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Abstract

Background: The balance between endothelial cell survival and apoptosis during stress is an important cellular process
for vessel integrity and vascular homeostasis, and it is also pivotal in angiogenesis during the development of many
vascular diseases. However, the underlying molecular mechanisms remain largely unknown. Although both transcription
and alternative splicing are important in regulating gene expression in endothelial cells under stress, the regulatory
mechanisms underlying this state and their interactions have not yet been studied on a genome-wide basis.

Results: Human umbilical vein endothelial cells (HUVECs) were treated with cobalt chloride (CoCl,) both to mimic
hypoxia and to induce cell apoptosis and alternative splicing responses. Cell apoptosis rate analysis indicated that
HUVECs exposed to 300 uM CoCl, for 24 hrs were initially counterbalancing apoptosis with cell survival. We therefore
used the Affymetrix exon array system to determine genome-wide transcript- and exon-level differential expression.
Other than 1583 differentially expressed transcripts, 342 alternatively spliced exons were detected and classified by
different splicing types. Sixteen alternatively spliced exons were validated by RT-PCR. Furthermore, direct evidence for
the ongoing balance between HUVEC survival and apoptosis was provided by Gene Ontology (GO) and protein function,
as well as protein domain and pathway enrichment analyses of the differentially expressed transcripts. Importantly, a
novel molecular module, in which the heat shock protein (HSP) families play a significant role, was found to be activated
under mimicked hypoxia conditions. In addition, 46% of the transcripts containing stress-modulated exons were
differentially expressed, indicating the possibility of combinatorial regulation of transcription and splicing.

Conclusion: The exon array system effectively profiles gene expression and splicing on the genome-wide scale. Based
on this approach, our data suggest that transcription and splicing not only regulate gene expression, but also carry out
combinational regulation of the balance between survival and apoptosis of HUVECs under mimicked hypoxia conditions.
Since cell survival following the apoptotic challenge is pivotal in angiogenesis during the development of many vascular
diseases, our results may advance the knowledge of multilevel gene regulation in endothelial cells under physiological and
pathological conditions.

Page 1 of 14

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2164/10/126
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19320972
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Genomics 2009, 10:126

Background

The balance between endothelial cell (EC) survival and
apoptosis is an important cellular process involved in pre-
serving blood vessel integrity and vascular homeostasis
[1-4]. Lining the surface of vascular structures, ECs should
endure a variety of normal or abnormal stresses that are
both chemical and physical in nature. Aberrant stresses
may break the dynamic balance and contribute to irrevers-
ible endothelial dysfunctions due to EC apoptosis and
vessel integrity defects [4-6]. Studies have demonstrated
that modulating this balance is important in the initiation
and development of many vascular diseases, e.g. stroke,
diabetic retinopathies, thrombosis, and atherosclerosis
[2,7-9]. Therefore, identifying the regulatory mechanisms
of the survival and apoptosis of ECs may provide oppor-
tunities to improve clinical therapies for the treatment of
these vascular diseases.

Transcription has been well studied and has been shown
to be of considerable importance in modulating EC apop-
tosis [10,11]. Alternative splicing (AS), an important
molecular mechanism increasing proteome diversity via
the assembly of different exons, has been reported to reg-
ulate cellular processes in endothelial systems under
stress. For example, a splicing isoform of platelet endothe-
lial cell adhesion molecule-1 (PECAM-1, a suppressor of
cell apoptosis) was proven to activate the EPH receptor B2
(EPHB2) in response to the early stages of shear stress
[12]. Splicing variants of vascular endothelial growth fac-
tor (VEGF) provide a balance of pro- and anti-angiogenic
regulation, and they also act as determinants of tumor
angiogenesis [13]. Importantly, one study has reported
that AS, like transcription, can enable rapid and specific
changes in gene expression in response to stress [14].
Thus, elucidating the transcriptional and splicing regula-
tion that affects EC survival and apoptosis is critical for a
better understanding of endothelial function under phys-
iological and pathological stresses.

