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A major challenge in neurobiology is to understand mechanisms underlying human neuronal 
diversification. motor neurons (mns) represent a diverse collection of neuronal subtypes, 
displaying differential vulnerability in different human neurodegenerative diseases. The ability 
to manipulate cell subtype diversification is critical to establish accurate, clinically relevant 
in vitro disease models. Retinoid signalling contributes to caudal precursor specification and 
subsequent mn subtype diversification. Here we investigate the necessity for retinoic acid in 
motor neurogenesis from human embryonic stem cells. We show that activin/nodal signalling 
inhibition, followed by sonic hedgehog agonist treatment, is sufficient for mn precursor 
specification, which occurs even in the presence of retinoid pathway antagonists. Importantly, 
precursors mature into HB9/ChAT-expressing functional mns. Furthermore, retinoid-
independent motor neurogenesis results in a ground state biased to caudal, medial motor 
columnar identities from which a greater retinoid-dependent diversity of mns, including those 
of lateral motor columns, can be selectively derived in vitro. 
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The ability to generate defined neuronal lineages from human 
embryonic stem cells (hESCs) through application of develop
mental principles offers an unprecedented opportunity 

to interrogate the molecular mechanism(s) underlying human 
 neuronal diversity1,2. Although often considered a single group, 
spinal motor neurons (MNs) are a collection of diverse neuronal 
subtypes that in turn have distinct connectivity and also display 
differential vulnerability in diseases such as amyotrophic lateral 
sclerosis and spinal muscular atrophy3. This highlights the need for 
subtypespecific MN differentiation protocols, which will in turn 
permit more accurate and clinically relevant in vitro model systems 
of motor neuronopathies. Insights from spinal cord neuronal fate 
specification have greatly informed our understanding of the gene
ration of neuronal diversity and highlight common themes under
lying neuronal identity and organization based on signalling along 
the rostrocaudal (RC) and dorsoventral (DV) axes4,5. Default  
models of neurogenesis commonly suggest an initial rostral posi
tional identity of resulting precursors6,7. Progressive respecification  
of rostral to more caudal fates is choreographed by a number of 
signalling pathways, including fibroblast growth factors (FGFs)8, 
retinoic acid (RA)9, transforming growth factorβ (TGFβ)10 and 
WNTs11. RC patterning of the caudal hindbrain and rostral spinal 
cord are regulated through graded RA signalling, in concert with 
WNTs and FGFs, and establish positional boundaries of HOX gene 
expression. Significantly, the absence of RA signalling results in  
specific abnormalities in RC and also in DV organization12.

Once caudalized, ventral neuronal fate specification is initiated by 
sonic hedgehog (SHH) signalling through its effects on both homeo
domain (HD) and basic helixloophelix transcription factors, and 
is believed to occur via a derepression strategy13. Within the DV 
axis, SHH promotes the expression of class II transcription factors 
(OLIG2, NKX2.2 and NKX6.1), whereas RA promotes the expres
sion of class 1 factors (PAX7, PAX6 and IRX3). HD and basic helix
loophelix transcription factors across both classes function in 
combination to establish discrete precursor domains5. MN precur
sors arising from the pMN domain are defined by expression of the  
transcription factors NKX6.1, OLIG2 and NEUROG214–16. Their 
combined action directs MN precursors to a postmitotic state, after 
which they upregulate fate consolidating genes such as HB917,18.

Beyond precursor specification, retinoid signalling is required 
to diversify MN subtypes from the common MN precursor pool 
and establish spinal cord columnar organization. Spinal motor col
umn precursor cells are partitioned to lateral and medial pools, 
acquire different fates with respect to axonal trajection and target 
innervation and can be discriminated based on their gene expres
sion profiles19,20. RA is required for development of somatic MNs 
in the caudal hindbrain21 and lateral motor column (LMC) MNs. 
Within the LMCs at brachiolumbar foci, RA is synthesized locally 
by subpopulations of MNs (expressing RALDH2) and regulates the 
differentiation of migrating neurons into subsets of LMC neurons. 
Ectopic RA synthesis affects MN subtype specification22 and ectopic 
RALDH2 expression in spinal neurons generates LMC MNs, while 
RALDH2 knockdown and knockouts cause a reduction, but not 
complete elimination, of both lateral and medial LMC neurons20,23. 
Together, these studies highlight distinct requirements for RA  
signalling in MN generation and organization.

Application of developmental inductive signals, such as RA and 
SHH, has enabled directed differentiation of MNs from mouse 
and human ESCs1,24. Inhibition of activin/nodal signalling accel
erates neural conversion from hESCs25 and additionally imposes a  
caudal positional identity on resulting precursors26. This allows study 
of the requirement for RA in spinal motor neurogenesis beyond its 
ability to induce caudal fate specification. We therefore addressed 
whether human motor neurogenesis can be achieved independently 
of retinoid signalling using small moleculedirected differentiation 
of hESC fate.

In this study, we show the accelerated generation of predominantly 
caudal functional MNs that is independent of retinoid signalling. 
Importantly, retinoidindependent differentiation reveals a novel 
approach to MN generation and their subtype diversification in vitro.

