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Geographically Sourcing Cocaine’s 
Origin – Delineation of the 
Nineteen Major Coca Growing 
Regions in South America
Jennifer R. Mallette1, John F. Casale1, James Jordan2, David R. Morello1 & Paul M. Beyer3

Previously, geo-sourcing to five major coca growing regions within South America was accomplished. 
However, the expansion of coca cultivation throughout South America made sub-regional origin 
determinations increasingly difficult. The former methodology was recently enhanced with additional 
stable isotope analyses (2H and 18O) to fully characterize cocaine due to the varying environmental 
conditions in which the coca was grown. An improved data analysis method was implemented with 
the combination of machine learning and multivariate statistical analysis methods to provide further 
partitioning between growing regions. Here, we show how the combination of trace cocaine alkaloids, 
stable isotopes, and multivariate statistical analyses can be used to classify illicit cocaine as originating 
from one of 19 growing regions within South America. The data obtained through this approach can be 
used to describe current coca cultivation and production trends, highlight trafficking routes, as well as 
identify new coca growing regions.

Cocaine remains one of the most widely used narcotics in the world, and the United States is a primary con-
sumer1. The widespread abuse of cocaine has led to numerous investigations into its production and characteriza-
tion2–6. In the past, profiling studies have focused on the isolation of trace alkaloids present in illicit cocaine with 
the intent of comparing and thus linking samples seized by law enforcement agencies7–10. Comparison analyses 
provide valuable information; however, due to the movement of cocaine for processing and distribution between 
multiple locations, successful sample-to-sample association is often difficult. Chemical profiling does, however, 
have significant merit in building the foundation for determining the origin of illicit cocaine. Geographically 
sourcing cocaine not only addresses the complex movement of cocaine but may also influence law enforcement’s 
coca eradication and cocaine interdiction strategies.

Cocaine origin determinations were first successfully accomplished through the utilization of trace alkaloid 
data in combination with stable isotope ratios (δ ) of purified cocaine11. Five coca growing regions throughout 
South America were investigated: The Chapare Valley in Bolivia, the Huallaga/Ucayali and Apurimac Valleys in 
Peru, and the Guaviare and Putumayo-Caquetá regions in Colombia. Five variables were considered: tropaco-
caine, trimethoxycocaine, total truxilline content, and two stable isotope ratios, δ 13C and δ 15N. The alkaloid con-
tent of cocaine is primarily indicative of the coca variety utilized for production, as the minor plant alkaloids 
that are carried through illicit processing vary by cultivar. Additionally, the prevalence of each variety differs 
throughout South America, thus indicating a probable region of growth3–5. Recent analyses of coca varieties and 
numerous cultigens have further enhanced our understanding of the known variations of alkaloid content within 
cocaine12. Stable isotope ratios are utilized in various fields of study for geographical origin determinations and 
predicting environmental patterns13–15. The stable isotopes present in cocaine are unaffected by illicit processing 
methods16 and are therefore a reflection of the environment in which the coca was cultivated.

Due to the natural variations in alkaloids and stable isotopes, characteristic profiles were easily identified 
and thus provided the basis for classification of cocaine by country of origin, i.e., Bolivia, Colombia, or Peru. 
Country-of-origin classifications were highly accurate (> 95%), and regional differences were noted. Over the 
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past 15 years, however, the data have exhibited less definitive separation between the classic regions due to the 
expansion of coca cultivation. In the early 2000s, cultivation in Colombia began to increase exponentially in 
response to law enforcement efforts to eliminate the shipment of cocaine base from Peru. The five aforementioned 
regions are now only part of a list of 19 known coca growing regions (Fig. 1). Despite the large shift in coca culti-
vation, assignment of cocaine to its source country is still possible with the previous methodology, but resolution 
between specific regions has been greatly reduced.

In order to improve the discriminatory ability of the existing geo-sourcing analyses, two measurements were 
added to the analysis scheme: δ 2H and δ 18O. Hydrogen and oxygen isotopic differences are expected in cocaine 
throughout South America due to the effects of precipitation and humidity conditions on isotope incorporation 
in plants17,18. Until now, however, this type of data has been unexplored for cocaine. Furthermore, an updated data 
analysis scheme based on exploratory spatial data analysis (ESDA) and chemometrics based multivariate statisti-
cal analysis methods was developed to simultaneously evaluate all collected data and visualize trends among the 
known growing regions under study. This provided the foundation for assigning accurate sub-regional classifi-
cations to illicit cocaine samples. By incorporating additional stable isotope analyses and multivariate statistical 
analyses to the existing geo-sourcing program, we have successfully developed methodology to classify illicit 
cocaine as originating from one of 19 known coca growing regions within Bolivia, Colombia, and Peru.