Although many studies have focused on transcriptional
and proteome profiling of ECs under stress [15,16], no
study to date has addressed splicing and multilevel regu-
lation from a genomic standpoint. Here, human umbili-
cal vein endothelial cells (HUVECs) were treated with 300
pM CoCl, for 24 hrs to mimic hypoxia [17-19] and to
induce cell apoptosis and alternative splicing responses,
as previously described [20,21]. An Affymetrix Human
Exon 1.0 ST array system containing over 1 million exon
clusters and 5.5 million features was used to profile gene
expression at both the transcriptional and splicing levels.
After a comparative analysis of expression between treated
and normal samples, Gene Ontology (GO) and protein
annotation coupled with pathway analysis provided evi-
dence illustrating the balance between cell survival and
apoptosis. Furthermore, the classification of splicing pat-
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terns and the discovery of a group of genes affected by
both transcription and splicing indicated multilevel regu-
lations representing the response of HUVECs to stress.
Our data may facilitate the development of new therapeu-
tic approaches for vascular disease treatment.

Results

Analysis of apoptosis in CoCl,-treated HUVECs

To mimic hypoxia stress, HUVECs were incubated with
100, 300, 600 and 900 uM CoCl, for 0 (control), 12, 24,
36 and 48 hrs. The apoptosis rate of HUVECs treated with
different concentrations of CoCl, was analyzed by flow
cytometry (See Figure 1). The apoptosis rate rapidly
increased as the CoCl, concentrations and incubation
time increased, although the increase did not occur in a
linear fashion. Clearly, 100 uM CoCl, had a minimal
effect, as evidenced by persistently low apoptosis rates
over time, while 600 pM and 900 uM CoCl, induced high
rates of cellular apoptosis earlier. When incubated with
300 uM CoCl,, HUVECs showed a large transition in
apoptosis rates, which increased from 14% to 55%
between 24 and 36 hrs. We therefore considered the first
24 hrs of HUVECs with 300 uM CoCl, treatment as the
early stage of apoptosis.

Differentially expressed genes and functional analysis

A comparison of the mimicked hypoxic and normoxic
groups identified 1583 differentially expressed genes
(DEGs), consisting of 300 (19%) upregulated and 1283
(81%) downregulated genes (See Additional file 1). The
number of downregulated genes was 4.28 (1283/300)
times higher than the number of upregulated genes in
response to stress. A different strategy of functional analy-
sis (other than normal GO analysis) was performed on
DEGs. First, function enrichments of DEGs were detected
based on their protein annotations from the UniProt data-
base [22]. Interestingly, 24% of the DEGs were catego-
rized as genes undergoing or regulating alternative
splicing (See Table 1). It is equally notable that the other
functional categories available for short-term cellular
response to hypoxia include nuclear protein, phosphor-
ylation, metal binding, and DNA-binding, which are also
prominent in enrichment (See Table 1). These categories
demonstrate extensive responses of gene regulation to
hypoxia. GO analysis was then carried out on the up- and
downregulated genes respectively. Importantly, we found
that "programmed cell death" (Fisher's exact test, P = 2.1
x 107) is only significantly observed in the upregulated
genes, which indicates that apoptosis is initiated in
response to mimicked hypoxia in HUVECs.

Alternative splicing events and protein domain analysis

Using the "Splicing Index" algorithm described in the
methods, 342 probe select regions (PSRs) labeled as
"core" were identified as alternatively spliced exons (See
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Additional file 2), and these belonged to 293 alternatively
spliced transcripts. Compared with normal HUVECs, 250
PSRs with higher expression were classified as "general
exon inclusion" events, while the other 92 PSRs with
lower expression were considered as "general exon skip-
ping" events. Thirty-five percent (102/293) of the alterna-
tively spliced transcripts are supported by experimental
evidence based on the NCBI RefSeq database records.