Results
SB431542 accelerates MN precursor specification from hESCs. 
We previously demonstrated that the activin/nodal receptor kinase 
(ALK4/5/7) inhibitor SB431542 accelerates efficient conversion 
of hESCs to predominantly caudal neural precursors26. To 
investigate whether accelerated MN precursor specification could 
be achieved in these cultures, we applied a standard programme  
of morphogenetic cues1. Day 4 SB431542treated cells were exposed 
to FGF2, RA and the SHH agonist puromorphamine for 8 days.  
The resulting aggregates demonstrated significant upregulation of 
the MN lineage transcription factors OLIG2 and ISLET1 (Fig. 1a–i), 
which on terminal differentiation generated mature SYNAPSIN
positive neurons, with 17.5 ± 1.2% of cells coexpressing HB9/ 
βIIITUBULIN, confirming MN identity (Fig. 1j–l).

MN induction can occur independently of retinoid signalling. 
The imposition of caudal positional identity by SB431542, demon
strated by the upregulation of HOX genes and downregulation of 
anterior markers OTX2 and PAX6, has previously been reported26. 
Importantly, the upregulation of HOX genes in SB431542treated 
cultures occurs independently of exogenous RA. As a primary func
tion of RA in MN specification from ESCs is to induce HOX gene 
expression27, we reasoned that MN specification might be achieved 
independently of exogenous RA in SB431542neuralized hESC cul
tures. Addition of puromorphamine to SB431542treated cultures 
resulted in significant upregulation of OLIG2, independently of 
exogenous RA (Fig. 2a–d). Furthermore, SYNAPSIN/βIIITUBU
LIN coimmunolabelling and HB9/βIIITUBULIN quantitative 
immunocytochemistry confirmed the presence of mature MNs (Fig. 
2e–g, 11.2 ± 0.9%). To further confirm retinoidindependent MN 
specification, we next differentiated hESCs in the presence of the 
RAR and RXR retinoid receptor antagonists UVI2024 and UVI3003  
(refs 28, 29). The efficacy of these compounds was confirmed by 
demonstrating inhibition of RAinduced HOXB4 and HOXC5 gene 
expression in control cultures (Supplementary Fig. S1). In cultures 
treated with puromorphamine in the continued presence of UVI2024 
and UVI3003 and without exogenous RA, OLIG2 was still signifi
cantly upregulated (Fig. 2a–d). There was no statistically significant 
difference in the number of OLIG2expressing cells when compar
ing both retinoidfree culture methods (Fig. 2d), suggesting a pheno
typically inconsequential level of endogenous retinoid signalling. 
Crucially, terminal differentiation of the resulting precursors in the 
continued presence of UVI2024 and UVI3003 generated neurons 
expressing classical MN markers, including NGN2, ISL1, ChAT and 
VAChT, detected by reverse transcription PCR (RT–PCR) as well as 
positive immunocytochemistry for MN lineage markers NKX6.1, 
ISL1, HB9, ChAT, SMI32 and LHX3 (Supplementary Fig. S2).  
Furthermore, SYNAPSIN/βIIITUBULIN coimmunolabelling 
and HB9/βIIITUBULIN quantitative immunocytochemistry 
confirmed the presence of mature MNs (Fig. 2e–g, 12.0 ± 1.3%). In 
addition to MNs, retinoidindependent cultures most likely contain 
ventral interneuronal subtypes. This was investigated by LHX3/β
IIITUBULIN quantitative immunocytochemistry (Supplementary 
Fig. S2). Given that the cultures were comprised of 29.4 ± 1.3% 
LHX3 + /βIIITUBULIN +  cells and 9.7 ± 0.8% total MNs at 9 weeks 
post mitogen withdrawal, a portion of the cultures were likely to be 
V2 interneurons, consistent with previous reports1,24.

We next investigated the functional maturation of RAinde
pendent MNs. MN precursors cocultured with C2C12 cellderived 
myotubes resulted in putative synaptic connections within 12 
days, as demonstrated by the presence of αbungarotoxin plaques 
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on myotubes (indicating clustering of acetylcholine receptors) 
contacted by the tips of neurite processes (Fig. 2h–j). This is con
sistent with potential synaptic connectivity of the resulting MNs. 
Electrophysiological assessment of RAindependent MNs (Fig. 2k) 
showed them to fire tetrodotoxin (TTX)sensitive action poten
tials when injected with depolarizing currents. In addition, they  
possessed receptors for ionotropic glutamate receptors, as evi
denced by wholecell current recordings in response to the appli
cation of αamino3hydroxyl5methyl4isoxazolepropionate 

(AMPA) and Nmethyldaspartic acid (NMDA). Receptors for the 
inhibitory neurotransmitter, γaminobutyric acid, were also present 
in these cells. Finally, synaptic connectivity was evident by the pres
ence of TTXinsensitive miniature excitatory synaptic postsynaptic 
currents. Together, these data are consistent with the generation of 
functional human MNs, independent of retinoid signalling.

