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Building a genetic risk model for 
bipolar disorder from genome-
wide association data with random 
forest algorithm
Li-Chung Chuang1,2 & Po-Hsiu Kuo2,3

A genetic risk score could be beneficial in assisting clinical diagnosis for complex diseases with high 
heritability. With large-scale genome-wide association (GWA) data, the current study constructed 
a genetic risk model with a machine learning approach for bipolar disorder (BPD). The GWA dataset 
of BPD from the Genetic Association Information Network was used as the training data for model 
construction, and the Systematic Treatment Enhancement Program (STEP) GWA data were used as 
the validation dataset. A random forest algorithm was applied for pre-filtered markers, and variable 
importance indices were assessed. 289 candidate markers were selected by random forest procedures 
with good discriminability; the area under the receiver operating characteristic curve was 0.944 (0.935–0.953)  
in the training set and 0.702 (0.681–0.723) in the STEP dataset. Using a score with the cutoff of 184, 
the sensitivity and specificity for BPD was 0.777 and 0.854, respectively. Pathway analyses revealed 
important biological pathways for identified genes. In conclusion, the present study identified 
informative genetic markers to differentiate BPD from healthy controls with acceptable discriminability 
in the validation dataset. In the future, diagnosis classification can be further improved by assessing 
more comprehensive clinical risk factors and jointly analysing them with genetic data in large samples.

An accurate risk score model has substantial benefits in assisting the early screening of diseases, patient manage-
ment, and clinical diagnosis. In addition, a risk score model has been applied to the prognosis prediction for com-
plex traits, such as cardiovascular diseases1,2 and cancers3. With the advances in generating and the accumulation 
of genetic information, especially the increasing popularity in genome-wide association (GWA) studies to provide 
more comprehensive information about genetic variation for the trait of interest, some studies have incorporated 
such data to construct risk score models for disease diagnosis, such as schizophrenia and post-traumatic stress 
disorder4–7.

Although many GWA studies have been conducted for heritable traits, only a few susceptible loci are repro-
ducibly reported, with a small effect size between 1.2 and 2.08,9. In a recent massive GWA study of schizophrenia, 
108 loci were identified. However, each of these loci contributed a tiny fraction of the risk in the population; 
even the polygenic risk score explained less than 3.4% of the variance10. The general consensus is that multiple 
genes may act synergistically and interactively to influence the risk for complex diseases11. Jointly considering 
the main and interaction effects among multi-loci in whole-genome analyses is advantageous in constructing 
the genetic risk score model. Traditional statistical approaches in GWA studies usually focus on detecting the 
main effects without considering the non-linear patterns among markers and their interactions. Machine learn-
ing methods have fewer assumptions about analysis models, and have been frequently used in the analysis of 
high-dimensional data12. The random forest (RF) method is one commonly used algorithm in machine learning 
techniques. Because the hierarchical decision tree structure in RF can model non-linear associations, this method 
is often used to capture interactions among loci, and is likely to perform well in uncovering the genetic causes 
underlying the etiology of complex disorders.
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The RF is an ensemble-based machine learning method that uses multiple classification and regression trees 
as classifiers. After taking the majority vote over all classifiers, the RF method combines information across all 
trees to reveal variable importance. It can assess associations and interactions simultaneously13. The RF has been 
applied to many biological studies, such as gene expression14, metabolomics15, proteomics16, and GWA17. These 
studies showed that the RF method provides good accuracy, less internal examination of error, and high variable 
importance from mass biological data. Thus, important variables (e.g. biomarkers or SNPs in genetic data) that 
are selected by the RF procedure form a useful basis to construct risk score models for the risk of developing 
complex disorders.