Table I: List of the top eight functional categories of DEGs,
based on the protein annotations of the UniProt databases

Rank Terms Count % P-value
| Alternative splicing 38l 24.1 1.3E-23
2 Nuclear protein 355 224 1.2E-29
3 Phosphorylation 312 19.7 3.0E-58
4 Metal-binding 191 12.1 8.8E-5
5 Nucleotide-binding 190 12.0 1.4E-23
6 Transferase 164 10.3 2.6E-16
7 ATP-binding 157 9.9 5.4E-22
8 DNA-binding 137 87 5.1E-5

(Threshold of significance: P < | x 104, Fisher's exact test)

Since it is possible for multiple alternative splicing events
to occur in the same transcript, 13% (37/293) of the tran-
scripts were found to contain 25% (86/342) of the alter-
natively spliced exons. Therefore, there was an average of
2.3 (86/37) alternatively spliced exons per transcript
under mimicked hypoxia conditions in our data. A typical
example is ubiquitin-associated protein 2 (UBAP2), for
which five alternatively spliced exons were detected, indi-
cating a complicated pattern of splicing regulation of
UBAP2 in HUVECs under hypoxic stress.

It is well known that splicing not only provides feedback
to affect transcription, but also feeds forward to modulate
protein function. An InterProScan search revealed 105
protein domains in 21% (71/342) of the coding regions
of alternatively spliced exons, and 70 different domains
were revealed after removing the redundant records (See
Additional file 3).

RT-PCR and quantitative Real-time PCR validation
In order to confirm the DEGs detected by exon array, 14
DEGs exhibiting highly significant differences in expres-
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sion or with important functions (for example, splicing
factors) were validated by RT-PCR in Figure S1 (See Addi-
tional file 4). Interleukin 8 (IL-8) and hypoxia-inducible
factor 1 (HIF-1a), two important genes in hypoxia
response, were validated by real-time quantitative PCR
(RT-gPCR). Consistency was found between the results
obtained by RT-qPCR and those acquired by the exon
array system (See Table 2). Thirty-two differentially
expressed exons were selected for validation by RT-PCR.
Forward and reverse PCR primers were designed adjacent
to or spanning several constitutive exons (See Additional
file 5), and half of these primers amplified specific bands
of differentially expressed transcripts (See Figure 2). Fur-
thermore, two genes, HNRPDL (a splicing factor) and
ALAS1 (a kind of synthase), are shown in Figure 3 to com-
pare the results of the exon array system, RT-PCR, and Ref-
Seq isoform evidence for consistency. Positive and
negative values of "Splicing Index" indicate the "exon
inclusion” and "exon skipping" events, respectively, in
mimicked hypoxia samples compared with controls. In
Figure 3A, exon 8 of the HNRPDL gene is highly included
in the condition of mimicked hypoxia, which is consistent
with the results of the RT-PCR and RefSeq isoforms. The
situation is true for skipping of exon 2 of ALASI gene
shown in Figure 3B. All these results suggest that the exon
array system is reliable and effective enough to detect dif-
ferential expression at both the transcriptional and splic-
ing levels.

Analysis of transcription and splicing pathways

The KeggChart tool in the DAVID system were used to
detect pathways enriched in up- and downregulated genes
based on the KEGG database. As shown in Table 3, the
"MAPK signaling pathway" and "Proteasome" were highly
activated, while "Focal adhesion" and "Regulation of actin
cytoskeleton" were largely silenced. However, there was
no significant enrichment for alternatively spliced genes
in the KEGG pathways. We therefore used GenMAPP to
map both DEGs and alternatively spliced genes simulta-
neously based on the context of the KEGG pathways.
Interestingly, we found that the "Focal Adhesion" path-
way contained not only 37 downregulated genes, but also
9 exon inclusion events. Genes affected at both the tran-
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scription and splicing levels appeared in the "Focal Adhe-
sion" pathway. Five of these genes were simultaneously
regulated at both levels (See Figure 4).

Furthermore, a two-step literature mining strategy was car-
ried out to explore the functional modules from biologi-
cal networks for the HUVECs under mimicked hypoxia
conditions. A novel schematic molecular module was gen-
erated to illustrate functional modularity within networks
(See Figure 5). This module contained 23 proteins and 40
regulatory relationships (See Additional file 6), of which
8 heat shock proteins and one heat shock transcription
factor were upregulated, indicating that these heat shock
proteins may function synergistically in this module in
response to hypoxic stress.