Retinoid-independent MNs exhibit distinct subtype diversity. 
Although retinoidindependent motor neurogenesis from hESCs 
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Figure 1 | Accelerated motor neurogenesis from human embryonic stem cells. (a) The small compound sB431542 (an inhibitor of the activin/nodal 
signalling pathway) was used for neural conversion of human embryonic stem cells (hEsCs). sB431542 was added at day 0 followed by retinoic acid and a 
sonic hedgehog agonist called puromorphamine. oLIG2 immunocytochemistry (green) of day 12 hEsC-nPCs neuralized in (b) chemically defined medium 
alone, (c) 10 µm sB431542 from days 0 to 4 or (d) sB431542 exposure from days 0 to 4, followed by 0.1 µm retinoic acid and 1 µm puromorphamine for 
a further 8 days. IsLET1 immunocytochemistry (red) of day 12 hEsCs neuralized in (e) chemically defined medium alone, (f) 10 µm sB431542 from days 0 
to 4, (g) sB431542 exposure from days 0 to 4, followed by 0.1 µm retinoic acid and 1 µm puromorphamine for a further 8 days. All cultures were treated 
with 10 ng ml − 1 FGF2 from days 4 to 12. Quantitative immunocytochemical analysis of (h) oLIG2 and (i) IsLET1 is shown. Following the protocol detailed 
in a and in the continued presence of retinoic acid, cells were plated down for terminal differentiation. (j) β-III-TuBuLIn/sYnAPsIn expression occurs 
within 4–7 days, and (k) HB9 expression within neuronal nuclei occurs after 4–5 weeks of terminal differentiation. (l) Quantitative immunocytochemistry 
for HB9/β-III-TuBuLIn (βIII) co-expressing cells. Error bars in h–j represent s.e.m, ***P < 0.001, mann–Whitney rank-sum test, a minimum of three 
biological repeats were performed for each experiment. DAPI, 4,6-diamidino-2-phenylindole; hEsC, human embryonic stem cell; mn, motor neuron; nPC, 
neural precursor cell; P, puromorphamine (a sonic hedgehog agonist); RA, retinoic acid; and sB, sB431542 (an inhibitor of the activin/nodal signalling 
pathway). scale bars (b–g) 100 µm; (j, k) 25 µm.
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has been demonstrated (Fig. 2), we found that exogenous RA 
increased both the OLIG2expressing precursor population (Fig. 2d; 
50.92 ± 2.5% with RA versus 36.5 ± 3.0% in RAindependent culture 
conditions, P < 0.001) and the number of postmitotic MNs (Figs 1l 
and 2g; 17.5 ± 1.2% versus 11.2 ± 0.9%, P = 0.0071). Therefore, we next 
considered whether retinoid signalling influences the repertoire of 
specific MN subtypes generated. The diversity and number of MNs 
required at different levels of the neuraxis are determined by codes of 
HOX and LHX gene expression19,20. Although HOX genes are directly 
regulated by RA, the absolute dependence varies for individual HOX 
genes; therefore, the HOX gene expression profile would be expected 

