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Abstract: Gaussian process emulators (GPE) are a machine learning approach that replicates
computational demanding models using training runs of that model. Constructing such a surrogate is
very challenging and, in the context of Bayesian inference, the training runs should be well invested.
The current paper offers a fully Bayesian view on GPEs for Bayesian inference accompanied by
Bayesian active learning (BAL). We introduce three BAL strategies that adaptively identify training
sets for the GPE using information-theoretic arguments. The first strategy relies on Bayesian model
evidence that indicates the GPE’s quality of matching the measurement data, the second strategy is
based on relative entropy that indicates the relative information gain for the GPE, and the third is
founded on information entropy that indicates the missing information in the GPE. We illustrate the
performance of our three strategies using analytical- and carbon-dioxide benchmarks. The paper
shows evidence of convergence against a reference solution and demonstrates quantification
of post-calibration uncertainty by comparing the introduced three strategies. We conclude that
Bayesian model evidence-based and relative entropy-based strategies outperform the entropy-based
strategy because the latter can be misleading during the BAL. The relative entropy-based strategy
demonstrates superior performance to the Bayesian model evidence-based strategy.

Keywords: machine learning; active learning; Gaussian process emulator; Bayesian inference;
Bayesian model evidence; relative entropy; Kullback–Leibler divergence; information entropy

1. Introduction

The greatest challenge of the scientific modeling workflow is to construct reliable and feasible
models that can adequately describe underlying physical concepts and, at the same time, account for
uncertainty [1]. Due to the computational complexity of the underlying physical concepts, numerical
simulation models are often too expensive for applications tasks related to uncertainty quantification,
risk assessment and stochastic model calibration. The great difficulty here is to establish a consistent
and feasible framework that can provide appropriate conceptual descriptions and can simultaneously
maintain a reliable time frame of simulations. The latter is the primary reason why a vast majority of
ongoing research has been focusing on accelerating the forward model using surrogate models, such as
response surfaces, emulators, meta-models, reduced-order models, etc. Due to the high computational
costs of the original numerical simulation required for training runs of such surrogates, constructing
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surrogate models is still challenging. Classical machine learning approaches, such as artificial neural
networks, require huge numbers of model evaluations.

A reasonably fast approach to quantify forward uncertainty has been established by Wiener [2],
projecting a full-complexity model onto orthogonal polynomial bases over the parameter space.
The conventional non-intrusive version of the polynomial chaos expansion [3,4] or its generalization towards
data-driven descriptions [5,6] gained popularity during the last few decades because it can offer an efficient
reduction of computational costs in uncertainty quantification [7–9]. Advanced extensions towards sparse
quadrature [10], sparse integration rules [11–13], or multi-element polynomial chaos approaches [14,15]
were applied to complex and computationally demanding applications.

Alternately to global [16] or local polynomial representation [17], other kernels functions have
been widely used in applied mathematics [18] and machine learning [19]. Similar to polynomial
chaos expansions, Gaussian process emulators (GPE), also known as Kriging for spatial prediction
in the Geosciences [20], offer a linear representation through nonlinear kernels using fundamentals
of probability theory. For that reason, GPEs are also known as Wiener–Kolmogorov prediction,
after Norbert Wiener [2] and Andrey Kolmogorov [21]. GPEs also offer representation via various
kernels, and have gained popularity for such machine learning tasks as classification [22] and regression
problems [23]. A recent paper [24] compares various surrogate-based approaches using a common
benchmark model for forward uncertainty quantification in carbon carbon dioxide storage.

Surrogate representation of the original physical model can be very helpful to accelerate forward
modeling and assess prior uncertainty. Most versions of the surrogate methods named above need
training runs of the original model to construct the surrogate. However, once additional information
is available in the form of measurement data, then a reliable and feasible framework for inverse
modeling is indispensable to account for the uncertainty that remains after model calibration.
Bayesian inference [21] offers a rigorous stochastic framework for inverse modelling and for assessing
the remaining uncertainty in model parameters and predictions [25]. Direct implementation of
Bayesian principles for the original physical model is usually not feasible using Monte Carlo (MC)
simulations [26] or even Markov chain Monte Carlo (MCMC) approaches [27]. Any advanced
technique, such as thermodynamic integration [28], parallel tempering [29], nested sampling [30,31],
subset simulation [32,33], or Gaussian mixture importance sampling [34] is still not feasible for
applications where the original model is very expensive.

A recent trend toward stochastic calibration based on surrogate models offers iterative
improvement of surrogate representations [35–39] within a limited simulation time budget.
For example, the link between Bayesian inference and information theory introduced in [40] can
help localize adaptively the relevant spots in the parameter space for surrogate training, according
to information-theoretic arguments. Such a procedure of active learning should be very informative
regarding the available observation data. It has the potential to adaptively improve the surrogate model
in those regions of the parameter space that are most important for Bayesian inference, while including
relevant information in an iterative manner.

To improve this procedure, the current paper will make use of the information theory [41–44], which is
strongly linked to classical probability theory [21], information entropy [42] and cross entropy [41,45].
The latter have been widely used to measure expected uncertainty and information [46,47]. Relative
entropy, also known as Kullback–Leibler divergence [43], quantifies the difference between two probability
distributions. All aforementioned entropies have been widely used for model selection [48–50], optimal
design of experiments [51–54] and machine learning [55–57]. A review on entropy, information theory,
information entropy and Bayesian inference can be found in [58].

The key idea of GPEs is based on the assumption, that the model in the yet unexplored regions of
the parameter space can be considered as a Gaussian process. Thus, besides application in geoscience,
active learning for GPEs is also widely applied in computer sciences [59–61]. A comprehensive
introduction into Gaussian processes and GPEs is provided in [62]. The idea of GPE-based surrogates
was introduced in the context of Bayesian calibration of computer models [63] and extended for
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optimal selection of training points in [64,65] and extended with active learning concepts [13,38] by
several authors. Since GPEs are described by their mean and covariance, the choice of a parametric
covariance function and estimation of the related hyper-parameters is decisive for constructing the
GPE. There are various works available in the literature that are focusing on estimation of the related
hyper parameters. Usually, there are several covariance functions known and used in literature, but in
particular the squared exponential covariance and the Matérn covariance functions play an important
role in geophysical applications [66–68].

GPE surrogates have often been used to replicate computationally demanding models. Employing
various learning function for selecting GPE training points helps to assure the accuracy in that
procedure (see [69–71]). Conventionally, learning approaches only focus on GPE training for an
underlying model without considering measurement data in the context of Bayesian updating of model
parameters. Contrary to that, the study [72] makes use of data only (no numerical model involved) and
constructs a GPE model that directly represents the underlying phenomena. It employs information
entropy to perform an optimal design of experiments for sensor placements and, in doing so, it exploits
the multivariate Gaussian distribution of the GPE model. The study [73] also looks at model-based
optimal design of experiments for sensor/measurement selection. Specifically, they look at sample
placement for contaminant source identification problems, where the contaminant source geometry
is covered by model parameters that are to be inferred. Within their optimization, they used a
GPE-based MCMC simulation with local GPE refinement as an auxiliary tool. This means that their
active learning strategy is made for planning real-world data collection, not for planning model runs
during GPE training. Recently, the study [74] constructed a framework for accelerating MCMCs in
Bayesian inference of model parameters. They introduced local approximations of these models into
the Metropolis–Hastings kernel of MCMC. In such a setting, the greatest challenge is to replicate
behaviors of the original numerical model while accounting for the available observation data at
acceptable computational costs. Going to that same direction, the work [75] uses entropy as a learning
function in the context of Bayesian assimilation of available data, but it approximates the posterior
distribution of model parameters as log normal and relies on a multivariate Gaussian approximation
of entropy. Similarly, learning functions for GPE training in Bayesian parameter inference can focus
on the posterior mean and variance of model parameters obtained via assimilation of available
measurement data. Following this route, the paper [76] suggested minimizing the mean-squared
(averaged over the parameter posterior distribution) predictive error of the GPE. Alternatively,
the study [77] suggested minimizing the integrated posterior variance of the GPE, again involving
an average over the parameter posterior distribution. However, the posterior distribution resulting
from Bayesian assimilation of measurement data is typically not multivariate Gaussian and, hence,
any corresponding assumptions should be avoided whenever possible. Therefore, the current paper
avoids such unnecessary assumptions. Instead, it offers a fully Bayesian view that relies on integral
quantities such as BME, RE and IE.