In the current study, we focused on a complex psychiatric trait, bipolar disorder (BPD) with a high heritability 
of around 0.6 to 0.818,19, as the target for the risk score model construction. BPD is a severe psychiatric disorder, 
which affects approximately one in a hundred people worldwide. Many studies have suggested that the prevalence 
of BPD has increased worldwide in the last decade20–22. Without proper treatment, 15% of patients committed 
suicide23. Patients with BPD experience intermittent manic and depressive episodes, and usually exhibit chronic 
courses. Several large-scale GWA studies have been conducted to provide a list of susceptible genetic loci for BPD, 
without considering the join or interaction effects among loci8,24,25. So far, reliable genetic markers or objective 
biological indices are unavailable for clinical use in assisting diagnosis or prognosis. The diagnosis of BPD largely 
depends on a subjective report of patient’s syndromes and clinical characteristics.

In the present study, we used the RF-based method to construct a genetic risk prediction model for BPD, 
using pre-screened potentially associated markers in large-scale GWA datasets. The procedures are as follows. 
First, the RF method was used to select important variables as candidate risk markers in a BPD GWA dataset 
from the Genetic Association Information Network (GAIN). Second, the multivariable logistic regression with 
variable-selection methods was used to further select a smaller optimal subset of the variables from all candidate 
risk markers. We could then build risk score models using the identified optimal markers for the GAIN-BPD 
dataset. Third, to estimate the performance of the risk score models, leave-one-out cross-validation was per-
formed for internal validation. We also used the other BPD-GWA dataset, Systematic Treatment Enhancement 
Program (STEP), as an external validation data. Finally, we performed a gene sets analysis to uncover the under-
lying biological mechanisms for those loci that were identified as the candidate risk markers.

Result
The accuracy of the RF procedure was evaluated in the GAIN training set created during the forest growing pro-
cess. The accuracy of the RF classification in the GAIN data was 0.939 in controls and 0.852 in BPD patients. We 
ranked markers based on values of the two indices, the Gini Index (GI) and the conditional variable importance 
(VI) from the RF procedure. Because the two indices did not completely agree with each other, we used the union 
markers of the top ranked 200 in each index. As Table 1 shows, we included 348 single nucleotide polymorphisms 
(SNPs) to calculate the performance of discrimination ability. After excluding SNPs with complete linkage dis-
equilibrium (LD), 289 SNPs were retained as the candidate risk markers in the regression model. As shown in 
Fig. 1A, the 289 candidate markers had a good discrimination ability with an area under the receiver operating 
characteristic (AUROC) of 0.944 (95% confidence interval (CI), 0.935–0.953), and calibration ability measured 
by the Hosmer-Lemeshow test (p-value =​ 0.933). The multivariable logistic regression with stepwise selection 
retained 121 SNPs as the final optimal marker set. A good discrimination ability was observed with an AUROC 
of 0.924 (95% CI, 0.913–0.935) based on the 121 markers (Fig. 1B).

The genetic risk score based on this final prediction model was calculated for each individual from accumulat-
ing numbers of the risk alleles and weighted by the beta regression coefficient. The risk scores among all partici-
pants were ranged from 143.8 to 228.4 in the GAIN dataset, with a mean of 175.4 in the controls and 191.3 in the 
BPD patients. To find an optimal cutoff point, we used the Youden Index to obtain the risk score cutoff as 184, and 
the corresponding sensitivity and specificity for BPD were 0.777 and 0.854, respectively (Table 2). The likelihood 
ratios of the risk score with the optimal cutoff point were 5.322 for a positive result and 0.261 for a negative result, 
indicating moderate evidence for the differentiation between BPD patients and healthy controls.

We then used leave-one-out cross-validation to conduct internal validation for classification accuracy 
(Table 3). The predicted error rates were around 0.2 using either the 289 candidate risk markers, the 121 opti-
mal markers and the risk score. The STEP dataset was used as an external validation dataset to evaluate the 