Splicing patterns and complex regulation between
transcription and splicing

In the distribution of splicing patterns, 48% of AS events
were considered to be of the "cassette exon" type, which is
consistent with another report that "cassette exon" is a
kind of splicing pattern with high frequency [23]. The
"alternative promoter" category comprised 17% of the AS
events. Previous studies have reported that alternative
promoters can regulate at both the transcription and splic-
ing levels [24,25]. Comparing with a benchmarked exon
array data that were also analyzed by the "Splicing Index"
algorithm, we found that the proportions of the splicing
patterns observed in HUVECs treated with CoCl, are dif-
ferent from those in the benchmark dataset [26]. The pro-
portion of "cassette exon" is nearly double, while those of
all the others decrease (See Figure 6). Other than the tech-
nical differences between the experiments, we hypothe-
size that the proportion of the splicing patterns may be
specific to different phenotypic conditions. For example,
the "cassette exon" is more dominant in the stress-
induced HUVECs than in the benchmarked exon array
data. By classifying all AS events into "general exon inclu-
sion" events (upregulated exons) and "general exon skip-
ping" events (downregulated exons) on the basis of exon
expression levels, we surprisingly found that the "general
exon inclusion" events are highly correlated with the
downregulation of the genes, while "general exon skip-

Table 2: Relative quantitative comparison between the RT-qPCR technique and exon array system

Time Gene average GAPDH average ACy AACy, ACy-ACt 4,  Fold change to 0 Fold change
Ct Cr Gene- GAPDH ha2 based on exon
array systemP
HIF-loo Oh 18.84 + 0.47 16.67 + 0.23 18.84 + 0.47 0.00 + 0.47 1.00 (0.72~1.39) |
24 hrs 20.77 + 0.37 15.33 £0.30 20.77 £ 0.37 1.93 £0.37 0.26 (0.20~0.34) 0.18
IL-8 Oh 21.78 £ 0.33 16.67 £ 0.23 5.12 £ 041 0.00 + 0.41 1.00 (0.75~1.32) |
24 hrs 18.15 + 0.09 15.33 + 0.30 2.82 +0.31 -2.30 £ 0.31 4.92 (4.03~6.11) 7.66

aFold change based on RT-qPCR is calculated as 2-2ACT

bFold change based on exon array is from samr d scores for gene expression
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RT-PCR validation of splicing events identified by exon array. PCR products were derived using forward/reverse
primers to amplify the flanking regions indicated under the gene name. The mobility changes are identified on the right side
("Incl" for exon inclusion; "Skip" for exon skipping). The 18S rRNA was used as a control. The primer sequences are available

in an online Excel table (See Additional file 5).

ping" events are highly correlated with the upregulation
of the genes (Fisher's exact test. P = 2.2 x 10-1¢).

Furthermore, we found that a large proportion of alterna-
tively spliced genes overlapped with DEGs (46% of alter-
natively spliced genes, 134/293), and the overlapping
genes differentially expressed at both the gene and exon
levels. Afterwards, a functional analysis similar to Table 1
was performed on the alternatively spliced genes. Interest-
ingly, parallel rankings of functional categories were
found between alternatively spliced genes and DEGs
because of the high proportion of overlaps between these
two gene sets. The top three categories of alternatively
spliced genes ("alternative splicing" with P = 2.5 x 1013,
"nuclear protein" with P = 5.0 x 107, and "phosphoryla-
tion" with P = 1.3 x 1013, all Fisher's exact test) were very
consistent with their counterparts at the gene level. We
also found that alternatively spliced genes with multiple
affected exons were largely included among the overlap-
ping genes (54%, P = 2.9 x 10-53, Chi-square test). Finally,
17 alternatively spliced genes (See Additional file 7)were
transcription factors supported by the publicly available