Results
More than 500 samples of coca leaf from the following coca-growing regions were analyzed: the Chapare region of 
Bolivia; the Amazonas, Antioquia, Arauca, Caquetá, Cauca, Chocó, Guaviare, Meta, Nariño, Norte de Santander, 
Putumayo, San Lucas, Santander, Valle de Cauca, Vaupés, and Vichada regions of Colombia; and the Cusco/
Apurimac (Cusco) and Ucayali/Huallaga Valleys (UHV) of Peru. All regions are illustrated in Fig. 1. Cocaine was 
extracted, purified, and analyzed for total alkaloid content. Additionally, the isotopes δ 13C, δ 15N, δ 2H, and δ 18O 
were accurately measured in every sample. Average results from the analyses are listed in Table 1.

Figure 1. Map outlining each of the known South American coca-growing regions investigated. 
(Colombia =  red; Peru =  green; Bolivia =  blue). The map was created with ArcGIS Advanced software 
(Environmental Systems Research Institute).



www.nature.com/scientificreports/

3Scientific RepoRts | 6:23520 | DOI: 10.1038/srep23520

Each collected coca leaf sample was referenced with the geographical coordinates of the originating field in 
addition to the general sub-regional location. The geospatial nature of the data provided a means to visualize each 
variable across a very large area. As illustrated in Fig. 2, the isotopes measured in the cocaine from Colombia were 
utilized to model the expected cocaine isotope measurements throughout the entire country. This type of data 
representation is referred to as an “isoscape,” and is a fundamental method to illustrate the expected results of 
a particular measurement based on actual observations from a smaller sample set19,20. In this study, the kriging 
interpolation method21 was utilized to produce each isoscape, and parameters were selected in order to produce 
the least amount of error within the landscapes. The same treatment was applied to the alkaloid data as shown in 
Fig. 3. The ordinary kriging method was selected with the intent to illustrate the variation of each measurement 
only in terms of location. This process is not part of the final determination of origin for cocaine samples, but is 
instead used for a visualization aid when identifying and understanding general differences observed throughout 
Colombia.

Growing Region (N = ) Tropacocaine Trimethoxycocaine Truxillines δ15N δ13C δ2H δ18O

Amazonas (19) 0.41 (0.17) 0.69 (0.20) 3.9 (0.6) − 4.3 (0.9) − 35.7 (0.5) − 210.9 (10.0) 12.9 (1.9)

Antioquia (20) 0.61 (0.31) 0.26 (0.09) 6.2 (1.3) − 7.6 (1.5) − 34.3 (0.4) − 228.7 (4.7) 10.4 (1.1)

Arauca (20) 4.86 (2.72) 0.01 (0.00) 24.1 (9.7) − 7.4 (2.2) − 33.4 (0.5) − 167.8 (7.0) 23.8 (2.1)

Caquetá (30) 0.48 (0.56) 0.30 (0.34) 9.7 (5.1) − 0.9 (2.0) − 34.3 (0.4) − 189.0 (17.8) 18.6 (3.1)

Cauca (12) 1.28 (2.01) 0.24 (0.19) 7.4 (5.0) − 6.0 (2.3) − 33.3 (1.3) − 199.0 (9.0) 16.3 (1.8)

Chapare (56) 0.26 (0.06) 0.16 (0.03) 2.7 (0.3) − 12.3 (1.2) − 34.5 (0.3) − 220.1 (15.2) 15.1 (3.0)

Chocó (20) 0.75 (0.45) 0.50 (0.14) 3.5 (0.8) − 8.8 (0.6) − 34.9 (0.5) − 218.5 (3.9) 11.3 (2.5)

Cusco (41) 0.12 (0.04) 0.27 (0.06) 4.1 (1.6) − 9.5 (0.8) − 33.7 (0.4) − 226.7 (14.1) 18.3 (3.4)

Guaviare (18) 0.14 (0.11) 0.59 (0.19) 4.3 (1.5) − 5.2 (1.4) − 34.9 (0.6) − 191.9 (7.6) 19.2 (2.1)

Meta (19) 0.73 (0.49) 0.73 (0.24) 5.0 (1.4) − 5.5 (1.7) − 34.8 (0.4) − 223.6 (7.1) 12.0 (1.8)

Nariño (33) 0.53 (0.41) 0.47 (0.30) 4.2 (3.3) − 8.8 (1.7) − 35.5 (0.8) − 199.1 (5.1) 16.1 (1.8)

Norte de Santander (15) 3.52 (4.39) 0.35 (0.37) 26.4 (24.7) − 4.0 (1.8) − 34.4 (1.0) − 207.5 (4.6) 14.4 (1.1)

Putumayo (36) 0.75 (1.19) 0.60 (0.21) 7.6 (3.4) − 4.5 (2.0) − 34.4 (0.7) − 205.6 (9.0) 18.7 (2.1)

San Lucas (20) 2.40 (1.75) 0.04 (0.11) 22.2 (5.4) − 4.8 (2.3) − 33.7 (0.6) − 181.2 (7.1) 19.5 (1.6)

Santander (18) 0.51 (0.30) 0.62 (0.39) 4.7 (2.7) − 9.1 (1.3) − 35.2 (0.6) − 197.2 (9.8) 15.5 (1.5)