Top NO. of SNPs
No. of SNPs after excluding 

markers in complete LD AUROC
Hosmer- 

Lemeshow test

10 19 16 0.615 0.535

20 36 29 0.663 0.729

50 85 68 0.763 0.054

100 168 135 0.846 0.732

150 258 211 0.908 0.506

200 348 289 0.944 0.945

Table 1.   The performance of discrimination ability for the union marker numbers of the top ranked in the 
two indices, the Gini Index and the conditional variable importance from the random forest procedure. 
Note: AUROC: the area under the receiver characteristic curve; 95% C.I.: 95% confidence interval. *Markers 
in complete linkage disequilibrium (LD, D’ =​ 1) were removed before regression analysis and only one SNP was 
kept for each case of complete LD situation.
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performance of discrimination ability. In general, the discrimination performance was acceptable using 289 
candidate risk predictors in the STEP data, which had an AUROC of 0.702 (95% CI, 0.681–0.723) and a good 
calibration ability (Hosmer-Lemeshow test, p-value =​ 0.681). With only the 121 optimal predictors, the AUROC 
dropped to 0.639 (95% CI, 0.617–0.662), with a low calibration ability (Hosmer-Lemeshow test, p-value =​ 0.0002). 
The risk score method showed the poorest discrimination ability (AUROC =​ 0.506; 95% CI, 0.482–0.529).

Figure 1.  The receiver characteristic curves for (A) the 289 candidate markers and (B) the 121 optimal markers 
in the GAIN bipolar disorder dataset.

Score Sensitivity Specificity Youden Index PPV NPV LR+ LR−

180 0.905 0.685 0.590 0.735 0.882 2.871 0.139

181 0.880 0.723 0.604 0.755 0.862 3.182 0.166

182 0.854 0.776 0.630 0.787 0.846 3.807 0.188

183 0.813 0.817 0.630 0.812 0.819 4.449 0.229

184 0.777 0.854 0.631 0.837 0.798 5.322 0.261

185 0.747 0.879 0.626 0.857 0.782 6.181 0.288

Table 2.   Sensitivity, specificity, Youden Index, and the likelihood ratios of the risk score model in the GAIN 
bipolar disorder dataset as a training set. Note: PPV: positive predictive value; NPV: negative predictive value; 
LR+: the likelihood ratio for a positive test result; LR−: the likelihood ratio for a negative test result.

Model construction: the GAIN dataset Validation: the STEP dataset

Models AUROC (95% C.I.)
Hosmer- 

Lemeshow test

Error rate*

AUROC (95% C.I.)
Hosmer- 

Lemeshow testControls BPD

289 candidate markers 0.944 (0.935–0.953) 0.933 0.208 0.220 0.702 (0.681–0.723) 0.681

121 optimal markers 0.924 (0.913–0.935) 0.458 0.193 0.209 0.639 (0.617–0.662) 0.002

The risk score variable 0.905 (0.893–0.918) 0.264 0.179 0.193 0.506 (0.482–0.530) 0.954

Table 3.   The performance of discrimination ability for the genetic risk score model in the training set 
and the validation dataset. Note: AUROC: the area under the receiver characteristic curve; 95% C.I.: 95% 
confidence interval. *Error rate was examined by the leave-one-out cross-validation procedure.
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We performed the same set of analyses using STEP data as the training dataset, and the GAIN data as the 
validation. The results are displayed in Supplementary Table1. In total, 354 candidate risk markers were identified 
for the STEP dataset. After excluding SNPs with complete LD, 312 SNPs were retained in the regression model 
and had the discrimination ability with AUROC of 0.934 (95% CI, 0.925–0.944). In the external validation GAIN 
dataset, decreased but acceptable discrimination performance was again observed, with an AUROC of 0.732 
(95% CI, 0.711–0.754) (Supplementary Table1). It is worth noting that there were no overlapping candidate risk 
markers between the two datasets. If we mapped all candidate risk markers from the two datasets to genes, there 
were in total 233 gene regions, including 98 genes in the GAIN dataset and 144 genes in the STEP dataset. Only 
9 genes (3.8%) overlapped between the two datasets, including genes ALK, TACR1, LRP1B, GALNT17, NAV2, 
ODZ4, RAD51L1, KTN1, and CACNG2.

Significantly enriched gene-sets were identified for these mapped genes in the two GWA datasets of BPD. 
Table 4 showed that 43 pathways were identified in the GAIN dataset with a q-value of less than 0.01 after correc-
tion for multiple comparisons. In the STEP dataset, 28 significant pathways were identified. Important biological 
pathways were reported, including cation ion channel activity (such as voltage-gated calcium channel activity and 
complex, regulation of action potential and cation transport), membrane structure (such as plasma membrane, 
transmembrane receptor activity and establishment of location), neuron function (such as brain development, 
axon guidance and GABA receptor activity) and cytoskeleton (such as cytoskeletal protein binding and actin 
filament).