to vary in RAtreated and RAindependent groups. Transcriptional 
profiling revealed differential HOX gene upregulation in the RA
treated versus RAindependent conditions, suggesting that RA
independent motor neurogenesis occurs with distinct rostrocaudal 
identities (Fig. 3a–c). The relative expression profiles of HOX genes, 
determined by quantitative RT–PCR (qRT–PCR), showed that RA
independent cultures had significantly reduced expression of ante
rior HOX genes, including HOXB1 and HOXA3, compared with 
the more caudal markers, suggesting a preferential differentiation of 
caudal rather than rostral MNs. Quantitative immunocytochemistry 
of MN precursors derived in both RAindependent and RAtreated 
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Figure 2 | Retinoid-independent motor neurogenesis from human embryonic stem cells. (a) sB431542 treatment from day 0 to 4 followed by 
puromorphamine from day 4 to 12, with pan-retinoid antagonists from day 4 onwards. (b) oLIG2 immunocytochemistry (green) of day 12 hEsC-nPCs 
derived in retinoid-free conditions ( − / +  pan-retinoid antagonists). Quantitative oLIG2 immunocytochemistry comparing retinoid-independent culture 
conditions with (c) control conditions and (d) retinoid-treated conditions. All cultures were treated with 10 ng ml − 1 FGF2 from day 4 to 12. on terminal 
differentiation (e) β-III-TuBuLIn (βIII)/sYnAPsIn expression occurs within 4–7 days and (f) HB9 expression after 4–5 weeks. (g) Quantitative 
immunocytochemistry for HB9/β-III-TuBuLIn co-expressing cells. Co-culture of RA-independent mn precursors with C2C12-derived myotubes for  
12 days results in (h) outgrowth of neurite tips, (i) Tetramethyl Rhodamine Iso-Thiocyanate (TRITC)-α-bungarotoxin plaques on myotubes and (j) 
neuromuscular synapse formation. (k) Current-clamp recording from RA-independent mns (56 days post-plating): injection of positive current generates 
action potentials that are blocked by voltage-dependent na +  channel blocker tetrodotoxin (TTX; 300 nm). Voltage-clamp recordings from RA-independent 
mns, held at  − 60 mV, showing responses to application of the ionotropic glutamate receptor agonists α-amino-3-hydroxyl-5-methyl-4-isoxazole-
propionate (AmPA; 50 µm) and N-methyl-d-aspartic acid (nmDA; 100 µm) and to the inhibitory neurotransmitter, γ-aminobutyric acid (GABA; 50 µm). 
The lower two traces in this panel show TTX-insensitive miniature excitatory postsynaptic currents (mEsPCs), recorded in the presence of picrotoxin 
(50 µm) and under conditions in which nmDA receptors would be blocked by magnesium ions (mg2 + ) present in the external recording solution. 
Calibration bars for current-clamp recordings, 16 mV and 400 ms; for agonist-evoked whole-cell currents, 80 pA and 4 s; and for mEPsCs, 16 pA and 80 ms. 
To confirm mn identity, post hoc staining with choline acetyltransferase (ChAT) was conducted. Error bars in c, d and g represent s.e.m, ***P < 0.001, mann–
Whitney rank-sum test, a minimum of three biological repeats were performed for each experiment. Ctrl, control; DAPI, 4,6-diamidino-2-phenylindole; 
mEsPCs, miniature excitatory postsynaptic currents; mn, motor neuron; ns, not significant; nPC, neural precursor cell; P, puromorphamine (sonic hedgehog 
agonist); RA, retinoic acid; sB, sB431542 (an inhibitor of the activin/nodal signalling pathway). scale bars (b) 100 µm; (h–j) 10 µm; others 25 µm.
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conditions (Fig. 3d,e) reinforced transcriptional studies by dem
onstrating significantly higher expression of HOXB4 and HOXC9 
in retinoidtreated cultures (Fig. 3e; 9.6 ± 1.5% versus 4.2 ± 0.7%, 
P = 0.0096; 22.9 ± 1.6% versus 12.4 ± 1.8%, P = 0.0002, respectively), 
while the caudal/lumbar marker HOXC10 was expressed at a signifi
cantly higher level in RAindependent conditions (Fig. 3e; 6.1 ± 1.2%  
versus 1.9 ± 0.6%, P = 0.0094). To confirm whether this bias was 
maintained following further neuronal differentiation, we analysed 
expression of relevant HOXC genes30 by qRT–PCR and immunocy
tochemistry in terminally differentiated MNs derived from both RA
independent and RAtreated protocols. This demonstrated a similar 
bias to the caudal spinal cord in RAindependent conditions (Fig. 3f–h).  
Significantly, the RAindependent cultures generated a greater 
number of HOXC10 and ChAT coexpressing MNs than the RA
treated cultures (Fig. 3g,h; 3.8 ± 0.6% versus 1.5 ± 0.4% of total cells 
coexpressing HOXC10 and ChAT, P = 0.0082), representing ~40% 
of all MNs in RAindependent conditions, given that 9.7 ± 0.8% of 
these cultures were MNs (Supplementary Fig. S2).

Although OLIG2 and HOX proteins are expressed in RAinde
pendent conditions, the classI HD protein PAX6 involved in DV 

patterning is not induced (1.5 ± 0.4% versus 13.5 ± 1.4% in the RA
treated group, P < 0.0001; Supplementary Fig. S3a,b). A consequence 
of reduced PAX6 in RAindependent conditions compared to  
those with RA is an increase in the population expressing NKX2.2 
(15.6 ± 1.2% versus 2.1 ± 0.5% in the RAtreated group, P < 0.0001; 
Supplementary Fig. S3a,b). This is consistent with in vivo studies 
confirming that restricted subtypes of MNs can still develop in 
the absence of Pax6, in association with a dorsal expansion of the 
Nkx2.2 domain31.