Moreover, the accuracy of GPE depends strongly on the selection of training points [13], and GPEs
with different training points can be seen as different surrogate models. Therefore, the main challenge
of GPE-based surrogates in Bayesain inference consists of selecting training runs to capture the relevant
features of the underlying full-complexity physical model, while focusing its accuracy of the regions of
a good fit with the available observation data.

The current paper introduces a novel GPE-based machine learning framework to replicate
behaviors of a computational demanding physical model using training runs of that model.
The suggested framework focuses the training runs optimally for the parameter inference from
observation data in a fully Bayesian view. The introduced framework makes use of Bayesian theory on
the three different levels: the first construction of GPE from available training runs and identification
of hyper parameters usually employs classical Bayesian principles; the second, incorporation of the
available observation data, could be rigorously acceded via Bayesian updating; the third, training runs
should be well identified using an adaptive Bayesian active learning strategy for GPE construction
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that captures the relevant features of the full-complexity model and honor the available observation
data. Therefore, the overall framework can be seen as fully Bayesian (i.e., Bayesian3) active learning
or, in short, denoted as BAL in the paper. The novelty over the previous studies and our main
focus lies in the theirs level where we suggest three novel active learning strategies incorporating the
information theory.

The rest of the paper is structured as follows: Section 2 explores the connection between Bayesian
inference and information theory for Gaussian process emulators. This section also emphasizes that
information entropy and relative entropy for Bayesian parameter inference and for Bayesian active
learning can be computed avoiding any assumption or unnecessary multidimensional integration.
Section 3 summarises fundamental properties of Gaussian process emulators and offers the three novel
Bayesian active learning strategies based on GPEs and information theory for Bayesian parameter
inference. Section 4 demonstrates application of the suggested GPE-based BAL strategies using
an analytical example and a carbon dioxide benchmark problem. Additionally, Section 4 shows
evidence of convergence against a brute-force reference solution for all proposed BAL strategies and
demonstrates parameter inference for the proposed active learning strategies.

2. Bayesian Inference with Information Theory for a Gaussian Process Emulator

2.1. Construction and Training of Gaussian Process Emulators

We will consider a full-complexity model M producing model response M(ω, x, y, z, t) that
depends on the some multi-dimensional parameter input ω at each physical point in space (x, y, z)
and time t. The uncertain modelling parameters ω form a vector of random variables ω = {ω1, ..., ωn}
from the parameter space Ω, where n is the number of uncertain parameters.

A Gaussian process emulator S(ω, x, y, z, t) (i.e., surrogate model) provides an approximation
of the full-complexity model M(ω, x, y, z, t) over the parameter space Ω and for each point of space
(x, y, z) and time t:

M(ω, x, y, z, t) ≈ S(ω, x, y, z, t) =
m

∑
l=1

βl(x, y, z, t)hl(ω)︸ ︷︷ ︸
trend

+ u(ω, x, y, z, t)︸ ︷︷ ︸
zero-mean GPE

. (1)

Here, hl(ω) for l = 1, . . . , m denote trend basis functions over the parameter space Ω, h1 is a
constant and βl(x, y, z, t) are unknown coefficients of the expansion that only depend on space (x, y, z)
and time t. The last term u(ω, x, y, z, t) in Equation (1) indicates the Gaussian process (GP). To introduce
this term, we will assume u to be a GP with zero mean E(u) = 0 and covariance Cov(ω, ω′) between
u(ω, x, y, z, t) and u(ω′, x, y, z, t) given by:

Cov(ω, ω′) = E
[
u(ω, x, y, z, t)u(ω′, x, y, z, t)

]
= k(ω, ω′). (2)

Therefore, the GP term u(ω, x, y, z, t) is assumed to be Gaussian distributed
u(ω, x, y, z, t) ∼ N (0, k(ω, ω′)) according to the covariance kernel function k(ω, ω′) for each point of
space (x, y, z) and time t. It is worth mentioning that there are different choices of the covariance kernel
function k(·, ·) available. The most common ones are the squared exponential kernel kSE(·, ·) (the same as
the Gaussian kernel) and the Matérn kernel kMatérn,ν(·, ·), which are defined as follows:

kSE(ω, ω′) := σ2 exp

(
−1

2

n

∑
j=1

(ωj −ω′j)
2

λ2
j

)
, (3)

kMatérn,ν(ω, ω′) := σ2 21−ν

Γ(ν)
·
(√

2ν‖ω−ω′‖2

λ

)ν

Kν

(√
2ν‖ω−ω′‖2

λ

)
.
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Here, λj ≡ λj(x, y, z, t) and λ ≡ λ(x, y, z, t) represent the length scale of auto-correlation along
each component ωj with j = 1, . . . , n, the variance parameter is denoted by σ2 ≡ σ2(x, y, z, t) and
the gamma function is denoted by Γ. Kν is the modified Bessel function of the second kind with
the smoothness parameter ν ≡ ν(x, y, z, t). For a more comprehensive description of several kernel
functions, we refer the reader to [62]. The parameters σ2, λ, λj and ν as well as the trend coefficients βl
define the mean and correlation function, and are called hyper parameters of S.

Constructing a Gaussian process emulator S(ω, x, y, z, t) for the full-complexity physical model
M(ω, x, y, z, t) in Equation (1) is based on training runs of the full model. Let us denote the
training input parameters (training points) by ωT = {ωT1, . . . , ωTNT}T and the corresponding model
responses by MT = {MT1, . . . , MTNT}T , where NT is a value greater than zero representing the
number of training points corresponding to the number of full-model evaluations. Thus, the data
set {(ωTi, MTi), i = 1, . . . , NT} is the complete training set for the GPE. Here, and in the following,
we drop the coordinates for space (x, y, z) and time t in our notation for the sake of readability.

First, we look at hyperparameter inference. According to the GP, we will assume that each
instance of the model response MTi for i = 1, . . . , NT can be modeled in a probabilistic sense as:

P(MTi | u(ωTi), ωTi) ∼ N (MTi | h(ωTi)
T β + u(ω), σ2). (4)

Introducing vector notation for H = {h(ωT1) . . . h(ωTNT)}T , U = {u(ωT1, . . . , ωTNT}T , we can
rewrite the GPE representation of a given parameter set ω in the following form:

P (S | U) ∼ N (Hβ + U, σ2). (5)

Furthermore, the joint distribution of the random vector U for a given parameter set ω is given by:

P(U | ω) ∼ N (0, K(ω, ω′)), (6)

where the (co)variance matrix K(ω, ω′) for parameter sets ω, ω′ is defined according to the covariance
kernel functions as follows:

K(ω, ω′) =


k(ω1, ω′1) . . . k(ω1, ω′NT

)
...