Discussion
It is a common interest to explore the usage of genetic findings for heritable complex traits. There is an absence in 
the literature of a risk score model based on genetic information for the diagnosis of BPD. Non-replication across 
datasets is often observed, especially when focusing on specifically significant markers. Hence, using extremely 
significant markers in one sample to construct a genetic risk model to apply to other samples might not produce 
good prediction accuracy. On the other hand, informative genetic markers, which are selected by methods of 
machine learning, have been used for the classification of outcomes or for predicting the risk of developing dis-
eases, such as early detection of prostate cancer26, treatment response in attention deficit hyperactivity disorder27, 
and identification of idiopathic autism spectrum disorder (ASD) patients28. Among the many machine learning 
methods, such as support vector machine, linear discriminant analysis, and k-nearest neighbour classification, RF 
is often applied in biomedical research with different data sources, such as gene expression29. Similar applications 
are reported using GWA datasets for complex traits with low prediction errors, such as severe asthma30,31. To 
our best knowledge, the present study reports the first prediction results for BPD using an RF approach to select 
informative markers which jointly consider the main and interaction effects among genetic variants. Our results 
revealed that these informative markers possess fair to good discriminability for BPD patients in the training and 
validation datasets.

Diagnoses of psychiatric disorders often largely depend on clinical interview rather than biomarkers. With 
the RF procedures, the 289 candidate risk predictors in the GAIN dataset perform well with an AUROC of 0.944 
and a 0.702 AUROC in the validation dataset. Moreover, high sensitivity and specificity are also observed using 
the more parsimonious 121 optimal markers and the risk score, with acceptable predicted error rates less than 0.2 
in leave-one-out cross-validation. Without the RF procedures, if we selected the same 289 candidate predictors 
based on p-values significance in the GAIN data to estimate the discriminability in the STEP dataset, the AUROC 
slightly dropped to 0.686 (data not shown). In the literature, some risk score models were built using genetic 
information in aid of improving disease classification for complex traits, without satisfactory prediction power. 
For instance, Golan and colleagues (2014) used the random effect approach and reported the discrimination abil-
ity with an AUROC of 0.62 for BPD patients from the Wellcome Trust Case Control Consortium dataset32. Using 
SNPs within 13 significant pathways in a study of ASD, one recent study included 237 SNPs to generate a genetic 
diagnostic classifier and reported an 85.6% prediction accuracy in the Central European cohort, but the accuracy 
dropped to 50.6% in the Han Chinese cohort33. Moreover, based on differentially expressed 762 unique genes, a 
previous study reported an 82.5% prediction accuracy for ASD34. In our study, the RF approach demonstrated a 
fine performance in selecting the informative genetic markers from massive GWA data. The classification accu-
racy for BPD in the current study is at the higher end with low error rates. In particular, we still obtained fair 
results with an AUROC of 0.702 in the STEP validation dataset.

It is commonly observed that the accuracy of the genetic prediction model is reduced in external validation 
samples33,34. Schulze and colleagues (2014) constructed a polygenic model for BPD, however, the performance 
of this model is poor in two external validation datasets, with AUROC ranged between 0.55 to 0.5735. The het-
erogeneity inherited in different studies and samples is often noted, which might reflect differences in sample 
ascertainment, population stratification, or experimental variations. An example of this is demonstrated in a 
large-scale study of Psychiatric Genomics Consortium (PGC) for population stratification. Using the multivari-
ate linear mixed model approach, Maier and colleagues (2015) created genomic risk scores for severe psychiatric 
disorders, including schizophrenia, BPD, and major depressive disorder, using GWA data in PGC as the training 
set. In the validation data, the correlation coefficients between the observed status of the psychiatric disorders and 
their predicted genomic risk scores were low, ranged from 0.076–0.2247. To evaluate the population stratification, 
they calculated ancestry principle components of PGC data and then divided GWA data into four groups of the 
first ancestry principal component that reflect the population difference between individuals. Their results indi-
cated significant heterogeneity for BPD in PGC GWA datasets (p-value =​ 0.0017), which is likely attributed to the 
ancestral population differences7. Therefore, heterogeneity derived from many sources might result in lowered 
prediction accuracy in an external dataset and hinders clinical usage and further application to assist diagnosis.