UHV (96) 0.17 (0.06) 0.19 (0.04) 3.7 (0.6) − 8.1 (1.1) − 35.0 (0.4) − 219.0 (11.1) 15.1 (2.6)

Valle de Cauca (19) 1.00 (0.45) 0.19 (0.04) 4.1 (0.7) − 10.1 (1.4) − 34.7 (0.4) − 225.0 (2.4) 12.2 (0.9)

Vaupés (18) 0.56 (0.32) 0.50 (0.18) 4.7 (1.1) − 6.8 (1.9) − 35.7 (0.6) − 194.2 (5.7) 17.5 (1.4)

Vichada (19) 1.06 (0.07) 1.77 (0.45) 6.7 (0.4) − 4.7 (0.2) − 35.6 (0.1) − 209.1 (5.0) 13.4 (0.3)

Table 1.  Average analytical responses of authentic cocaine samples from 19 South American coca-growing 
regions. Alkaloid values are represented as % relative to cocaine. Isotope ratios are represented in ‰. The 
standard deviation for each measurement is shown in parentheses.

Figure 2. Cocaine isoscapes of (a) δ 13C, (b) δ 15N and (c) δ 2H in Colombia interpolated from 336 authentic 
coca leaf samples. All displayed values are in the traditional isotopic unit, ‰. The isoscapes were created with 
ArcGIS Advanced software (Environmental Systems Research Institute).
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Alkaloids (Tropacocaine, Trimethoxycocaine and Truxillines). Figures 2 and 3 illustrate the general 
trend of each analytical response for cocaine within Colombia. Tropacocaine, for example, is present in higher 
amounts (> 1%) in samples originating from northeastern Colombia (Arauca, San Lucas, Norte Santander, etc.). 
Cocaine from southwestern Colombia typically has lower amounts of tropacocaine (Nariño, Cauca, Putumayo, 
etc.). The total alkaloid content in cocaine from Peru and Bolivia has been well established11, and the tropacocaine 
present within these samples is relatively low, < 0.25% (Table 1). Similarly, trimethoxycocaine is generally lower 
in samples from Peru and Bolivia than those from Colombia. However, samples originating from southwest-
ern Colombia generally have similar trimethoxycocaine values to Peruvian and Bolivian cocaine, thus making a 
distinction between the three source countries difficult. Total truxilline content is useful since most Colombian 
samples contain more than 5%. However, there are regions within Colombia that contain cocaine with lower trux-
illine content (Nariño, Chocó, etc.). This type of overlap further complicates sourcing any sample to a sub-region 
and possibly country if only trace alkaloid data is considered.

Stable Isotopes (δ13C, δ15N, δ2H and δ18O). The isotopic trends displayed in all four stable isotopes are 
consistent with predicted patterns for plants (Fig. 2). Fundamental carbon isotope theory describes how predict-
able patterns are often observed and are typically based on environmental changes22–24. Traditional theories hold 
true for cocaine as well, since the environmental effects on the coca plant are reflected by the isotopic signature 
observed in cocaine. The δ 13C pattern of cocaine is more enriched along the regions of Caquetá and Cauca and 
through the center of Colombia, up to the northeastern border. As expected, this trend loosely follows along the 
Andean mountain range including the regions of Santander, Antioquia, and San Lucas. The areas of depleted δ 13C 
correspond to regions of lower elevation found in regions such as Amazonas, Chocó, and Vichada. These effects 
are directly related to temperature and CO2 differences along altitude gradients due to the subsequent influence 
on stomate behavior in plants25,26.

In general, δ 15N is often more enriched in samples originating from Colombia in comparison to those from 
Bolivia or Peru. This observation is pronounced in the southern regions of Putumayo and Caquetá. Upon mov-
ing further south into Peru, δ 15N is depleted, and this pattern is continued into Bolivia, with data similar to that 
observed in the Colombian regions of Chocó, Santander, and Valle de Cauca. The levels of δ 15N present in cocaine 
throughout South America are consistent with the known effects of precipitation and soil type on nitrogen cycling 
patterns in comparison to plants grown in temperate climates. In tropical environments, 15N enrichment suggests 
increased nitrogen availability in the soil and plant; however, there may not always be a direct correlation because 
nitrogen cycling rates and patterns are also affected by soil and plant types within a specific region27.

Deuterium and oxygen isotope ratios in plants and plant products have been shown to be directly influenced 
by humidity conditions and source water17,18. Deuterium and oxygen isotope ratios in cocaine exhibit these effects 
as well. Since deuterium and oxygen are so closely related and often reflect the same patterns, only the isoscape 
for deuterium is shown in Fig. 2. The pattern illustrated reflects the depletion of deuterium in central Colombia 
starting from the western coast and continuing across the Andean mountain range (Antioquia, Meta, Chocó, etc). 
This observation is expected and explained by the change in humidity and precipitation patterns across elevation. 
As cloud systems move further inland, precipitation events become more depleted. The southwestern regions of 
Nariño and Cauca don’t necessarily follow this trend, and the enrichment may be due to wind and weather pat-
terns originating from Ecuador rather than directly off of the Pacific Ocean. It is also noted deuterium is enriched 
moving inland along the lower lying valleys and plains of Colombia (Arauca, Norte de Santander) likely due to 
the multiple evaporation/precipitation events occurring. Overall, the deuterium/oxygen isotope patterns in Peru 
and Bolivia are more depleted than the regions within Colombia (< − 210‰).