. . .
...

k(ωNT , ω′1) . . . k(ωNT , ω′NT
)

 . (7)

Equations (5)–(7) allow for estimating the GPEs hyper parameters using several GP-based
methods and concepts that are available in the literature [13,62,65], such as the maximum likelihood
method or more advanced Bayesian principles [62]. The mentioned Bayesian updating that identifies
hyper parameters of the GPE representation is well-known in the literature [13,62,65] and will
not be addressed in the current paper. Bayesian principles are again employed to train the
Gaussian process emulator S(ω, x, y, z, t) of the full-complexity physical model M(ω, x, y, z, t) based
on the available training points ωT = {ωT1, . . . , ωTNT}T and the corresponding model responses
MT = {MT1, . . . , MTNT}T (see e.g., [78]). The training procedure provides the posterior multivariate
Gaussian distribution Nω(µS, σS) with a mean value µS and a standard deviation σS of S(ω, x, y, z, t)
for any given parameter set ω from the parameter space Ω. The accuracy of the GPE strongly depends
on the number of training points and how they have been selected [13]. The question of how to
select the training points properly is extremely relevant in general. When is even more challenging,
but observation data should be incorporated into the full-complexity model via Bayesian inference
of model parameters ω. Moreover, GPE with different training points can be seen as and indeed are
different models. Therefore, the current paper will introduce a fully Bayesian view (Bayesian inference
in Section 2.2 and Bayesian active learning in Section 3) on the construction of the GPE-based surrogate
S(ω, x, y, z, t) that must capture the main features of the full-complexity model M(ω, x, y, z, t) and will
be used to assist in Bayesian parameter inference.
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2.2. Bayesian Updating on Observation Data Using GPE

Bayesian theory offers a statistically rigorous approach to deal with uncertainty during inference,
providing probabilistic information on the remaining uncertainty in parameters and predictions while
incorporating the available observation data D (vector ND × 1 with ND length of the observation data
set) that is usually attributed at specific point in space (x, y, z) and time t. In the Bayesian framework,
initial knowledge on modelling parameters ω is encoded in a prior probability distribution p(ω).
After Bayesian parameter inference, one obtains a posterior probability distribution of the parameters
p(ω|D), which is more informative than the prior distribution. Posterior probability distribution of the
parameters p(S|D) could be obtained with the help of the full-complexity model M (i.e., p(ω|D, M)) or
with the help of the surrogate model S (i.e p(ω|D, S)) according to the approximation in Equation (1).
Due to the high computational demand of the original full complexity model, we will employ the last
option in the current paper, i.e., p(ω|D)) ≡ p(ω|D, S) ≈ p(ω|D, M)) (see more details in [79]).

Formally, the posterior parameter distribution p(ω|D) of n uncertain parameters forming the
vector of random variables ω = {ω1, ..., ωn} is obtained by updating the prior parameter distribution
p(ω) in the light of observed data D according to Bayes’ Theorem [21]:

p(ω|D) =
p(D|S)p(ω)

p(D)
, (8)

where the term p(D|ω) is the likelihood function that quantifies how well the surrogate model’s
predictions S(ω, x, y, z, t) match the observed data D (the full notation corresponding to p(D|ω, S) will
be avoided in the paper). The term p(D) (i.e., p(D, S) in full notation) is called Bayesian model evidence
(BME) and can be seen as a normalizing constant for the posterior distribution of the parameters ω.

In order to describe how well the GPE predictions S(ω, x, y, z, t) in physical space {x, y, z, t}match
the observed data D, we use the following likelihood function p(D|ω) assuming independent and
Gaussian distributed measurement errors:

p(D|ω) = (2π)−ND/2|R|−
1
2 exp

[
−1

2
(D− S(ω, x, y, z, t))TR−1 (D− S(ω, x, y, z, t))

]
, (9)

where R (ND ×ND) is the diagonal (co)variance matrix of measurement error ε.
The performance of Bayesian updating on available observation date using GPE surrogate can be

assessed by employing BME, relative entropy and information entropy [80] that are introduced in the
upcoming Sections 2.3–2.5.

2.3. Bayesian Model Evidence

The BME value p(D) in the denominator of Equation (8) indicates the quality of the model against
the available data and can be obtained by integrating the Equation (8) over the parameter space Ω as:

BME ≡ p(D) =
∫

Ω
p(D|ω)p(ω)dω, (10)

or
BME = Ep(ω) (p(D|ω)) . (11)

Therefore, BME p(D) can be directly estimated [81] from Equation (11) using Monte Carlo
sampling techniques [82] on the GPE:

Ep(ω) (p(D|ω)) ≈ 1
N

N

∑
i=1

(p(D|ωi)) , (12)

where N is the size of Monte Carlo sample.
We remark that the GPE-based surrogate model S(ω, x, y, z, t) contains approximation errors

because the GPE is merely a surrogate model of the full-complexity model M(ω, x, y, z, t). Therefore,
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GPE-based BME value p(D, S) in Equation (11) is an approximation of full-complexity model BME
value p(D, M), i.e., BME = Ep(ω) (p(D|ω), S) ≈ p(ω|D, M)). A correction factor for BME value can
be incorporated similar to the one in [79].

2.4. Relative Entropy

Relative entropy (RE), also called Kullback–Leibler divergence, measures the difference between
two probability distributions [43] in the Bayesian context. Relative entropy DKL [p(ω|D), p(ω)]

measures the so-called information geometry in moving from the prior p(ω) to the posterior p(ω|D),
or the information lost when p(ω) is used to approximate p(ω|D):

DKL [p(ω|D), p(ω)] =
∫

Ω
ln
[

p(ω|D)

p(ω)

]
p(ω|D)dω, (13)

Estimating the relative entropy in Equation (13) usually requires a multidimensional integration
that is often infeasible for most applied problems. However, employing Equation (13) and definition (5)
from the recent findings in the paper [40], we avoid this multidimensional integration:

DKL [p(ω|D), p(ω)] = − ln BME +
∫

Ω
ln [p(D|ω)] p(ω|D)dω. (14)

Therefore, relative entropy DKL [p(ω|D), p(ω)] can be directly estimated from Equation (14) using
Monte Carlo sampling techniques on the GPE:

DKL [p(ω|D), p(ω)] = − ln BME +Ep(ω|D) (ln [p(D|ω)]) . (15)

The expression for relative entropy in Equation (15) employs the prior-based estimation of BME
values in Equation (11) and a posterior-based expectation of the likelihood Ep(ω|D) (ln [p(D|ω)]) that
could be obtained, e.g., using a rejection sampling technique or similar [26] as:

Ep(ω|D) (ln [p(D|ω)]) ≈ 1
Np

Np

∑
i=1

(ln [p(D|ωi)]) , (16)

where Np is the size of posterior sample according to rejection sampling.

2.5. Information Entropy

Information entropy (IE) is a measure of the expected missing information and can also be seen as
uncertainty of a random variable ω. According to Shannon [42], the information entropy H [p(ω|D)]

for a random variable ω with (posterior) parameter distribution p(ω|D) is defined as:

H [p(ω|D)] = −
∫

Ω
ln [p(ω|D)] p(ω|D)dω. (17)

However, information entropy H [p(ω|D)] in Equation (17) can not be computed directly from a
posterior sample because the posterior density values p(ω|D) are unknown. To overcome this situation,
we will employ the definition of DKL [p(ω|D), p(ω)] in Equation (13) to express the information
entropy as:

H [p(ω|D)] = −
∫

Ω
ln [p(ω)] p(ω|D)dω−DKL [p(ω|D), p(ω)] . (18)

Therefore, employing Equation (15), information entropy can be directly estimated according to
Equation (A3) in the paper [40] using Monte Carlo sampling techniques on the GPE:

H [p(ω|D)] = ln BME−Ep(ω|D) (ln [p(ω)])−Ep(ω|D) (ln [p(D|ω)]) . (19)
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Equation (19) does not contain any assumptions and avoids all multidimensional density
estimations and integrals in Equation (17). It employs the prior-based estimation of BME values in
Equation (10) and a posterior-based expectation of prior densities Ep(ω|D) (ln [p(ω)]) and likelihoods
Ep(ω|D) (ln [p(D|ω)]). The posterior-based expectation of prior log-densities could be obtained as well
using rejecting sampling techniques [26]:

Ep(ω|D) (ln [p(ω)]) ≈ 1
Np

Np

∑
i=1

(ln [p(ωi)]) . (20)

3. Bayesian Active Learning for Gaussian Process Emulators in Parameter Inference

Section 2 described the standard construction of GPE S(ω, x, y, z, t) based on available training
runs of the physical model MT = {MT1, . . . , MTNT}T . As we want to infer the model parameters of
the underlying physical model assisted by the constructed GPE surrogate, the training runs of the full
model must ensure appropriate convergence. Specifically, such the GPE surrogate S(ω, x, y, z, t) must
captures the main global features of the full-complexity model M(ω, x, y, z, t) and, at the same time,
have local accuracy in the region of high posterior density p(ω|D) that will emanate during Bayesian
inference. However, these regions for local accuracy are unknown a priori. Therefore, the current
Section 3 focuses on iterative selection of training points. It employs the link between Bayesian
inference and information theory [40] similar to Section 2 in order to perform Bayesian active learning
(BAL). The later will iteratively select new training point as the regions with required local accuracy
becomes progressively clear during the Bayesian updating of a Gaussian process emulator described
in Section 2.

We will consider that the GPE surrogate S(ω, x, y, z, t) in Equation (1) has been constructed based
on at least one training point (NT ≥ 1) in the parameter space ωT = {ωT1, . . . , ωTNT}T using the
corresponding model responses MT = {MT1, . . . , MTNT}T . The goal of the current Section 3 is to
identify the next training point ωBAL

T that should be incorporated into the GPE surrogate S(ω, x, y, z, t).
To do so, we will introduce three Bayesian active learning strategies that are based on Bayesian
model evidence (Section 3.2), relative entropy (Section 3.3), and information entropy (Section 3.4).
These strategies avoid unnecessary approximations and assumptions (such as maximum likelihood
estimation, multivariate Gaussian posterior, etc.). Once a new training point ωBAL

T has been identified,
the model should be evaluated in that new point and the GPE in Equation (1) should be updated with
typical GPE-inherent methods. In that way, the presented GPE-based fully Bayesian approach could
help to calibrate the physical model to the available measurement data at the reduced computational
costs. However, the GPE representation could never be better than the underlying physical model.

3.1. Bayesian Inference of Gaussian Process Emulator Incorporating Observation Data

The GPE is a collection of random functions over the parameter space Ω, i.e., a random model
response S(ω, x, y, z, t) for each point of space (x, y, z) and time t. The Bayesian identification of hyper
parameters during the training on the available model runs MT(ω, x, y, z, t) in Section 2.1 provides the
multivariate Gaussian distribution Nω(µS, σS) of the model response S(ω, x, y, z, t) forming response
space S for any given parameter set ω from the parameter space Ω. Here, µS is a mean value and
σS is a standard deviation of model response S(ω, x, y, z, t) at each point of space (x, y, z) and time
t. Therefore, we can explore the parameter space Ω using the exploration parameter set ωE and we
can assess how the obtained multivariate Gaussian distribution NωE(µS, σS) meet the observation
data D. According to the Bayesian framework [21], we can obtain a posterior probability distribution
pBAL

ωE
(S|D) of the model response for the given parameter set ωE, incorporating the observed data D:

pBAL
ωE

(S|D) =
pBAL

ωE
(D|S)NωE(µS, σS)

pBAL
ωE

(D)
, (21)
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where the term pBAL
ωE

(D|S) is the likelihood function that quantifies how well the GPE predictions
S(ωE, x, y, z, t) drawn from the multivariate Gaussian NωE(µS, σS) match the observed data D and the
term pBAL

ωE
(D) is BME value of GPE for the given parameter set ωE.

Assuming independent and Gaussian distributed measurement errors, the likelihood function
pBAL

ωE
(D|S) can be written as:

pBAL
ωE

(D|S) = (2π)−ND/2|R|−
1
2 exp

[
−1

2
(D− S(ωE, x, y, z, t))TR−1 (D− S(ωE, x, y, z, t))

]
, (22)

where S(ωE, x, y, z, t) ∼ NωE(µS, σS).

3.2. Model Evidence-Based Bayesian Active Learning

As already mentioned in Section 2.2, BME is often used for model selection in order to identify the
most suitable model among a set of competing models or to rank the competing models. During the
active learning procedure, one has to identify the best “model” in the sense of the next trained version
of GPE, i.e., the best position d of sampling point ωE. This point ωE can be chosen such that it provides
the highest BME of the next trained GPE. Therefore, BME value pBAL

ωE
(D) for each point ωE in the

prior parameter space providing models responses S(ω, x, y, z, t) that forms a response space Y can be
obtained using the following equation:

BMEBAL ≡ pBAL
ωE

(D) =
∫
S

pBAL
ωE

(D|S)NωE(µS, σS)dS. (23)

Equation (23) shows that BMEBAL is equal to the expected value ENωE (µS,σS)
of the likelihood

pBAL
ωE

(D|S) over the prior NωE(µS, σS) that GPE provides after training:

BMEBAL = ENωE (µS,σS)

(
pBAL

ωE
(D|S)

)
. (24)

The value BMEBAL can be directly estimated from Equation (24) using Monte Carlo sampling
techniques [82] on the GPE:

ENωE (µS,σS)

(
pBAL

ωE
(D|S)

)
≈ 1

NBAL

NBAL

∑
i=1

(
pBAL

ωEi
(D|S)

)
, (25)

where NBAL is the size of Monte Carlo sample for Bayesian active learning.
Therefore, by formal maximization of the model evidence BMEBAL, one can find the next training

point ωBAL
T from the parameter space Ω:

ωBAL
T = arg maxωE∈Ω BMEBAL(ωE). (26)

3.3. Relative Entropy-Based Bayesian Active Learning

Relative entropy is usually employed for Bayesian experimental design [51] to maximize the
expected (marginalized) utility [53]. In the current paper, we will introduce the relative entropy
DBAL

KL
[
pBAL

ωE
(S|D),NωE(µS, σS)

]
to assess the information geometry in moving the GPE from the

multivariate Gaussian prior NωE(µS, σS) to its posterior pBAL
ωE

(S|D) during the active learning
procedure. Formally, the relative entropy DBAL

KL
[
pBAL

ωE
(S|D),NωE(µS, σS)

]
can be defined for each

sampling point ωE from the parameter space Ω as following:

DBAL
KL

[
pBAL

ωE
(S|D),NωE(µS, σS)

]
=
∫
S

ln

[
pBAL

ωE
(S|D)

NωE(µS, σS)

]
pBAL

ωE
(S|D)dS. (27)
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Similar to Section 2.4, we can avoid multidimensional integration in Equation (27) using
Equation (13) and definition (5) from the paper [40]:

DBAL
KL

[
pBAL

ωE
(S|D),NωE(µS, σS)

]
= − ln BMEBAL +EpBAL

ωE
(S|D)

(
ln
[

pBAL
ωE

(D|S)
])

. (28)

The posterior-based expectation of the log-likelihood could be obtained using a rejection sampling
technique [26] on the GPE:

EpBAL
ωE

(S|D)

(
ln
[

pBAL
ωE

(D|S)
])
≈ 1

NBAL
p

NBAL
p

∑
i=1

(
ln
[

pBAL
ωEi

(D|S)
])

, (29)

where NBAL
p is the size of the posterior sample according to rejection sampling for Bayesian

active learning.
Therefore, during the active learning procedure, we will identify the sampling point ωBAL

T from
the parameter space Ω that corresponds to maximum relative entropy DBAL

KL
[
pBAL

ωE
(S|D),NωE(µS, σS)

]
:

ωBAL
T = arg maxωE∈Ω DBAL

KL

[
pBAL

ωE
(S|D),NωE(µS, σS)

]
. (30)

It is evident that the optimization problem for RE value in Equation (30) relies not only on
BMEBAL values from Equation (24). It also relies on the cross entropy represented by the term
EpBAL

ωE
(S|D)

(
ln
[
pBAL

ωE
(D|S)

])
that reflects how likelihood informative for the posterior (see details in [40]).