We ran both GWA datasets as the training and the other as the validation dataset for model construction. 
In either scenario, a very similar classification performance is observed, suggesting the stability of current 



www.nature.com/scientificreports/

5Scientific Reports | 7:39943 | DOI: 10.1038/srep39943

Gene set name

No. of 
gene in 
gene set

No. of 
gene* Dataset# q-value

Acetyl-glucosaminyl transferase activity 16 2 STEP 3.4 ×​ 10−03

Actin binding 76 3 GAIN 2.8 ×​ 10−03

Actin cytoskeleton organization and biogenesis 104 3 GAIN 6.7 ×​ 10−03

Actin filament 18 2 STEP 4.3 ×​ 10−03

Actin filament based process 114 3 GAIN 8.6 ×​ 10−03

Amine metabolic process 137 4 STEP 6.8 ×​ 10−03

Anatomical structure morphogenesis 374 6 GAIN 2.6 ×​ 10−03

Auxiliary transport protein activity 25 2 STEP 8.1 ×​ 10−03

Axon guidance 22 2 GAIN 2.9 ×​ 10−03

Axonogenesis 43 3 GAIN 5.3 ×​ 10−04

Brain development 51 3 GAIN 8.8 ×​ 10−04

Calcium channel activity 33 2 GAIN 6.5 ×​ 10−03

Calcium ion transport 27 2 GAIN 4.4 ×​ 10−03

Calmodulin binding 25 2 STEP 8.1 ×​ 10−03

Carbohydrate binding 72 3 STEP 7.2 ×​ 10−03

Cation transport 146 4 STEP 8.4 ×​ 10−03

Cell migration 93 3 GAIN 4.9 ×​ 10−03

Cell surface 76 3 STEP 8.3 ×​ 10−03

Cellular morphogenesis during differentiation 49 3 GAIN 7.8 ×​ 10−04

Channel regulator activity 23 2 STEP 6.9 ×​ 10−03

Chr12q23 78 3 STEP 8.9 ×​ 10−03

Chr2p23 75 4 STEP 7.6 ×​ 10−04

Chr2q23 25 2 STEP 8.1 ×​ 10−03

Chr3p14 56 3 STEP 3.6 ×​ 10−03

Chr4q34 19 2 STEP 4.7 ×​ 10−03

Chr6q13 23 2 STEP 6.9 ×​ 10−03

Chr6q26 16 2 STEP 3.4 ×​ 10−03

Cytoplasmic membrane bound vesicle 112 3 GAIN 8.2 ×​ 10−03

Cytoplasmic vesicle 116 3 GAIN 9.0 ×​ 10−03

Cytoskeletal protein binding 158 5 GAIN 3.0 ×​ 10−04

Cytoskeleton 361 6 GAIN 2.2 ×​ 10−03

Di-, tri-valent inorganic cation transport 32 2 GAIN 6.2 ×​ 10−03

Endocytic vesicle 14 2 GAIN 1.2 ×​ 10−03

Enzyme regulator activity 314 6 STEP 7.6 ×​ 10−03

Establishment of localization 852 12 STEP 2.5 ×​ 10−03

G protein signaling coupled to IP3 second 
messenger phospholipase C activating 41 2 GAIN 1.0 ×​ 10−02