Figure 3. Cocaine alkaloid landscapes (alkaloidscapes) of (a) tropacocaine, (b) trimethoxycocaine, and (c) 
total truxillines in Colombia interpolated from 336 authentic coca leaf samples. All values are displayed at % 
relative to cocaine. The data landscapes were created with ArcGIS Advanced software (Environmental Systems 
Research Institute).
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Isoscapes are a useful tool in visualizing one specific signal. However, the generated maps offered little assis-
tance in the classification of illicit cocaine samples to a specific sub-region within Bolivia, Colombia, or Peru. 
Correlation plots utilized in the original study11 were unsuccessful in elucidating any clear divisions amongst the 
data. These complications arose not only due to the large variation exhibited in the data set as a whole but also 
within the sub-regions, i.e., Norte de Santander and Caquetá. Although direct interpretations from the isoscapes 
and analytical data were not possible, it was apparent that the independent information provided by the analytical 
measurements could provide the leverage to assess the characteristics of any one sample. Therefore, additional 
exploratory and chemometrics methods were investigated to properly characterize clustering and perform classi-
fication tasks for the large volume of data obtained.

Development of predictive framework. For decades, ‘-omics’ communities have applied multivariate 
methods to illuminate biogeochemical relationships (i.e., organic molecular, trace element abundances, and/or 
isotope amount ratios) between samples sharing similar geographic provenance. While geostatistical modeling 
may provide pathways for the regional classification of samples, there are also many powerful chemometric and 
machine learning approaches that are effective in the absence of geographic coordinates when regional labels 
are known. Support vector machine classification (SVM-C) and classification by projection onto latent struc-
tures using partial least squares (PLS-C), more commonly known as PLS-DA, are two highly used approaches 
in chemometrics. Unfortunately, the “black-box” approach of SVM-C hinders the follow-on interpretation of 
the machine output which might indicate an underlying process(es) responsible for the relationships between 
samples and their association with their regional label. Additionally, the selection of tuning parameters governing 
the complexity of the functions used to fit a SVM-C solution often result in an optimal solution that should be rig-
orously examined by validation testing. If used naively, highly favorable outcomes could seem very impressive at 
first glance but often are the result of over training, which translates to the model having specific expertise about 
the data under study but little common sense concerning what it hasn’t seen28.

As most data analysts are keenly aware, real world data are generally messy and most are virtually never 
“normal”. As a result, using traditional and rigorous statistical methods for assessing the data is not usually the 
best way to begin the analysis. This investigation began with an intensive exploratory data analysis (EDA) phase 
to gather knowledge about the properties of the data as well the opportunity to identify and remediate potential 
problems such as missing values, unequal measurement scales from fusing disparate data types, testing for mul-
tivariate normality, and identifying outliers. While not used exclusively, principal component analysis (PCA) and 
hierarchical agglomerative clustering (HCA) based upon Mahalanobis distances were used to rapidly assess the 
data for the presence of outliers and to assess the impact of various data transformations on the general forma-
tion of clusters. Most geochemical data is characterized as left-censored, which translates into missing data for 
samples for which the intended chemical measurement falls below the limit of detection (< LOD) and leads to 
much research into remediating the missing value(s). It is also routinely common to encounter highly skewed dis-
tributions which typically require a transformation of the affected variable to meet a fundamental assumption of 
multivariate normality for most follow on statistical methods. Samples which consistently displayed high residu-
als, high within class Mahalanobis distances for the multivariate case29, or were identified as suspect using Tukey’s 
method for the univariate case were tabulated and reviewed for consistency with expected results and trends in 
the cocaine data30. This approach led to the review of approximately 7% of the overall dataset, and samples that 
were considered mild or moderate outliers were returned to the data table.

Further results from routine EDA methods provided additional insight. For example, HCA and model based 
clustering (MBC) demonstrated that the majority of samples from the Cusco (N =  43) and Valle de Cauca 
(N =  20) regions clearly associated with the UHV samples vs. any other grouping. This observation is in agree-
ment with the previously discussed trends known for δ 15N values throughout the study area. Temporarily com-
bining these regions into a supercluster while interrogating the rest of the data was supported by inspecting the 
Bayes Information Criterion (BIC) scores from model based clustering. MBC analysis also suggested the optimal 
number of clusters is much less than the number of classes which were defined for this investigation. However, 
additional EDA on the UHV-Cusco-Valle de Cauca supercluster indicated that when isolated, sub-clustering of 
the constituent regions as well as sub-regional classification was reasonably attainable as well. Further iterations of 
this type of analyses permitted the remaining data to be assigned to one of six identified superclusters.