The last term could be obtained using a rejection sampling technique using the GPE evaluations.

3.4. Information Entropy-Based Bayesian Active Learning Criterion

Minimizing the expected information loss in terms of information entropy [42] has been suggested
to identify the best fitting model [83] and is often used in machine learning. Again seeing the
GPE with different training points as different models, we will introduce the information entropy
HBAL [pBAL

ωE
(S|D)

]
to assess information loss for each parameter set ωE:

HBAL
[

pBAL
ωE

(S|D)
]
= −

∫
S

ln
[

pBAL
ωE

(S|D)
]

pBAL
ωE

(S|D)dS. (31)

Similar to Section 2.5, using Equation (A3) from the paper [40], the information entropy in
Equation (31) can be written as follows:

HBAL
[

pBAL
ωE

(S|D)
]
= ln BMEBAL −EpBAL

ωE
(S|D) (ln [NωE (µS, σS)])−EpBAL

ωE
(S|D)

(
ln
[

pBAL
ωE

(D|S)
])

, (32)

where the posterior-based expectation EpBAL
ωE

(S|D) (ln [NωE(µS, σS)]) could be obtained as well using a
rejection sampling technique [26] on the GPE:

EpBAL
ωE

(S|D) (ln [NωE(µS, σS)]) ≈
1

NBAL
p

NBAL
p

∑
i=1

(
ln
[
NωEi

(µS, σS)
])

, (33)

All terms in Equation (32) could be obtained directly avoiding any multidimensional integration
using prior-based or posterior-bases sampling from the GPE, such as rejecting sampling techniques.
Therefore, to perform active learning, we will rely on the parameter set ωBAL

T that corresponds to the
minimum of information entropy HBAL [pBAL

ωE
(S|D)

]
:

ωBAL
T = arg minωE∈Ω HBAL

[
pBAL

ωE
(S|D)

]
. (34)

Equation (34) that minimizes the IE value in Equation (32). It makes use of BMEBAL in Equation (24)
and cross entropy EpBAL

ωE
(S|D)

(
ln
[
pBAL

ωE
(D|S)

])
similar to Equation (28). Moreover, Equation (32) shows
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that the information entropy HBAL [pBAL
ωE

(S|D)
]

relies on cross entropy represented and a posterior-based
expectation of multivariate Gaussian prior EpBAL

ωE
(S|D) (ln [NωE(µS, σS)]).

4. Application of GPE-Based Bayesian Active Learning

In the previous section, we have introduced three strategies for Bayesian3 active learning during
the GPE-assisted Bayesian updating of model parameters as described in Section 2. The current section
will make use of an analytical example in Section 4.1 and a carbon dioxide benchmark problem in
Section 4.2 to illustrate the suggested active learning strategies from Section 3.

In the present work, we use the Matlab fitrgp function [78] to obtain the values of GPE parameters
and hyper parameters introduced in Section 2.1 via a traditional Bayesian training on the available
model runs. The proposed Bayesian active learning strategies in Section 3 for Bayesian inference in
Section 2 have been implemented as an extension of the existing Matlab fitrgp function. The fully
Bayesian3 active learning extension of fitrgp function is available online for the reader through Matlab
file exchange [84]. For the sake of consistency, in the current publication, we have used the fitrgp
function together with the squared exponential kernel kSE(·, ·) as defined in Equation (3) for all
examples. However, various kernel functions could be easily selected within Matlab fitrgp function
using various training options. Therefore, the reader is invited to test the suggested Bayesian active
learning strategies for own needs exploring the full range of Matlab fitrgp functionality.

4.1. Bayesian Active Learning for an Analytical Test Case

4.1.1. Scenario Set up

We will consider a test case scenario in the form of a nonlinear analytical function M(ω, t) of ten
(n = 10) uncertain parameters ω = {ω1, ..., ωn} from the paper [40]:

M(ω, t) = (ω2
1 + ω2 − 1)2 + ω2

1 + 0.1ω1 exp(ω2)− 2ω1
√

0.5t + 1 +
n

∑
i=3

ω3
i

i
. (35)

The uncertain parameters ω in Equation (35) are considered to be independent and uniformly
distributed with ωi ∼ U (−5, 5) for i = 1, 10. The prior assumptions on the parameters will be updated
using synthetic observation data D = M(ω, tk) with tk = (k− 1)/9 and k = 1, 10 that correspond to
the parameter set ωi = 0 ∀i. The standard deviation of the measurement error is considered to be
σD = 2.

4.1.2. Likelihood Reconstruction during Bayesian Active Learning

We will construct the Gaussian process emulator S(ω, t) in Equation (1) for the test case problem
in Equation (35) to approximate the full model M(ω, t) in the parameter space ω for each point of
time t. We will start the Bayesian active learning with one training point only (NT = 1). The starting
training point corresponds to the mean value of the uncertain parameters ω, i.e., ωT = Ep(ω) (ω).
We will perform the Bayesian updating in Equation (8) using Monte Carlo sampling [26] on the
constructed GPE surrogate S(ω, t) with sample size N = 105 (alternative approaches can be used
similarly). In order to identify the next training points for the GPE iteration, we employ the three
Bayesian active learning strategies introduced in Section 3: the model evidence-based strategy in
Equation (26), the relative entropy-based strategy in Equation (30) and the information entropy-based
strategy in Equation (34).

Let us illustrate how the GPE-based likelihood function updates during the Bayesian active
learning procedure. Additionally, we will assess the corresponding computational costs in terms
of number of full model runs. For illustrative purposes, we will reduce the 10D problem (35) to a
2D problem with only two parameters, i.e., ωi = 0 for i = 3, 10. Figures 1–3 show how the GPE’s
likelihood function cover the 2D parameter space during active learning based on a BME-based



Entropy 2020, 22, 890 12 of 27

strategy, RE-based strategy and IE-based strategy, respectively. Moreover, Figures 1–3 show Monte
Carlo reference solutions that have been obtained directly using Monte Carlo sampling on the original
model, introduced in Section 4.1.1.

Figure 1. Likelihood values during Bayesian BME-based active learning as approximate by the Gaussian
process emulator and by a reference Monte Carlo solution for a 2D reduction of the 10D problem.

The RE-based Bayesian active learning captures the non-Gaussian aspects of the analysed problem
in a remarkably effective manner in comparison to the BME-based and the IE-based approaches.
The RE-based active learning provides a likelihood estimation that is practically identical to the MC
reference solution after 25 model runs. The BME-based strategy captures the main features only in
the beginning and requires a longer learning procedure to reflect details of the reference solution.
The reason is that the RE relies on both BME and cross entropy that indicates how informative the
likelihood for the posterior are (see Equation (28)). Contrary to the BME-based and the RE-based
strategies, the IE-based active learning manages to cover only partially the likelihood function in
the 2D parameter space for the given computational budget. Additionally, it shows a stagnation
during the learning procedure, where 50-model-run training shows no significant improvement in
comparison to 30-model-run training (see Figure 3). The difference between the RE and the IE-based
active learning strategies consists in the second term in Equation (32). That term denotes the cross
entropy and reflects how informative the trained multivariate Gaussian distribution NωE(µS, σS)

of GPE is, for the posterior pBAL
ωE

(S|D). Formally, it can be seen as a posterior-based expectation of
multivariate Gaussian distribution EpBAL

ωE
(S|D) (ln [NωE(µS, σS)]) and it can overcome the RE value in

Equation (32). Apparently, once the trained distributionNωE(µS, σS) is extremely informative, then the
IE-based active learning suggests to add new training point where NωE(µS, σS) is already very similar
to the posterior pBAL

ωE
(S|D). Therefore, the last property could lead to a stagnation of the information

entropy-based active learning, similar to Figure 3.
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Figure 2. Likelihood values during Bayesian Relative Enrtopy-based active learning as approximate
by the Gaussian process emulator and by a reference Monte Carlo solution for a 2D reduction of the
10D problem.