To further examine MN subtype diversification in RAindepend
ent cultures, we undertook qRT–PCR and immunocytochemical 
analyses, noting that LMC and medial motor column (MMC) pools 
have distinct transcriptional profiles19,20 (Fig. 4a). Specifically, LHX3, 
LHX1, RALDH2 and FOXP1 expression can be used to phenotype 
postmitotic MNs. qRT–PCR analysis of 9 week terminally differ
entiated MNs showed that RAindependent cultures expressed low 
levels of RALDH2 and LHX1 in contrast to high expression in RA
treated cultures (Fig. 4b,c), suggesting an RAmediated MN sub
type bias to the LMCs. In contrast, LHX3 expression was similar 
in the two groups (Fig. 4d), suggesting that retinoid signalling may 
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Figure 3 | Distinct rostro-caudal specification of retinoid-independent motor neurons. (a) A cartoon schematic depicts expression patterns of 
chromosomally linked HOX genes along the R-C axis. HOX genes at one end of the cluster are expressed more rostrally, whereas those at the opposite 
end are expressed caudally, as indicated. (b) Reverse transcriptase PCR (RT–PCR) and (c) quantitative RT–PCR (qRT–PCR) of multiple HOX genes across 
both experimental conditions (RA-independent and RA-treated), depicted as a HOX gene expression heat map (letters A, B, C and D in the heat map 
refer to the four HOX gene clusters located on different chromosomes, while numbers reflect individual genes of each cluster and determine R-C identity, 
as shown in a). (d) Immunocytochemistry of HoXB4, HoXC9 and HoXC10 in RA-independent and RA-treated conditions. (e) Quantitative analysis 
of immunocytochemistry in d (black bars are RA-independent cultures, while the white bars represent RA-treated culture conditions). (f) qRT–PCR of 
HoXC4, HoXC9 and HoXC10 in terminally differentiated cultures (9 weeks after mitogen withdrawal). (g) Immunocytochemistry of HoXC10 (red) and 
ChAT (green) co-positive motor neurons (low- and high-power magnification, representative images of HoXC10 and ChAT immunolabelled retinoid-
independent motor neurons). (h) Quantitative analysis of HoXC10 and ChAT immunocytochemistry shown in g. Error bars in e and h represent s.e.m, 
**P < 0.01, ***P < 0.001, mann–Whitney rank-sum test, a minimum of three biological repeats were performed for each experiment. ChAT, choline 
actetyltransferase; DAPI, 4,6-diamidino-2-phenylindole; hEsC, human embryonic stem cell; mn, motor neuron; nsC, neural stem cell; RA, retinoic acid; 
RA − , retinoid independent; RA + , retinoid treated; sB, sB431542 (an inhibitor of the activin/nodal signalling pathway). All scale bars 50 µm.
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be dispensable for specifying medial MMC identity. To corroborate 
these observations, FOXP1 expression in terminally differentiated 
mature MNs was studied by quantitative immunocytochemsitry  
using an established classification system of high, low and off30, in 
conjunction with the panMN marker SMI3232 (Fig. 4e,f,h). RA 
treatment generated significantly more FOXP1(high) MNs (Fig. 4f;  
7.1 ± 0.9% versus 1 ± 0.3%, P < 0.0001), consistent with an LMC 
identity. Interestingly, retinoidindependent MNs showed a sig
nificantly higher number of FOXP1(off) MNs (Fig. 4h; 74.9 ± 2.2%  
versus 64.9 ± 2.9%, P = 0.0107), consistent with MMC identities 
(medial and/or lateral). When considered together with the simi
lar LHX3 expression between retinoidindependent and retinoid
treated groups, this data, suggests that lateral MMC (also known as 
the hypaxial motor column or HMC) MNs are preferentially speci
fied in the RAindependent group. To investigate this further, we 
performed quantitative immunocytochemistry of LHX3 and SMI32 
coexpressing MNs and found no significant difference between RA
treated and RAindependent cultures (Fig. 4g,h; 60.5 ± 3.2% versus 
65.7 ± 2.9%, P = 0.2496), confirming that medial MMC identity is not 
significantly influenced by retinoid signalling. Importantly, there 
were significantly fewer LHX3 and SMI32 copositive MNs than 
FOXP1(off) but SMI32positive MNs in the retinoidindependent 
group only (Fig. 4h; 65.7 ± 2.9% versus 74.9 ± 2.2%, P = 0.02), again 
suggesting the presence of a FOXP1(off) and LHX3negative MN 
population, a molecular phenotype consistent with lateral MMC  

(or HMC) identity. Indeed, further immunocytochemical studies 
not only confirmed the presence of FOXP1(off) and LHX3negative 
but SMI32expressing lateral MMC (or HMC)like MNs but also 
further demonstrate that this subtype appears to be preferentially 
specified in RAindependent cultures (Fig. 4i,j; 8.0 ± 1.2% versus 
3.3 ± 0.76%, P = 0.0029).

Taken together, the gene expression profiling and immunocy
tochemical analyses (Figs 3 and 4) provide evidence for a bias in 
the generation of MN subtype specificity to more caudal (spinal) 
MMC neurons (comprising both the medial and lateral subdivi
sions) under RAindependent differentiation conditions. In con
trast the output of RAtreated cultures are biased to more rostral 
populations, with a relative predominance of LMC MNs and medial 
(but less lateral) MMC identities. These findings suggest a medial 
MMC ground state, the specification of which appears to be refrac
tory to changes in retinoid signalling. RA exposure then promotes 
LMC specification at the expense of lateral (but not medial) MMC 
identity (Fig. 5).