Based upon these findings, an approach to divide the problem into a hierarchical series of binomial predic-
tions based upon nested multivariate models was adopted. Hierarchical models which employ multiple classifiers 
is often better suited to making use of between-class relationships discovered in the data as compared to tradi-
tional “flat” modeling methods. Additionally, when the number of predictors is much less than the number of 
classes one wishes to distinguish, some compromise is likely to occur such as the recycling of predictors using 
recursive partitioning or interval based methods. The tree-structured hierarchical modeling approach (TSHC) 
adopted follows a similar strategy recently utilized for the hierarchical classification of watersheds by chemi-
cal signatures31. The methodology in this study departs from that strategy in the terminal step where instead 
of a regression step to predict geographical coordinates for the sample, a class label is assigned32. Additionally, 
while very potentially useful, the approach followed does not currently implement variable selection. The TSHC 
approach embeds the set of superclusters along with their sub-clusters into a hierarchical tree structure, using 
each nonterminal node as the host site for a unique classification model and each terminal node serving to assign 
the unique identifier (class label). When the TSHC model is given a sample represented by its alkaloid and isotope 
measurements, the predicted regional label of the sample is gradually restricted as it is passed through the series 
of classification steps.

While similar K-OPLS methods are described in literature33, it is believed that this is the first investigation 
which uses the hyphenation of discretization, projection, and discriminant methods to maximally separate mul-
tiple highly-overlapping classes in hierarchical fashion. The generalized approach to the prototype framework 
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begins with preprocessing the data at the first node using discretization34. Applying discretization at this step 
in the analysis of the data served as a universal remediation strategy for missing data and moderating some 
outlier effects on data clustering. A Gaussian kernel was used to project the data into a higher dimension which 
was followed by PLS-C. Additionally, classification by SVM-C was also performed simultaneously to compare 
performance figures of merit later on. PLS_C Model refinement was performed via orthogonalization which 
removes latent orthogonal variation which often results in better predictions35. To ensure the overall framework 
was robust, an assessment of the framework’s predictive capability was studied using a Monte Carlo approach 
where the fraction of samples chosen during the stratified sampling step was varied in a stepwise manner. Figure 4 
shows the accuracy of both DKOPLS-C and SVM-C determined by performing 100 iterations per 0.05 step and 
computing overall mean misclassification rate along with the Matthew’s correlation coefficient (MCC) among the 
nodes36. Additional hold-out studies show when an unknown illicit cocaine sample is compared to the database 
of geographically referenced samples, the model accurately classifies the unknown as belonging to one of the 19 
sub-regional growing regions with an accuracy of approximately 96%.

Analysis of illicit cocaine samples. The aim of the present investigation was to not only fully characterize 
the cocaine produced throughout South America but to also assess the origin of the cocaine that is being traf-
ficked to the United States for illicit consumption. This laboratory currently analyzes more than 2,500 samples 
from domestic seizures each year. In recent years, the bulk of cocaine seizures have occurred in international 
waters. In 2014, approximately 43 metric tons of cocaine were seized in the eastern Pacific (EPAC) and Caribbean. 
This amount represents 79% of the total amount of bulk cocaine (seizures larger than 10 kg) seized by United 
States authorities and submitted to the laboratory in 2014.

Figure 5 illustrates the seizure locations as well as the sub-regional origin classifications of samples analyzed 
from seizures in the EPAC and Caribbean. Classifications representing less than 1% of all samples analyzed are not 
shown. The majority of the cocaine seized in the EPAC originates from southwestern Colombia, with Cauca being 
the most dominant region (Fig. 5a). Nariño and Putumayo accounted for 19% and 16% of seized samples, respec-
tively. More than 10% of the samples were classified as Colombia-Region Not Determined (Colombia-RND). This 
classification is given to samples which do not meet an adequate confidence level for making a final sub-regional 
determination, but all data overwhelmingly indicate the sample is of Colombian origin. Less than 10% of samples 
analyzed originated from Guaviare, San Lucas, Santander, and the UHV (Peru).

Caribbean-seized cocaine has significantly different origins versus the EPAC (Fig. 5b). Southwestern Colombia 
is by far the most dominant producer; however, most samples originated in Putumayo (38%). Cauca represents 
25% of seized samples, similar to that of EPAC-seized cocaine. Nariño only accounts for 2% of samples, which 
is significantly less in comparison to the EPAC classifications. Again, San Lucas, Santander, and Guaviare each 
represent less than 10% of all Caribbean-seized cocaine. Seven percent of samples were assigned the Col-RND 
classification. One significant difference to note is with samples of Peruvian origin. There is a slightly higher 
occurrence of cocaine from the UHV (9%), but there are also samples originating from Cusco present (3%) in the 
Caribbean-seized samples. Interestingly, there are no samples originating from the Cusco region present in any 
of the cocaine seized in the EPAC.