Figure 3. Likelihood values during Bayesian Entropy-based active learning as approximate by the Gaussian
process emulator and by a reference Monte Carlo solution for a 2D reduction of the 10D problem.
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4.1.3. Assessment of Information Arguments during Bayesian Active Learning

To assess the overall performance of the introduced Bayesian active learning strategies in
Section 3, we compute Bayesian model evidence p(D), relative entropy DKL [p(ω|D), p(ω)] and
information entropy H [p(ω|D)]. To do so, we will employ the resulting GPE surrogates in
Equation (11), (15) and (19), correspondingly. In that way, we avoid any unnecessary multidimensional
integration or density estimation via Monte Carlo integration. Figure 4 illustrates how the Bayesian
model evidence, the information entropy and the relative entropy adjust their value during Bayesian
active learning for the discussed 2D reduction of the original 10D problem. Figure 4 shows the results
of the BME-based, the IE-based and the RE-based active learning using red, green and blue lines,
respectively. All three approaches reach their plateaus after approximately 20–30 active learning steps
that corresponds to 20–30 runs of the original model.

A proper conclusion, however, could be drawn once the obtained BME, DKL [p(ω|D), p(ω)]

and H [p(ω|D)] are compared against their reference solutions. Therefore, we compute all the
reference values denoted here as BMERef, DKL

Ref [p(ω|D), p(ω)] and HRef [p(ω|D)] employing the
Equations (11), (15) and (19) avoiding any assumptions or density estimations. To do so, we evaluate
the original model M instead of the surrogate S in the Equations (11), (15) and (19) for the available
Monte Carlo 105 samples in parameter space. Figure 5 illustrates the convergence of the Bayesian
model evidence, the information entropy and the relative entropy estimates using GPE to the reference
Monte Carlo solution during the Bayesian active learning. The RE-based active learning (blue line)
convergences faster to the reference values than BME-based (red line) and RE-based (green line) active
learning for all three indicators (BME, DKL [p(ω|D), p(ω)] and H [p(ω|D)]). Figure 5 aligns well with
the results and discussion presented in Section 4.1.2.

Now, we will consider the full 10D setup of the problem (35) from Section 4.1.1. Similar to our
discussion above, we will start the Bayesian active learning procedure with one training point only
(NT = 1) corresponding to the mean value of uncertain parameters ω and we will employ again all
three introduced strategies. Assessing the performance of the active learning procedures will also
compute the BME values p(D), the RE value DKL [p(ω|D), p(ω)] and the IE value H [p(ω|D)] based
on the GPE surrogate. We will compare them against the reference values obtained from the plain MC
technique on the original model with sample size of 105. The results presented in Figure 6 confirm
the anticipations from above and demonstrate a superior performance of RE-based active learning
(blue line) in comparison to BME-based (red line) and IE-based active learning (green line). From the
computational point of view, Figure 6 shows that the RE-based strategy already reaches an acceptable
precision after approximately 200 model runs. This precision for the BME-based and the IE-based
strategy can be reached, however, only after 500 model runs. It is worth mentioning that the current
10D setup is extremely challenging for GPE surrogates because of parameter dimensionality and
its strong nonlinearity. From the current section, one can conclude that the relative entropy-based
Bayesian active learning demonstrates a highly acceptable performance and seems to be the most
suitable one for practical applications.
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Figure 4. Bayesian model evidence, Information entropy and Relative entropy estimates during
Bayesian active learning for Gaussian process emulator for a 2D reduction of the 10D problem:
BME-based active learning (red line), IE-based active learning (green line) and RE-based active learning
(blue line).
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Figure 5. Convergence of Bayesian model evidence, Information entropy and Relative entropy
estimates during Bayesian active learning for Gaussian process emulator to the reference Monte
Carlo solution for a 2D reduction of the 10D problem: BME-based active learning (red line), IE-based
active learning (green line) and RE-based active learning (blue line).
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Figure 6. Convergence of Bayesian model evidence, Information entropy and Relative entropy
estimates during active learning for Gaussian process emulator to the reference Monte Carlo solution
for the 10D problem: BME-based active learning (red line), IE-based active learning (green line) and
RE-based active learning (blue line).

4.2. Bayesian Active Learning for Carbon Dioxide Benchmark Problem

4.2.1. CO2 Benchmark Set up

We will consider a multi-phase flow problem in porous media, where carbon dioxide (CO2) is
injected into a deep aquifer and then spreads in a geological formation. This yields a pressure build-up
and a plume evolution. The CO2 injection into the subsurface could be a possible practice to mitigate
the CO2 emission into the atmosphere. In this study, we use the deterministic model, provided by
Köppel et al. [24], which is a reduced version of the model in a benchmark problem defined in the
paper [85]. This reduction consists of a radial flow in the vicinity of the injection well, and made
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primarily due to the high computational demand of the original CO2 model. It is assumed that the
fluid properties such as the density and the viscosity are constant, and all processes are isothermal.
The CO2 and the brine build two separate and immiscible phases, and the mutual dissolution is
neglected. Additionally, the formation is isotropically rigid and chemically inert, and capillary pressure
is negligible. Overall, the considered CO2 benchmark problem is strongly nonlinear because the CO2

saturation spreaders as a strongly nonlinear front that could be challenging to capture via surrogates.
For detailed information on the governing equations, the modeling assumption and the approaches,
the reader is referred to the original publication [24].

Similar to [24], we consider the combined effects of three sources of uncertainty. We take into
account the uncertainty of boundary conditions due to the injection rate, the uncertainty of parameters
in the constitutive relations, introduced via uncertainty in the relative permeability definitions, and the
uncertainty of material properties, i.e., the porosity of the geological layer. These three sources of
uncertainty were introduced for the analysis in [24] using injection rate (IR), power theta (PT) and
reservoir porosity (RP), i.e., ω = {IR, PT, RP}.

We consider the CO2 saturation to be the quantity of interest at a monitoring distance of 15 m from
the injection well, measured each 10 days over a period of 100 days. We construct a scenario, in which
the synthetic observed saturation values have been generated from the deterministic CO2 benchmark
model itself, with the uncertain parameters to be set as ωTruth = {1.0e− 04, 0.2, 0.3}. Additionally,
we will assume that a measurement error of 0.02 (σD = 0.02) exists for each synthetic observation data.
Using the synthetic measurement data, we construct the reference solution conducting a Bayesian
updating of the original CO2 benchmark model. Namely, reference values of Bayesian model evidence
(BMERef), the information entropy (HRef [p(ω|D)]) and the relative entropy DKL

Ref [p(ω|D), p(ω)]

have been obtained based on 104 Monte Carlo simulations using Equations (11), (15) and (19),
correspondingly. Additionally, the posterior distribution of modeling parameters has been obtained
via the same 104 Monte Carlo simulations. One model run of the analyzed CO2 benchmark problem
required approximately 3–7 min on a standard computer, depending strongly on the values of
modeling parameters. In what follows, we present the results and analyze the performance of the
three Bayesian active learning methods, introduced earlier in this paper, applied to the aforementioned
CO2 benchmark set-up.