Discussion
This study demonstrates a novel retinoidindependent pathway for 
the generation of functional human MNs from ESCs that display 
a predominantly caudal identity and bias to medial motor colum
nar pools (both lateral and medial). We and others have previously 
showed that activin/nodal inhibition with SB431542 accelerates 
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terminally differentiated mns (9 weeks after mitogen withdrawal) for lateral motor column (LmC) markers (b) retinaldehyde dehydrogenase 2 
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terminally differentiated mns for the LmC marker FoXP1. (f) Quantification of FoXP1(high) and smI32 co-expressing cells. (g) LHX3 and smI32 
immunocytochemistry (low- and high-power magnification, representative images of LHX3 and smI32 immunolabelled retinoid-independent motor 
neurons). (h) Quantitative analysis of LHX3 and smI32 co-expressing cells, and FoXP1(off) and smI32 co-expressing cells in RA-independent and 
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immunolabelled retinoid-independent motor neurons). (j) Quantified immunocytochemistry of FoXP1(off)/LHX3 − /smI32 +  cells. Error bars in f, h 
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RA − , retinoid independent, RA + , retinoid treated. All scale bars, 50 µm.
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neural conversion from hESCs25,26,33, and this study demonstrates 
that this system allows accelerated specification of MN progeni
tors within 12 days compared with most published protocols of ~30 
days1. Moreover, as neuralization with SB431542 imposes a caudal 
identity on resulting precursors, we could investigate the necessity 
of RA for human motor neurogenesis and show that subclasses 
of MNs can be specified independently of RA in the context of 
activin/nodal inhibition and hedgehog signalling, thereby increas
ing the potential diversity of human MNs for study (Fig. 5). This 
is an important consideration for the creation of accurate disease 
models of degenerative processes that display selective neuronal 
subtype vulnerability, as seen in amyotrophic lateral sclerosis and 
spinal muscular atrophy3.

Established roles for RA in motor neurogenesis include the 
upregulation of HOX gene expression27; upregulation of Class I HD 
genes involved in DV neural patterning34,35 and the diversifica
tion of MN subtypes from postmitotic MN precursor pools19,20,22. 
The RAindependent differentiation conditions used here apply 
sequential extrinsic factors that modulate cell fate, including TGFβ 
antagonism by SB431542 followed by hedgehog and FGF pathway 
activation using purmorphamine and FGF2. Under these condi
tions, ventral fatedetermining proteins including NKX2.2 and 
OLIG2 are expressed. HOX gene expression is increased in response 
to SB431542 treatment, compared with controls. However the pro
file of expressed HOX genes varies to that expressed in response to 

RA26. Together, signals that lead to OLIG2 and HOX protein expres
sion, in the absence of RA, provide the essential basis for MN pre
cursor specification in this study. In view of the interplay of FGF  
and RA signalling in determining caudal identity, it will be of  
interest to study the specific requirements of FGFs in the context of 
RAindependent motor neurogenesis36,37.

In vivo, Pax6 functions to establish the pMN domain through 
crossrepression of the classII gene Nkx2.2, limiting its expression 
to the more ventral p3 domain5,38. A consequence of reduced PAX6 
in RAindependent conditions, compared to those with RA, is an 
increase in the population expressing NKX2.2. This is consistent 
with previous studies demonstrating the ability of RA to regulate 
DV identity during neural differentiation from mouse embryonic 
stem cells39 and additionally with analysis of mutant Pax6 mice, 
which show a dorsal expansion of the Nkx2.2 domain. Despite 
the significance of Pax6 in pMN domain development, MNs still 
develop in Pax6null rodents, although with reduced numbers and 
selective loss of specific subgroups of Pax6dependent MNs31,40. 
These in vivo data suggest that, in the absence of RA, the lack of 
PAX6 in hESC neural derivatives would lead to development of 
restricted subgroups of MNs.

This is the first report demonstrating retinoidindependent 
specification of functional human MNs. Our findings are con
sistent with previous observations that have shown that MNs can 
develop when retinoid signalling is compromised12,41, and that the 
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necessity for retinoid signalling and its effects on MN output are 
dependent on developmental context. Retinoidindependent motor 
neurogenesis occurs in a vitaminAdeficient quail model system 
in which embryos display localized disruption of DV patterning 
at the cervical but not at more posterior levels of the spinal cord41. 
A differential RC dependence on RA is consistent with our in vitro 
findings that show specification of more caudal MN fates in human 
cells in the absence of RA signalling. In addition, our data suggest 
that RAindependent motor neurogenesis results in a MMC sub
type bias, compatible with the known contribution of RA to subtype 
diversification22. In vivo, FOXP1 is expressed by MNs at brachial, 
thoracic and lumbar levels of the spinal cord, and its activity medi
ates translation of the HOX code present in each precursor pool 
and diverts MNs to LMC fates30. Recent evidence suggests a role for 
HoxC9 as a ‘master regulator’ of motor system organization through 
global crossrepressive activities42. Interestingly, our data suggests 
significantly more induction of HOXC9 in retinoidtreated when 
compared with retinoidindependent cultures (although expres
sion is observed in both conditions; Fig. 3). Further manipulation 
of HOXC9 expression, via extrinsic signals or gene targeting, may 
facilitate more refined approaches to directed differentiation of 
hESCs to enriched populations of MN subtypes.

Our data demonstrates the emergence of FOXP1(high) (LMC) 
MNs with continuing retinoid exposure. LMC neurons are only 
generated at specific HOX levels (brachial and lumbar), which may 
account for the modest (although significant) increase in the percent
age of LMC MNs. Inhibition of retinoid signalling in postmitotic 
MNs has been shown to divert their fate, at the expense of LMC, to a 
lateral MMC (or HMC) identity19. The demonstration of an increase 
in FOXP1(off) MNs on inhibition of retinoid signalling together with 
no significant difference in LHX3 and SMI32 copositive cells in both 
experimental conditions and, more specifically, demonstration of 
significantly higher numbers of FOXP1(off) and LHX3negative but 
SMI32positive MNs in RAindependent conditions are consistent 
with these studies. Therefore, retinoid signalling promotes the speci
fication of LMC MNs at the expense of lateral MMC MNs, Further
more, the refractoriness of the medial MMC to changes in retinoid 
signalling implicates its development as a MN ground state (Fig. 5).