While most samples analyzed in this laboratory are seized in the open ocean, cocaine seizures do occur within 
the continental United States (CONUS). For CY 2014, samples from seizures representing approximately five 
metric tons of cocaine have been analyzed. The majority of CONUS seizures occur in California, Texas, and 
Florida. Table 2 lists the predominant sub-regional classifications in each of these states. Again, southwestern 
Colombia is the most significant producer of cocaine seized within the United States with Cauca, Putumayo and 
Nariño representing 25%, 21%, and 13% of all CONUS seizures, respectively. Significant differences are observed 
upon comparison of the California and Texas seizures with those from Florida. Specifically, samples originat-
ing from Cauca and Putumayo are observed more on the east coast versus the western United States. However, 
there is significantly less cocaine originating from Nariño seized in Florida. This trend mirrors the classifica-
tions discussed from EPAC- and Caribbean-seized cocaine. Furthermore, cocaine originating from the regions 
of Antioquia and San Lucas were only observed in California and Texas. As observed for seizures in international 

Figure 4. Mean accuracy of DKOPLS-C as function of sampling fraction hold out (grey solid), mean 
accuracy of SVM-C (black solid), mean MCC of DKOPLS-C (grey dotted), and mean MCC of SVM-C 
(black dashed). 
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waters, the destination for Peruvian cocaine differs from coast to coast. Peruvian cocaine originating from the 
UHV is mostly found in California and Texas, while only 2% of samples analyzed from Florida seizures were 
determined to be from the UHV. However, less than 1% of the cocaine seized in California and Texas is of Cusco 
origin.

In addition to the domestic samples analyzed each year, DEA foreign offices also submit cocaine seizures for 
geo-sourcing purposes (approximately 500/year). Foreign seizures are important for capturing authentic cocaine 
data before it is trafficked and for highlighting the movement of cocaine to other regions of the world. With the 
presented methodology, it is also possible to discover new, emerging coca growing regions within South America. 
Recently, this laboratory received 25 cocaine samples from a large “aircraft drop” in Uruguay. After collecting 
alkaloid and stable isotope data, preliminary evaluation indicated the samples may have originated from Bolivia. 
However, upon further inspection by the data analysis scheme, the samples appeared to be unlike any other sam-
ple within our database. The isotope data, in particular, was very different from any authentic Bolivian samples. 
The δ 13C data was depleted (− 35.6‰) suggesting the coca grew in a region of lower altitude. Nitrogen isotope 
data was more enriched (− 10.3‰) than expected from samples in the Chapare Valley. Based on the gradual 
decrease in δ 15N incorporation upon moving further south of the equator, it was determined these samples likely 
originated north of the Chapare Valley. Deuterium and δ 18O values suggested a wetter environment in compari-
son to the Chapare Valley due to enrichment (− 181.9 and 19.6‰). All of the isotope data indicated the cocaine 
was processed from coca leaf originating north of the Chapare Valley, the only Bolivian region of which we had 
prior knowledge. Further information obtained during the course of the investigation validated our conclusion. 
Intelligence reports from the pilot responsible for carrying the cocaine stated the plane did in fact depart from 

Figure 5. Maps illustrating 2014 cocaine seizures in (a) the eastern Pacific and (b) Caribbean with their 
respective sub-regional classifications. Both maps were created with SmartDraw software.

Classified Region

Percent of All CONUS Samples

All CONUS1 CA TX FL

Antioquia 4 4 5 –

Cauca 25 25 21 37

Guaviare 2 2 3 2

Nariño 13 11 15 3

Putumayo 21 15 22 37

San Lucas 3 4 3 –

Santander 4 3 5 3

UHV 8 11 8 2

Cusco < 1 < 1 < 1 2

Col-RND 14 15 12 14

Table 2.  Percent of total samples per regional classification for seizures within the continental United 
States (CONUS) and select states. 1Total samples: CONUS =  590; CA =  186; TX =  232; FL =  57.
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Beni, Bolivia. Prior to this seizure, there had been no evidence of coca cultivation in this area, which lies north of 
the Chapare Valley.

Discussion
The ability to provide regional classifications has strengthened cocaine sourcing capabilities by providing a more 
detailed analysis of the cocaine being trafficked out of South America. In general, most of the cocaine trafficked 
out of Colombia is produced with coca grown in the southwestern regions of Cauca, Putumayo, and Nariño. 
Additionally, samples originating from Santander, Guaviare, and San Lucas are often detected in bulk seizures. 
This data coincides with the decreased eradication efforts in southwestern Colombia due to the presence of ter-
rorist organizations.

In addition to current cultivation and production trends, the movement of cocaine for trafficking is also 
observed from the combination of seizure location and sub-regional classifications. Differences between cocaine 
seized in the EPAC versus that in the Caribbean suggest various trafficking routes and/or multiple drug traffick-
ing organizations utilizing these routes. The same observation holds within the continental United States when 
comparing seizures in California and Texas to those made in Florida.