GABA receptor activity 11 2 STEP 1.6 ×​ 10−03

Generation of neurons 83 3 GAIN 3.6 ×​ 10−03

Integrin binding 30 2 GAIN 5.4 ×​ 10−03

Ion transport 184 5 STEP 3.4 ×​ 10−03

KEGG-Arrhythmogenic right ventricular 
cardiomyopathy 76 5 GAIN 9.0 ×​ 10−06

KEGG-Calcium signaling pathway 178 4 GAIN 4.2 ×​ 10−03

KEGG-Cardiac muscle contraction 80 4 GAIN 2.2 ×​ 10−04

KEGG-Dilated cardiomyopathy 92 4 GAIN 3.7 ×​ 10−04

KEGG-Hypertrophic cardiomyopathy HCM 85 4 GAIN 2.7 ×​ 10−04

Membrane 1942 20 GAIN 2.1 ×​ 10−05

Membrane bound vesicle 114 3 GAIN 8.6 ×​ 10−03

Membrane organization and biogenesis 133 4 STEP 6.1 ×​ 10−03

Membrane part 1633 13 GAIN 6.6 ×​ 10−03

Neurite development 53 3 GAIN 9.8 ×​ 10−04

Neurogenesis 93 3 GAIN 4.9 ×​ 10−03

Neuron development 61 3 GAIN 1.5 ×​ 10−03

Neuron differentiation 76 3 GAIN 2.8 ×​ 10−03

Neuropeptide binding 23 2 GAIN 3.2 ×​ 10−03

Continued
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procedures. However, we also noticed that there were no overlapping markers selected by RF in the two datasets 
as candidate risk markers. The agreement increased in gene levels across both datasets, where the same 9 genes 
are mapped in the two datasets. It may be intuitive, as genetic markers identified are often not causal variants, 
but rather the proxy for real causal variants. Therefore, the agreement may be the least in marker level, and the 
increase in gene and pathway levels, especially when heterogeneity exists among datasets. The 9 genes contained 
both sets of the candidate risk markers, and many studies have indicated that some of these genes are associated 
with BPD or brain function, such as ODZ436, TACR137, KTN138 and CACNG239. A previous GWA study using 
11,974 BPD cases and 51,792 controls, identified a new intronic variant in ODZ436. A recent study indicated that 
the genetic variants showed specific volumetric effects on the putamen and altered the expression of the KTN1 
gene in both brain and blood tissue38. Similarly, we found a number of significant pathways for the identified 
genes. These pathway results are quite consistent with pathways findings in previous GWA studies for bipolar 
disorder40,41.

There were some limitations in the present study. Although risk score models have been used to capture 
genetic effects from large-scale GWA studies, the power of discrimination was, however, inadequate in previous 
studies. Dudbridge and colleagues (2013) indicated that the power of polygenic score might be sufficient to use 
about 2,000 cases and controls, respectively42. Even with a good discrimination ability, a smaller sample size of the 
present study might cause the low power of classification model for BPD patients. In addition, we only used the 
genetic information to create the risk score model for BPD. The complex psychiatric disorders were caused by the 
interactions of genetic and environmental risk factors, such as substance dependence and childhood maltreat-
ment. Wong and colleagues (2012) used a risk-classification tree analysis to create a reliable framework based on 
interactions of genetic variants and environmental factors43. Lacking the information from environmental factors 
might hinder the application of a prediction model for clinical diagnosis.

In conclusion, we successfully used a machine learning approach to extract informative genetic markers for 
the construction of a risk score model. Our results indicated a fair discrimination ability for BPD patients with 
AUROCs of around 0.70 in the external validation datasets. Integration of more comprehensive risk factors from 
family and environmental data in larger samples is necessary to construct a more precise and applicable risk score 
model for BPD, to assist with clinical diagnosis in the future.

Materials and Methods
The study design and analysis flow chart are displayed in Fig. 2. Details of the datasets and analytic procedures for 
the selection of candidate markers in model construction are described below.