This study supports the view that the retinoid pathway is dif
ferentially relevant to distinct stages of motor neurogenesis. The 
functional implications of these findings are of considerable inter
est, because motor column organization in development forms the 
basis for motor pools and target innervation3, and in diseases such 
as amyotrophic lateral sclerosis, MNs have differential vulnerability 
to degeneration. Thus, it would be of interest to explore behaviour 
of RAindependent and dependent MNs in experimental models 
of injury. Additionally, given a growing interest in the potential use 
of retinoid pathway manipulation as a neuroregenerative therapy43, 
our study may have implications for either chemical or cellbased 
therapeutic strategies for degenerative conditions such as amyo
trophic lateral sclerosis and spinal muscular atrophy.

Note added in proof: A parallel study using mouse embryonic 
stem cells has been reported while this work was under considera
tion (Peljto, M., Dasen, J. S., Mazzoni, E. O., Jessell, T. M. & Wich
terle, H. Functional diversity of ESCderived motor neuron sub
types revealed through intraspinal transplantation. Cell Stem Cell 
7, 355–366 (2010)).

Methods
hESC culture and neural induction. The hESC lines H9 (WiCell Research 
Institute) and HuES9 (hES facility, Harvard University) were propagated in 
defined medium supplemented with 8 ng ml − 1 of FGF2, 10 ng ml − 1 of activin44 and 
10 ng ml − 1 of insulin as an adherent culture system on a layer of irradiated mouse 
embryonic fibroblasts26,45. Human ESCs were enzymatically passaged in a 1:4 split 
ratio at the point of subconfluence. To generate neural precursor cells (NPCs), 
hESCs were enzymatically dissociated, mechanically triturated, centrifuged and 

washed in fresh medium. Cell aggregates were next suspended in chemically defined 
medium in 10cm culture dishes on an orbital shaker. Chemically defined medium 
consisted of 50% Iscove’s modified Dulbecco’s medium (IMDM; Gibco) plus 50% 
F12 plus Glutamax (Gibco), supplemented with 1.75 mM human recombinant 
insulin (Roche), 0.38mM transferrin (Roche), 450 µM of monothioglycerol (Sigma), 
10 µl ml − 1 lipids (Sigma) and 5 mg ml − 1 bovine serum albumin fraction V (Sigma). 
SB431542 (10 µM; Tocris Bioscience) was added from day 0–4. Eightday patterning 
protocols were developed in which hESCNPCs were cultured in combinations of 
FGF2 (10ng ml − 1)/SB431542 (10 µM)/RA (0.1 µM)/puromorphamine46 (1 µM) for 
spinal MN specification. For terminal differentiation, hESCNPCs were plated onto 
poly(dlysine)/laminincoated coverslips and cultured in Dulbecco’s modified Eagle’s 
medium (DMEM)/2% B27/1% penicillin/streptomycin/fungizone (PSF), 10 ng ml − 1 
BDNF (brainderived neurotrophic factor; R&D Systems) and 10 ng ml − 1 GDNF 
(Glial cellderived neurotrophic factor; R&D Systems) in the absence of mitogens.

The synthesis of retinoid antagonists. The synthesis of UVI3003 has been  
described elsewhere29. The synthesis of UVI2024, also called BMS493, follows  
the methodology described recently for the preparation of the halogenated  
derivatives28. A description of the synthetic method and the characterization  
data is described in the Supplementary Methods.

Reverse transcription PCR. Total RNA was extracted from dissociated and 
washed cells using the RNeasy Mini Kit (Qiagen) following the manufacturer’s 
instructions. cDNA was synthesized from 2 µg of RNA using Moloney murine 
leukaemia virus reverse transcriptase (Invitrogen) and oligodT primers. PCR was 
carried out using Taq polymerase (Invitrogen). PCR products were separated on a 
2% agarose gel and visualized with SYBRGreen (Invitrogen). Primer information 
is provided in Supplementary Table S1.

Quantitative reverse transcription PCR. qPCR was carried out using the 
DyNAmo HS SYBRGreen qPCR kit (Finnzymes) and an Opticon2 realtime PCR 
system with Opticon Monitor version 3 software (BioRad Laboratories). Selection 
of Hprt1 as an appropriate reference gene for these sample sets was carried out, as 
previously described47. Further, during optimization of each gene of interest primer 
pair, the reaction efficiencies were determined (taking values between 95% and 
105% as satisfactory), with product integrity checked using both melting curve and 
agarose gel analysis. Primer information is provided in Supplementary Table S2. 
The data from sample and technical replicates is expressed as fold change (mean ±  
s.e.m.), determined using the ∆∆Cq method with respect to the reference gene.