Comparing unknown samples to a database of authentic geographically referenced cocaine samples allows 
for the discovery of new growing regions within South America. The extensive statistical treatment of the data 
is instrumental to this process as it provides dynamic output that can easily be interpreted by a user. Combining 
the output with our knowledge of all analytical trends observed for cocaine, we are confident in assessing the true 
location of any potential new cultivation areas even in the absence of referenced coca leaf.

In summary, origin classification of cocaine to one of 19 known coca-growing regions in Colombia, Peru, or 
Bolivia is now possible. Routine laboratory analyses consisting of alkaloid and stable isotope determinations, 
combined with complex statistical analyses, provide a reliable tool by which cocaine movement, cultivation, and 
interdiction efforts may be assessed. The dynamic nature of the statistical analysis allows for the addition of new 
growing regions, and thus is capable of further improving the current scientific intelligence product. The pre-
sented investigation is the product of the exemplary coordination of traditional analytical chemistry and isotope 
biogeochemistry and has far reaching potential outside forensic science.

Methods
Materials. All chemicals and solvents used were reagent grade or better and were obtained from Sigma-
Aldrich. All internal standards were prepared as described in preceding studies37,38.

Authentic coca leaf. Coca leaf samples (N =  572) were collected from 19 known growing regions through-
out Bolivia (N =  58), Colombia (N =  361), and Peru (N =  153). The latitude and longitude of each sample were 
recorded upon harvest. Samples were thoroughly dried and stored in paper bags within a temperature- and 
humidity-controlled vault. Prior to analysis, the coca leaf was ground to a fine powder with a Wiley mill.

Isolation of cocaine from bulk coca leaf. Although this process was completed in a controlled laboratory 
setting, the chemical extraction is identical to that utilized during clandestine cocaine processing. The isolation 
of cocaine and trace alkaloids was accomplished using modified trap column methodology originally utilized 
by Moore et al.4 Approximately 40 g of ground, dry coca leaf was treated with approximately 40 mL of saturated 
aqueous sodium bicarbonate and mixed well. The basified leaf was then extracted with 1 L of water-saturated tol-
uene for 3 hours. The concentrated extract was then filtered and passed through a column packed with a mixture 
of 25 g Celite and 12.5 mL of 0.36 N sulfuric acid. The column was washed with 75 mL of water-saturated toluene 
followed by 75 mL of water-saturated chloroform. All eluates were discarded. Cocaine and related alkaloids were 
liberated from the column with 60 mL of water-saturated chloroform containing 250 μL diethylamine. The elu-
ate was evaporated in vacuo to an oil. The oil was reconstituted in 25 mL of dichloromethane and utilized for all 
remaining analyses.

Alkaloid analyses. Each sample was prepared for quantitation by diluting 100 μL of dichloromethane solu-
tion with 1 mL of 0.9 mg/mL isopropylcocaine in chloroform. Samples were quantitated via gas chromatography 
with flame ionization detection (GC/FID) methodology as originally described by Piñero et al.37.

Approximately 500 μL (or 4 mg equivalents of cocaine) of the cocaine solution were dried and prepared for 
analysis as previously described for trace alkaloid analysis38. Relative amounts of tropacocaine and trimethoxy-
cocaine were determined via GC/FID after derivatization with N-methyl-N-(trimethylsilyl)-trifluoracetamide 
(MSTFA).

Approximately 150 μL (or 1 mg equivalents of cocaine) of the cocaine solution were dried and prepared for 
truxilline analyses. The relative amount of total truxillines present in all samples was determined via GC/ECD 
after an extraction and derivatization procedure that has been previously reported by Moore et al.39.

Initial quantitative analyses were completed with an Agilent (Palo Alto, CA) 7890A gas chromatograph fitted 
with a 30 m ×  0.25 mm ID fused-silica capillary column coated with 0.25 μm DB-1 (Agilent). The instrument 
was operated in split mode (25:1). All trace alkaloid determinations were performed with an Agilent 7890A 
gas chromatograph fitted with a 30 m ×  0.25 mm ID fused-silica capillary column coated with 0.25 μm DB-1701 
(Agilent). Truxilline analyses were completed in splitless mode, while tropacocaine and trimethoxycocaine were 
determined with split mode (50:1).

Basic alumina column chromatography. Approximately 8 mL (or 50 mg equivalents of cocaine) of the 
cocaine solution were dried down in a centrifuge tube. The remaining oil was reconstituted in approximately 1 mL 
of chloroform. A chromatographic column was prepared with 10.0 g of basic aluminum oxide containing 4.0% 
water. The chloroform solution was quantitatively transferred to the column. Approximately 30 mL of chloroform 
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was then added to the column. The first 10 mL of eluate were collected in a centrifuge tube. The collected chlo-
roform was dried under nitrogen and then quantitatively transferred to a 4 mL vial with ether. The solution was 
dried to a powder by heating at 75 °C. The resulting powder was accurately weighed in preparation for isotopic 
analyses.