4.2.2. Assessment of Information Arguments during Bayesian Active for CO2 Benchmarks

We start the Bayesian active learning process for the CO2 benchmark model with one training
point only (NT = 1) using ωT = Ep(ω) (ω). Similar to the previous applications in Section 4.1,
we perform the Bayesian active learning procedure by using the BME-based, RE-based and IE-based
strategies. Analogously, the performance of the active learning process is analyzed by comparing the
BME values p(D), relative entropies DKL [p(ω|D), p(ω)] and information entropies H [p(ω|D)] based
on the GPE surrogates against their corresponding MC reference values.

Figure 7 illustrates the convergence of the BME value, the IE value and the RE value obtained
during GPE-based Bayesian active learning against the reference Monte Carlo values. The results,
presented in this figure, demonstrate that the RE-based (blue line) and the BME-based (red line) active
learning shows again a superior performance compared to IE-based active learning (green line). Here,
the RE-based strategy catches the reference BME values slightly better than the BME-based approach,
and both approaches perform similarly well for other quantities of interest. The IE-based active
learning demonstrates very similar behaviors to Section 4.1 and confirms the findings that have been
reported for the 10D and its 2D reduction problems.
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Figure 7. Convergence of Bayesian model evidence, Information entropy and Relative entropy
estimates during active learning for Gaussian process emulator to the reference Monte Carlo solution
for the CO2 Benchmark problem: BME-based active learning (red line), IE-based active learning
(green line) and RE-based active learning (blue line).

4.2.3. Posterior Distribution of Modeling Parameters for CO2 Benchmarks

We will consider how good the introduced Bayesian active learning strategies can capture the
posterior distribution of modeling parameters. To do so, we will illustrate the posterior distributions
and correlations of modeling parameters for the CO2 Benchmark problem obtained after 50 active
learning iterations. Figure 8 presents the results obtained using the BME-based active learning
(Figure 8a), the IE-based active learning (Figure 8b) and the RE-based active learning (Figure 8c),
and it compares them with the reference Monte Carlo solution (Figure 8d). The BME-based strategy
in Figure 8a and the RE-based strategy in Figure 8c capture very well the posterior distributions
of all analyzed parameters and their correlations in comparison to the MC reference solution.
The information entropy-based strategy in Figure 8b captures acceptably the distributions and the
correlations of the injection rate (IR) and the reservoir porosity (RP) parameters. However, it could
not properly capture the distribution of the PT parameter controlling the relative permeability
distribution. Figure 8b illustrates a very strong overestimation of high-value probabilities of this
parameter. Very similar posterior distributions for all strategies have already been observed after
25 iterations of active learning, which corresponds to the convergence shown in Figure 7.

We have used 50 interactions for the GPE-based Bayesian active learning for the demonstrative
purposes only. Apparently, such a high number of active learning iterations is unnecessary for
practical applications. In the Bayesian context, a stabilization of the posterior distributions indicates
convergence of the surrogate representation to the original model in the region of high posterior
density. That property could be useful, especially once the reference solution cannot be constructed
due to computation reasons, see [35,36]. The convergence of posterior distributions in Figure 8 aligns
well with convergence of the information-theoretic indicators shown in Figure 7.

Overall, Section 4.2 indicates that the RE-based Bayesian active learning demonstrates a slightly
superior performance over the BME-based strategy, and both strategies are superior to the IE-based
approach. Obviously it is very easy to judge the performance of BAL once the reference solution is
available. However, as in many practical cases, the reference solution is not available due to a very
high computational demand and it is relevant to draw the conclusion without the reference solution.
Apparently, all mentioned indicators such as BME value p(D), RE value DKL [p(ω|D), p(ω)], and IE
value H [p(ω|D)] reflect relevant information for a Bayesian inference. Therefore, the active learning
procedure can be stopped once all such information-theoretic indicators stagnate and reach a plateau
because the best possible surrogate representation of the original model have been (almost) reached.
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(a) BME-based BAL (b) IE-based BAL

(c) RE-based BAL (d) Reference posterior distribution and correlations

Figure 8. Posterior distributions and correlations of modeling parameters for the CO2 Benchmark
problem after 100 active learning iterations: BME-based active learning (a), IE-based active learning
(b), RE-based active learning (c) and reference Monte Carlo solution (d).

4.3. Discussion

We use the link between Bayesian inference and information theory introduced in [40]. This means
that we compute BME, RE and IE values while avoiding the criticized multi-Gaussian assumption.
Instead, we perform prior-based sampling, i.e., Monte Carlo accompanied by rejecting sampling.
Doing so, we consider that the main computations are related to running the original model and we
assume feasibility of Monte Carlo sampling on the GPE surrogate.

Alternatively, any posterior-based sampling algorithm (e.g., MCMC) could be used during the
Bayesian active learning procedure. However, when any posterior-based sampling algorithm is used,
then the values for BME, RE and IE become quite rough approximations because relatively strong
assumptions have to be taken. To provide cheap alternatives, various estimates of BME, RE and
IE based on known criteria from information theory are now listed in Appendix A for the sake
of completeness.

However, the estimates in Appendix A have to be used with care. According to [40], the harmonic
mean estimate and the maximum-likelihood estimate for BME provide very unreliable results.
Therefore, only rough guesses of the true BME value can be obtained from the maximum a posteriori
estimate, Chib’s estimate [86], Bayesian information criterion [87] and the Akaike information
criterion (with [83] and without second-order bias correction [88]) due to their strong assumptions.



Entropy 2020, 22, 890 19 of 27

While estimates for BME, RE and IE based on the Kashyap information criterion [89] demonstrated
unsatisfactory performance as well, we re-scaled them to a proper scale in [40]. However, the re-scaled
Kashyap information criterion still includes unnecessary simplifications of the involved cross
entropies. Among all these simplified estimates, the multivariate Gaussian posterior estimate [40]
avoids the most unreasonable simplifications for posterior-based sampling and includes the least
assumptions for estimating BME, RE and IE. The Gelfand and Dey approach [90] includes assumptions
similar to the multivariate Gaussian, but provides slightly inferior results in the cases tested by
us. Thus, for posterior-based sampling during Bayesian active learning, we suggested in our 2019
paper [40] to use the multivariate Gaussian estimate that includes least assumptions (Considering
multivariate Gaussian distribution for active learning approaches focusing on GPE training on an
underlying model only without considering measurement data is fully appropriate. It can be seen
as Bayesian2 active learning and approximation signs in Equations (A25), (A26) and (A27) turn to
equality containing no assumptions by definition of GPE.).

Finalizing the discussion, we would like to remark that straightforward applications of
the suggested Bayesian active learning strategies (or even already existing approaches) to GPE
representations could be computationally very demanding once the problem dimensionality increases.
This is mainly caused by the structure of GPE surrogates that is represented via localized kernels.
These localized kernels require a lot of training for high-dimensional cases. Increasing the amount
of measurement data will help to localize the relevant spots better. However, for high-dimensional
problems, the structure of the surrogate should be constructed adaptively and sparse representations
will be very beneficial. Alternatively, a preliminary sensitivity analysis (see e.g., [91,92]) could be
conducted to partially overcome the problem of dimensionality.

5. Summary and Conclusions

The current paper deals with Gaussian process emulator that replicates a computational
demanding physical model and honors the available observation data establishing fully Bayesian3

active learning framework. We elaborate the connection between Bayesian inference and information
theory and offer a fully Bayesian view on a Gaussian process emulator through a Bayesian inference
accompanied by a Bayesian active learning.