Immunocytochemistry. Cells plated down on polydlysine/laminincoated glass 
coverslips were fixed with 4% fresh paraformaldehyde for 20 min at room tempera
ture and washed three times with PBS. Samples were next blocked for 1 h with 0.3% 
Triton/PBS/5% goat serum and then incubated overnight with primary antibody 
in 0.2% Triton/PBS/2% goat serum at 4°C. After three washes in PBS, second
ary antibody (goat antimouse, Alexa Fluor 488 or 555, 1:1,000) in PBS/Hoechst 
(1:4,000) was next applied for 1 h. Primary antibodies included NESTIN (1:500; 
Chemicon), glial fibrillary acidic protein (GFAP, 1:200; DakoCytomation), OLIG2 
(1:200, Chemicon), βIIITUBULIN (1:500; SigmaAldrich), SYNAPSIN (1:500; 
Calbiochem), NKX6.1 (F65A2), NKX2.2 (74.5A5), PAX6, LHX3 (67.4E12), HOXB4, 
HOXC10, HB9 (815C10) (all in the ratio 1:50; Developmental Studies Hybridoma 
Bank), choline acetyltransferase (ChAT, 1:200; Chemicon), SMI32 (1:1,000,  
Covance), HOXC9 (1:200, Abcam), HOXC10 (1:200, Sigma), LHX3 (1:200, Abcam).

Electrophysiological recordings. Wholecell currentclamp and voltageclamp 
recordings were made from neurons at room temperature (21 ± 2 °C) using an 
Axopatch1C amplifier (Molecular Devices) using methods as described previ
ously48,49. Briefly, coverslips were transferred to a recording chamber perfused with 
an external recording solution composed of (in mM) 152 NaCl, 2.8 KCl, 10 HEPES,  
2 CaCl2, 10 glucose (pH 7.3; 320–330 mOsm). Patch pipettes were filled with a 
Kgluconatebased internal solution containing (in mM): 155 Kgluconate, 2 
MgCl2, 10 NaHEPES, 10 NaPiCreatine, 2 Mg2ATP and 0.3 Na3GTP (pH 7.3; 
300 mOsm). For currentclamp recordings, the external recording solution was  
supplemented with antagonists of glutamate and γaminobutyric acid ligandgated 
ion channels (CNQX 5 µM; DAP5 50 µM; picrotoxin 50 µM; and strychnine 
20 µM). For the recording of wholecell AMPA and NMDAevoked currents and 
synaptically mediated glutamate receptor responses, the external solution was  
supplemented with picrotoxin (50 µM) and strychnine (20 µM). In all experiments 
in which NMDA receptormediated responses were studied, a saturating concentra
tion of the coagonist, glycine (50 µM), was also added to the external recording  
solution. Miniature excitatory postsynaptic currents were recorded in solutions 
supplemented with 300 nM TTX, picrotoxin (50 µM), strychnine (20 µM) and MgCl2 
(1 mM). Events were recorded for 5–10 min at a holding potential of  − 70 mV.

Nerve and muscle co-culture methods. Mouse muscle cell lines (C2C12 myo
blasts, ATCC) were cultured with DMEM containing 4.5 g l − 1 glucose, 4 mM  
Lglutamine and 1mM sodium pyruvate, supplemented with 10% fetal bovine serum 
(Invitrogen) on glass coverslips. Horse serum (10%; Invitrogen) was used to induce 
myotube differentiation, confirmed using phasecontrast microscopy. Cultures  
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were maintained for 3–7 days before the addition of RAindependent MN progeni
tors in DMEM/2% B27/1%PSF, 10 ng ml − 1 BDNF (R&D Systems) and 10 ng ml − 1 
GDNF (R&D Systems). Cells were then fixed in 1× PBS containing 4% paraformal
dehyde after 7–12 days. Fixed cells were incubated in Tetramethyl Rhodamine  
IsoThiocyanate (TRITC)αbungarotoxin (5 µg ml − 1; Molecular Probes) for 
15 min to label acetylcholine receptors on myotubes, TOPRO3 (10 µl ml − 1;  
Molecular Probes) for 10 min to label cell nuclei, and primary antibodies against 
either 150 kDa neurofilament proteins (1:200; Chemicon) or neuronalspecific  
βIIItubulin (1:200; Abcam) overnight at 4 °C. Coverslips were then washed in  
1× PBS before labelling with swine antirabbit FITCconjugated secondary 
antibodies (1:40; Dako). Preparations were viewed on a Zeiss LSM510 confocal 
microscope (Zeiss).

Quantification and statistical analysis. All analysis was carried out on a 
minimum of three biological replicates unless otherwise stated. Cell counts were 
performed across a minimum of five fields of view (approximately 100–300 cells 
per field) from a minimum of three biological replicates across two different 
hESC lines. A Pvalue of  < 0.05 was considered statistically significant. Values are 
expressed as the mean ± s.e.m. The Mann–Whitney ranksum test was used for 
nonparametric analysis using GraphPad Prism 4 (GraphPad Software). 
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