Isotope Ratio Mass Spectometry (IRMS). Carbon and nitrogen isotope ratio analyses were determined 
using an elemental analyzer (EA)(Costech Analytical Technologies Inc., Valencia, CA) interfaced with a Delta 
Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific Inc., Bremen, Germany). Typically, 0.9–1.2 mg 
of cocaine was weighed into a tin capsule (Costech Analytical Technologies Inc.) and introduced into the EA 
using a Costech Zero-Blank autosampler (Costech Analytical Technologies Inc.). The EA reactor tubes were 
comprised of two quartz glass tubes filled with chromium(III) oxide/silvered cobaltous oxide and reduced copper, 
held at 1040 °C and 640 °C for combustion and reduction, respectively. A trap filled with magnesium perchlorate 
was used to remove water from generated combustion gases, and a post-reactor GC column was maintained at 
65 °C for separation of evolved N2 and CO2. Helium (99.999% purity, ARC3 Gasses, Richmond, VA) was used as 
the carrier gas, and the system head pressure was adjusted to achieve a measured flow of 90 mL/min. Data was 
acquired and processed using ISODAT 3.0 software (Thermo Fisher Scientific Inc., Bremen, Germany).

Sample sequences were bracketed by an internally calibrated atropine secondary standard (TCI, St. Louis, 
Missouri), typically at intervals of one standard every seven samples. The atropine secondary standard was cali-
brated to primary isotopic standard materials relative to Vienna Pee Dee Belemnite (VPDB) for carbon and AIR 
for nitrogen. System reproducibility was consistently 0.1‰ and 0.2‰ or better for all EA-IRMS δ 13C and δ 15N 
measurements, respectively.

Hydrogen and oxygen isotope ratio analyses were determined using a thermo-chemical elemental ana-
lyzer (TCEA) interfaced with a Delta V isotope ratio mass spectrometer (Thermo Fisher Scientific Inc.). In 
TCEA-IRMS analysis, approximately 0.20 to 0.25 mg of purified cocaine was accurately weighed into silver cap-
sules (Costech Analytical Technologies Inc.) and introduced into the TCEA using a Costech Zero-Blank isolated 
autosampler (Costech Analytical Technologies Inc.). The capsules were pyrolyzed in the TCEA-IRMS system into 
H2, CO, and C by passing through a ceramic reactor filled with a glassy carbon tube and glassy carbon pieces at 
1400 °C. A post TCEA reactor GC column was maintained at 70 °C for separation of evolved H2 and CO. Helium 
(99.999% purity) was used as the carrier gas, and the system head pressure was adjusted to achieve a measured 
flow of 90 mL/min. Data was acquired and processed using ISODAT 3.0 software.

Sample sequences were bracketed by an internally calibrated C-28, C-34 and atropine secondary standards 
(TCI, St. Louis, MO) as well as benzoic acid primary standard (IAEA-601), typically at intervals of one standard 
every seven samples. The secondary standards were calibrated to primary isotopic standard materials relative to 
Vienna Standard Mean Ocean Water (VSMOW) for hydrogen and AIR for oxygen. System reproducibility was 
consistently 3.0‰ and 0.4‰ or better for all TCEA-IRMS δ 2H and δ 18O measurements, respectively.

Data Landscapes. All data landscapes were generated within the ArcGIS Platform (Esri, Redlands, CA) 
with the ordinary kriging interpolation method. The ArcGIS methods utilized to create the predicted landscapes 
were employed to yield optimal Root Mean Square (RMS) error and Average standard RMS error results with 
the least amount of artifacts. Whenever possible, care was taken to use similar parameters for each surface. 
Ordinary kriging with 1st order trend removal was used for trimethoxycocaine, total truxillines, tropacocaine, 
and δ 2H. Ordinary kriging with no trend removal was used for δ 13C and δ 15N. All isoscapes had the “neighbors to 
include” parameter changed to values between 14 and 16 and the “stations to include” parameter changed to val-
ues between 12 and 14. Default ArcGIS values were used for all other parameters. Each measurement is displayed 
only in terms of the geographical coordinates associated with the authentic samples.

Framework Development. Customized code utilized for the prototype framework was developed in house 
with Mathworks MATLAB© rev. 2014a; however, the following commercial software and/or publically available 
code have been evaluated to achieve similar results if assembled: MATLAB and Statistics Toolbox Release 2014a 
(The MathWorks, Inc., Natick, Massachusetts, United States), PLS_toolbox© Ver 8.0 (Eigenvector Research Inc. 
Wenatchee, WA 98801, www.Eigenvector.com), and CAIM© 2009 for MATLAB by Guangdi Li (available through 
the Mathworks Users Code Exchange). A great deal of EDA was completed prior to developing the final method-
ology and framework. While not used exclusively, the EDA_Toolbox V2.0 for MATLAB© provides a convenient 
suite of functions suitable for exploring data using both supervised and unsupervised methods40.
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