 months: WT 34 � 5
ng/islet, n � 2, vs. KO 28 � 2 ng/islet, n � 4; NS vs. WT, NS
vs. �5-month-old mice).

DISCUSSION

Our experiments show for the first time that SK4 channels
participate in the regulation of �-cell function and glucose
homeostasis in vivo.

Glucose-induced insulin secretion involves tight cou-
pling of glucose metabolism, electrical activity, [Ca2�]c,
and exocytosis. The key event linking glucose metabo-
lism to membrane depolarization is the closure of KATP
channels. Subsequent opening of L-type Ca2� channels
increases [Ca2�]c, representing the triggering signal for
insulin release (46,47). Our data show that SK4 channel
protein is expressed in murine pancreatic islets. SK4
channels are operative in �-cells and constitute an
important regulator of stimulus-secretion coupling. In
WT �-cells, pharmacological opening or closure of SK4
channels crucially alters Vm (Figs. 2 and 3D). Impor-
tantly, the SK4 channel blocker TRAM-34 depolarizes Vm
and induces electrical activity at a subthreshold glucose
concentration, thus enhancing the glucose effect on
stimulus-secretion coupling (Fig. 3D). This is of consid-
erable significance, since it demonstrates that SK4 chan-
nels contribute to regulation of insulin release in the
narrow range around the threshold blood glucose con-
centration physiologically relevant for glycemic control.
In addition, TRAM-34 and SK4-KO significantly reduce
Kslow currents that are thought to participate in the
characteristic burst pattern of pancreatic �-cells. Our
observation that SK4 is one component of Kslow (Fig.
2E) emphasizes the importance of the SK4 channel for
�-cell electrical activity. Although the involvement of
SK4 in Kslow generation is evidenced by the reduced
current in SK4-KO �-cells and in TRAM-34 –treated WT
cells, charybdotoxin failed to affect Kslow. This observa-
tion requires further investigation but is in agreement
with reports of others (33) describing inefficiency of the
scorpion toxin on Kslow or on whole-cell currents with
SK4 characteristics (48). Importantly, the typical oscil-
lations of glucose-stimulated �-cells are not prevented
by SK4-KO, and Kslow is not completely absent in
SK4-KO �-cells, even in the presence of 1 mmol/l
tolbutamide. This suggests, in agreement with what has

previously been proposed by Kanno et al. (34), that KATP
channels, SK4, and other KCa channels act in concert to
regulate the bursting activity of pancreatic �-cells.

SK4-KO did not affect blood glucose concentration of
fed or fasted mice, demonstrating that glucose homeosta-
sis can be maintained by other factors, e.g., adaptation in
central regulation of energy balance or activation of
peripheral counterregulatory mechanisms. However,
SK4-KO improved the glucose tolerance after glucose
challenge, whereas insulin sensitivity remained unchanged
(Fig. 4). This strongly suggests that the �-cell is the major
target of SK4-KO with regard to glycemic control. Indeed,
SK4-KO �-cells displayed alterations in agreement with
improved glucose tolerance: in glucose-stimulated SK4-KO
�-cells, the plateau potential was more depolarized com-
pared with WT cells. Consequently, the frequency of Ca2�

APs was increased by �30%. In addition, loss or blockade
of SK4 channels resulted in AP broadening and elevated
Ca2� influx. These effects are suited to enhance exocytosis
and finally to improve glucose tolerance.