Imputation and quality control in the GWA datasets.  We used two individual GWA datasets of BPD 
in the Caucasian populations, the GAIN (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=​&page=​login)24 
and the STEP data (https://www.nimhgenetics.org/available_data/bipolar_disorder/)25. The details of participant 
enrolment and genotyping of the two GWA studies were provided in their original articles24,25. In brief, in the 
GAIN dataset, individuals were Americans with European ancestry, including 1,001 BPD cases and 1,034 con-
trols. In the STEP dataset, there were 955 BPD cases and 1,498 healthy subjects from the National Institute of 

Gene set name

No. of 
gene in 
gene set

No. of 
gene* Dataset# q-value

Neuropeptide receptor activity 22 2 GAIN 2.9 ×​ 10−03

Nitrogen compound metabolic process 150 4 STEP 9.3 ×​ 10−03

Plasma membrane 1393 14 GAIN 5.4 ×​ 10−04

Plasma membrane part 1141 10 GAIN 9.0 ×​ 10−03

RAS guanyl nucleotide exchange factor activity 18 2 STEP 4.3 ×​ 10−03

Reactome-Depolarization of the presynaptic 
terminal triggers the opening of calcium 
channels

12 2 GAIN 8.6 ×​ 10−04

Reactome-Neurotransmitter release cycle 28 2 GAIN 4.7 ×​ 10−03

Reactome-Transmission across chemical 
synapses 130 4 GAIN 1.4 ×​ 10−03

Receptor mediated endocytosis 33 2 GAIN 6.5 ×​ 10−03

Regulation of action potential 17 2 STEP 3.8 ×​ 10−03

Response to external stimulus 306 6 STEP 6.7 ×​ 10−03

ST interleukin 4 pathway 26 2 STEP 8.8 ×​ 10−03

System process 558 8 GAIN 1.0 ×​ 10−03

Transmembrane receptor activity 411 8 STEP 1.9 ×​ 10−03

Transport 778 11 STEP 3.6 ×​ 10−03

Voltage-gated calcium channel activity 18 2 GAIN 2.0 ×​ 10−03

Voltage-gated calcium channel complex 15 2 GAIN 1.4 ×​ 10−03

Table 4.   The significant gene sets for bipolar disorder based on the candidate markers from the GAIN 
and the STEP datasets. q-value: the value of false discovery rate. *Number of gene in overlap. #The dataset of 
significant gene set.

https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?login=&page=login
https://www.nimhgenetics.org/available_data/bipolar_disorder/
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Mental Health Genetics Initiative. After quality control for genotypic data, a total of 699,550 and 370,995 autoso-
mal SNPs were retained in the GAIN and STEP datasets, respectively.

Because the two GWA studies used different genotyping platforms, we imputed all the autosomal SNPs for 
the two GWA datasets based on those genotyped SNPs that passed quality control, to obtain the maximal num-
ber of common SNPs for the construction of prediction models for the two datasets. We applied Markov Chain 
Haplotyping (MACH) 1.044 to perform genotype imputation, and the HapMap II CEU (release 22) samples were 
used as the reference panel (www.hapmap.org). Well-imputed SNPs had squared correlations ≥​0.30 between 
imputed and true genotypes, which were suggested by MACH. After removing markers with minor allele fre-
quency (MAF) less than 1%, the number of well-imputed SNPs was 2,238,297 and 2,109,280 for the GAIN and 
the STEP datasets, respectively. In total, there were 1,992,730 well-imputed SNPs overlapped in the two datasets.

Criteria for candidate markers in the construction of prediction models.  To construct the genetic 
prediction model for BPD, we first performed association analyses with the additive model for 1,992,730 
well-imputed SNPs using PLINK versions 1.0745. As the study design flow chart shows in Fig. 1, SNPs with 
p-value ≤0.01 were selected as candidate SNPs in RF analysis, for which 19,701 SNPs were in the GAIN dataset 
and 19,524 SNPs were in the STEP dataset. Each candidate SNP was then mapped to a gene region (using NCBI 
build 36) if the SNP was located within the 50 kb of upstream or downstream of a gene. These SNPs were mapped 
to 2,832 genes in the GAIN dataset, and 3,156 genes in the STEP dataset. In total, there were 802 genes overlapped 
in both GWA datasets.