The paper employs the fundamental properties of Gaussian process emulator and introduces,
in Section 3, three Bayesian active learning strategies. These strategies adaptively identify training sets,
for which the full-complexity model must be evaluated. The first Bayesian active learning strategy,
relying on Bayesian model evidence, indicates the quality of representation against the available
measurements data. The second Bayesian active learning strategy, based on the relative entropy,
seeks a relative information gain. The third Bayesian active learning strategy, based on information
entropy, considers the expected missing information. The introduced strategies improve the Gaussian
process emulator-based surrogate representation of a full-complexity physical model in the region of
high posterior density. We employ the information-theoretic arguments to incorporate adaptively the
measurements data. We emphasize in the paper that the information entropy and the relative entropy
can be computed avoiding any assumption or unnecessary multidimensional integration.

We illustrate the performance of the suggested Bayesian active learning strategies using an
analytical example and a carbon dioxide benchmark. Section 4 shows how the suggested approaches
capture the likelihood values during an active learning procedure. We also show a visual comparison
with the reference Monte Carlo solution for a 2D reduction of the 10D problem. We demonstrate
rigorous evidence of convergence against the reference Monte Carlo values for the Bayesian model
evidence, the information entropy and the relative entropy obtained via the three Bayesian active
learning strategies. Additionally, Section 4 shows the evidence of convergence for the carbon dioxide
benchmark problem against the reference solution for all proposed Bayesian active learning strategies.
We also illustrate how the suggested Bayesian active learning strategies manage to quantify the
post-calibration uncertainty in comparison to available Monte Carlo reference solutions.
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Overall, we conclude that the introduced Bayesian active learning strategies for Gaussian process
emulators could be very helpful for applied tasks where underlying full-complexity models are
computationally very expensive. Moreover, the employed information-theoretic indicators can be used
as stop criteria for Bayesian active learning once a reference solution is not available due to a very
high computational demand. Our analysis indicates that the Bayesian model evidence-based and the
relative entropy-based strategy demonstrate more reliable results in comparison to the information
entropy-based strategy, which could be misleading. Additionally, the relative entropy-based strategy
demonstrates a superior performance relative to the Bayesian model evidence-based strategy and
seems to provide very sensitive arguments for the active learning.
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Appendix A. List of Approximative Active Learning Strategies

The current section briefly summarizes the alternative learning strategies that are based on certain
assumptions. The approximates for BME, RE and IE values have been adopted from the paper [40]
to Bayesian active learning introduced in Section 3 and we refer the reader to the original work for
the complete details. All estimates mentioned here are less powerful than the strategies introduced
in Section 3 due to their definitions. The most promising approximates are based as well on the
multivariate Gaussian assumptions of the posterior pBAL

ωE
(ω|D) in Equation (21).

As it has been mentioned already in Section 1, learning functions for GPE training in Bayesian
parameter inference can focus on the posterior mean and variance of model parameters obtained via
assimilation of available measurement data. Doing so, we have adopted the idea of minimizing the
integrated posterior variance (IVAR) of the GPE [77] to perform an active learning in the context of
Bayesian assimilation of available data. Figure A1 illustrates convergence of active learning based
on the IVAR strategy for the 10D setup discussed in Section 4.1.3. The IVAR-based active learning
strategy (teal line) shows promising results while relying on low-order moments only. However, all
three strategies introduced in the current paper demonstrate faster convergence, capturing the relevant
spots at low computational budget and, as it has been already pointed out in Section 4, the RE-based
active learning strategy demonstrates superior results. The reason is that the posterior distribution
pBAL

ωE
(ω|D) resulting from Bayesian assimilation of measurement data is typically not multivariate

Gaussian and corresponding assumptions slow down the active learning procedure.
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Figure A1. Convergence of Bayesian model evidence, Information entropy and Relative entropy
estimates during active learning for Gaussian process emulator to the reference Monte Carlo solution
for the 10D problem: BME-based active learning (red line), IE-based active learning (green line),
RE-based active learning (blue line) and IVAR-based active learning (teal line).

Appendix A.1. Maximum a Posteriori Estimates

The BME, RE and IE values could be approximated as follows using the maximum a posteriori
(MAP) estimates [40]:

ln BMEBAL
MAP ≈ EpBAL

ωE
(S|D)

(
ln
[

pBAL
ωE

(D|S)
])

+EpBAL
ωE

(S|D) (ln [NωE (µS, σS)])− ln
[

pBAL
ωE

(SMAP|D)
]

, (A1)

DBAL
KLMAP

[
pBAL

ωE
(S|D),NωE(µS, σS)

]
≈ −EpBAL

ωE
(S|D) (ln [NωE(µS, σS)]) + ln

[
pBAL

ωE
(SMAP|D)

]
, (A2)

HBAL
MAP

[
pBAL

ωE
(S|D)

]
≈ − ln

[
pBAL

ωE
(SMAP|D)

]
, (A3)

where SMAP is a maximum a posteriori response of the surrogate S.

Appendix A.1.1. Chib’s Estimates

Following the idea of Chib [86], a single point estimate could be used in the following way [40]:

ln BMEBAL
CHIB ≈ ln

[
pBAL

ωE
(D|SMAP)

]
+ ln [NωE(µS, σS)(SMAP)]− ln

[
pBAL

ωE
(SMAP|D)

]
. (A4)

DBAL
KLCHIB

[
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ωE
(S|D),NωE(µS, σS)

]
≈ − ln [NωE(µS, σS)(SMAP)] + ln

[
pBAL

ωE
(SMAP|D)

]
, (A5)

HBAL
CHIB

[
pBAL

ωE
(S|D)

]
≈ − ln

[
pBAL

ωE
(SMAP|D)

]
. (A6)

Appendix A.1.2. Estimates via Akaike Information Criterion

The MAP approximation could be extended while employing the Akaike information criterion
(AIC) [83] as follows [40]:

ln BMEBAL
AIC ≈ EpBAL

ωE
(S|D)

(
ln
[

pBAL
ωE

(D|S)
])

+EpBAL
ωE

(S|D) (ln [NωE (µS, σS)])−
1
n

ln
[

pBAL
ωE

(SMAP|D)
]
+ 1, (A7)
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]
≈ −EpBAL

ωE
(S|D) (ln [NωE (µS, σS)]) +

1
n

ln
[

pBAL
ωE

(SMAP|D)
]
− 1, (A8)

HBAL
AIC

[
pBAL

ωE
(S|D)

]
≈ − 1

n
ln
[

pBAL
ωE

(SMAP|D)
]
+ 1. (A9)

Appendix A.1.3. Estimates via Second-Order bias Correction for Akaike Information Criterion

Second-order bias correction [88] for a limited sample size s (length of vector D) extends the
Akaike information criterion to the following from [40]:
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ln BMEBAL
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Appendix A.1.4. Estimates via Bayesian Information Criterion

Employing the Bayesian information criterion (also known as Schwarz information criterion)
introduced by Schwarz [87] leads to the following estimates [40]:

ln BMEBAL
BIC ≈ ln

[
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ωE
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2
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where SMLE is a maximum a posteriori response of the surrogate S.

Appendix A.1.5. Estimates via Kashyap Information Criterion

Approximations based on the Kashyap Information Criterion [89] offer the following estimates [40]:

ln BMEBAL
KIC ≈ ln
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pBAL

ωE
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1
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Appendix A.1.6. Estimates via Re-Scaled Kashyap Information Criterion

The re-scaled correction of Kashyap Information Criterion according to paper [40] leads to
the following:

ln BMEBAL
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pBAL

ωE
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]
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1
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2
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where C is the posterior (co)variance matrix.

Appendix A.1.7. Estimates via Gelfand and Dey Sampling

Following the idea of Gelfand and Dey [90], an importance sampling with density τ(S) leads to
the following approximates [40]:
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where the importance sampling density τ(S) is often assumed to be multivariate Gaussian or
t-distributed.

Appendix A.1.8. Multivariate Gaussian Estimates

Assumption on multivariate Gaussian (MG) distribution [93,94] of the posterior distribution
pBAL

ωE
(S|D) leads to the following approximates [40]:
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