For control of insulin secretion, the concentration-
response correlation of glucose and electrical activity is
very important (49). SK4-KO induced a clear left shift in
glucose responsiveness with respect to Vm, [Ca2�]c, and
insulin secretion (Fig. 3A–C). Furthermore, electrical ac-
tivity could be induced by TRAM-34 applied to subthresh-
old glucose concentrations, i.e., when Vm is already
depolarized but has not reached the threshold for Ca2�

APs (Fig. 3D). It is well-known that the resting membrane
potential of �-cells is predominantly carried by KATP
current (50,51). In agreement, SK4-KO did not affect the
responsiveness of �-cells at low glucose concentrations
(Fig. 3B) and TRAM-34 did not depolarize WT �-cells
under resting conditions. Regulation of insulin secretion
occurs via a gradual decrease in the open probability of
KATP channels in response to a stepwise elevation of
glucose (46), thereby increasing membrane depolarization.
SK4 channel opening is largely independent of Vm (2,52)
but strictly regulated by [Ca2�]c. Half-maximal activation
occurs at Ca2� concentrations ranging from 300 to 500
nmol/l (53). For myocytes, it has been shown that SK4
channels are already open when Ca2� is reduced below
100 nmol/l (52). This is in agreement with our observation
that SK4 channel inhibition influences Vm under conditions
where [Ca2�]c is in the low nanomoles per liter range. For
pancreatic �-cells, it was suggested that Ca2� influx via
L-type Ca2� channels does not increase at a Vm below �40
mV (54). This might raise the question why SK4 channel
inhibition does not affect Vm at 0.5 mmol/l glucose but
initiates APs at 6 mmol/l glucose. However, because
Larsson-Nyrén et al. (54) induced Ca2� influx by short
depolarizing voltage steps starting at �70 mV, they cannot
elucidate whether a gradual increase of Vm elevates Ca2�

channel activity, thereby promoting Ca2� influx even be-
low the threshold for Ca2� APs. In this context, it is
noteworthy that Nelson et al. (55) demonstrated in cell-
attached membrane patches of basilar arteries that the
open probability of L-type Ca2� channels already starts to
increase at �65 mV, which is �20 mV more negative than
the threshold potential for APs. Consequently, glucose-
regulated membrane depolarization might enhance SK4
channel activity dose dependently even before the thresh-
old for induction of Ca2� APs.

Our data suggest that membrane depolarization induced
by closure of KATP channels leads to Ca2� influx and
subsequent activation of SK4 channels. This mechanism

M. DÜFER AND ASSOCIATES

DIABETES, VOL. 58, AUGUST 2009 1841



counteracts the depolarization and promotes closure of
L-type Ca2� channels. We hypothesize that modulation of
�-cell activity via SK4 channels contributes to the precise
adjustment of insulin secretion according to the current
metabolic demands. An important regulatory function of
SK4 channels concerning intracellular Ca2� homeostasis
has also been described for other cellular systems. In mast
cells or in the endothelium, receptor-mediated Ca2� influx
activates SK4 channels, thereby inducing membrane
hyperpolarization. However, in contrast to pancreatic
�-cells, the increased K� conductance enforces Ca2�

influx in these cells through transient receptor potential or
store-operated Ca2� channels. The final result is elevation
of [Ca2�]c, which triggers mast cell degranulation or
endothelium-mediated vasodilation, respectively (5,56).
Depending on the pathway of Ca2� influx, SK4 channel
activation could either enhance or limit Ca2�-regulated
signaling cascades in different tissues or organs.

As the Ca2� dependence of SK4 channels is expected to
couple channel activity to the metabolic status of pancre-
atic �-cells, SK4 channels may modulate cell function
without bearing the risk for unwanted hypoglycemic epi-
sodes, which complicates the use of insulinotropic drugs
acting on KATP channels (57,58). Importantly, SK4-KO mice
displayed no signs of hypoglycemia after overnight fasting
or when they were fed ad libitum, which shows that the
genetic manipulation did not result in excessive insulin
secretion per se but improved �-cell response when chal-
lenged with high blood glucose concentrations. Because
SK4-KO markedly elevated the proportion of active �-cells,
it is suggested that a reduction of the SK4 current is a
suitable tool to recruit more �-cells for nutrient-stimulated
insulin release. Thus, targeting SK4 channels pharmaco-
logically might be a useful approach to augment insulin
release in �-cells with impaired secretory response.
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Arch 1990;416:568–572
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