Random forest procedures.  To select informative risk predictors for model construction, we used the RF 
method for classification and building regression trees. All candidate SNPs were used to build a training model 
(i.e. 19,701 candidate SNPs in the GAIN dataset). The results from the growing of ensemble trees as a forest could 
provide a list of important variables for disease outcome. The RF procedures were performed using the Random 
Jungle package46, which facilitates the rapid analysis of large-scale GWA data47. Detailed procedures are described 
in the following steps:

(1)	 Two-thirds of the subjects in the GWA dataset were taken as the training set using the bootstrap procedure, 
and the remaining subjects were treated as the test set.

(2)	 Second, is the splitting step. A random subset of markers was chosen from all candidate markers without 
replacement. The size of each marker subset was equal to the square root of numbers of all candidate markers. 
The decrease in impurity for all markers was then calculated. The definition of the decrease in impurity was 
detailed elsewhere46. The marker with the best classification by the decrease in impurity was used as a node to 
split subjects of a training set into two distinct subsets, that is, one node split into two nodes.

(3)	 The 2nd splitting step was repeated until the tree is grown with its largest extent in the tree growing step.
(4)	 Steps 1 to 3 were repeated to grow 5,000 classification trees to build a forest.
(5)	 The prediction error of particular markers was estimated by permutation procedure from the test set.
(6)	 Two indices of the RF procedures were used for the selection of relevant risk predictors, the GI and the VI. 

Figure 2.  The summary description of the selection of candidate markers for the construction of the 
genetic risk score model. GAIN: the Genetic Association Information Network; STEP: the Systematic 
Treatment Enhancement Program; MACH: The program Markov Chain Haplotyping.

http://www.hapmap.org
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The GI represents the total decrease in impurity of the whole dataset by summing the probability of each risk 
predictor being chosen multiplied by the probability of a mistake in categorizing a subset. The VI means the 
decrease in accuracy for every predictor. To avoid the bias induced by including highly correlated candidate 
markers such as SNPs in LD, we used the conditional permutation scheme in the tree building procedure48. 
The conditional importance permutation groups were created, which involve all variables of a Pearson’s cor-
relation coefficient of r ≥0.2, that is, the dependency structure between SNPs in linkage disequilibrium was 
preserved in the calculation of VI. To obtain an appropriate amount of predictors, the corresponding top 
ranked 200 SNPs of the GI and the conditional VI were considered as the candidate risk predictors for model 
construction in the next step.

Model construction and performance evaluation.  Among the candidate risk predictors identified in 
the GAIN dataset using the RF analysis, we applied multivariable logistic regression with variable-selection meth-
ods (i.e. stepwise selection) to select the optimal predictors and to obtain p-values, odds ratios (OR), and 95% CI. 
The genetic risk score for each individual was calculated by summing across all predictors in the model using the 
numbers of risk allele multiplied by the beta regression coefficient of each marker. The highest Youden Index49 
was used to define the optimal cutoff point, which equals to (sensitivity +​ specificity)-1.

We examined the performance of the classification models by several indices. First, the discrimination capa-
bility of the established prediction model was assessed with the receiver operating characteristic (ROC) curve, 
and an AUROC was calculated. The ROC curve was plotted by false-positive rate versus sensitivity measure. The 
goodness of fit for each prediction model was assessed by the Hosmer-Lemeshow test, which calculates the dif-
ference between the predicted and the observed risk. Leave-one-out cross-validation was performed for internal 
validation to obtain a bias-corrected estimation of error rate in prediction. The STEP GWA dataset was used as 
external validation for the prediction models. Statistical analyses in this stage were performed with SAS version 
9.2 (SAS Institute, Cary, NC).

Identified significantly enriched pathways.  We used the Molecular Signatures Database (MSigDB, 
http://www.broadinstitute.org/gsea/msigdb/annotate.jsp) to examine the common processes or the underlying 
biological gene sets of the selected candidate genes50. In the present study, we used databases including GO terms 
(domains in biological process, cellular component and molecular function), chromosome positional gene sets, 
and the curated gene sets (e.g. canonical pathways, KEGG, Biocarta and Reactome). In total, 3,100 collections of 
gene sets were available, which includes 45,956 unique genes. Enriched gene sets were identified using the hyper-
geometric method, with the false discovery rate less than 0.0150.
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