TRANSFAC 7.0 database (Fisher's exact test, P-value = 2.6
x 10-12),

Discussion

Functional and pathway analyses support the conflicting
balance between HUVEC survival and apoptosis
Consistent with the results of cell apoptosis analysis, the
gene function and pathway analyses of DEGs revealed the
conflicting balance between HUVEC survival and apopto-
sis. IL-8, a gene known to directly promote endothelial
cell survival and angiogenesis, has been demonstrated to
be highly upregulated based on exon array system and RT-
qPCR analysis [27]. This suggests that chemokines may
play an important role in resisting apoptosis in HUVECs.
HUVEC survival may decrease with the expression of
thrombospondin-1 (THBS1), which has been reported to
induce endothelial cell apoptosis and inhibit angiogen-
esis [28]. On the other hand, Yang et al. reported that loss
of survivin (BIRC5) increased cellular sensitivity to apop-
totic stimuli and caused spontaneous apoptosis [29]. Our
results indicated that downregulation of survivin in
HUVECs is highly likely to result in apoptosis via this
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Table 3: Pathway enrichment of the up- and downregulated genes based on the KEGG database analysis

Term Count % P-value
Upregulated pathways
HSA04010: MAPK signaling pathway I 3.70% 7.4E-03
HSA03050: Proteasome 7 2.36% |.0E-05
HSA04612: Antigen processing and presentation 6 2.02% 6.2E-03
Downregulated pathways
HSA04510: Focal adhesion 37 2.90% 5.4E-05
HSA04810: Regulation of actin cytoskeleton 30 2.35% 6.4E-03
HSA04110: Cell cycle 29 2.27% |.2E-07
HSA00240: Pyrimidine metabolism 18 1.41% 2.9E-03
HSA04350: TGF-beta signaling pathway 17 1.33% 2.1E-03
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Mapping of differentially expressed genes and exons to "Focal Adhesion" pathway. The magnitudes of gene expres-
sion differences are indicated by samr d scores, while the "TNS" rate and "Splicing Index" P-values indicate the magnitudes of

the differences of exons expression and their statistical signifi

cance, respectively. GenMAPP displays colors within each gene

box based on these values (red for upregulated, blue for downregulated, orange for activated exons (PSRs), and yellow for
skipped exons (PSRs)). GenMAPP prioritizes the central and rim color assignments for gene boxes based on the order of the

underlying data.

mechanism. It has also been reported that AIFM2 reduces
cell survival signaling and contributes to the onset of
apoptosis [30]. The observed upregulation of AIFM2 sug-
gests that this gene also plays a role in promoting cell
apoptosis. These gene expression patterns indicated that
HUVECs struggle to avoid apoptosis in order to survive
under stress. In the results of the GO analysis, it is notable
that the upregulated genes are significantly enriched in the
"programmed cell death" functional annotation, demon-
strating the ongoing apoptosis of HUVECs.

Since genes are usually functionally organized into path-
ways, it is necessary to explore the gene regulation in
terms of the pathways involved. As shown in Table 3, the

"Focal Adhesion" pathway is largely silenced, which is
congruous with the fact that adhesion-dependent
endothelial cell survival is regulated by focal adhesion
kinase [31]. This silenced pathway may result in the disor-
der of the cellular signaling that mediates the contact
between endothelial cells and the extracellular matrix dur-
ing apoptosis [32]. In addition, Kulms et al. showed that
disruption of the "Actin cytoskeleton" (in the downregu-
lated pathway) is mediated via the activation of CD95
(Fas/APO-1) during the induction of apoptosis [33]. With
regard to the upregulated pathways, the "MAPK signaling"
pathway was studied by inducing apoptosis in endothelial
cells via phosphorylation [34]. The upregulated "Antigen
processing and presentation" pathway is supported by the
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lllustration of the activated module of heat shock proteins in HUVEC response to stress. Elliptical nodes repre-
sent general genes, while star-like nodes represent hub genes in the scale-free module. Blue nodes represent heat shock pro-
teins, while yellow nodes represent non-heat shock proteins. Orange lines designate binding and interaction, and purple lines
designate directed regulations, such as transcription, signal transduction, etc. The arrows represent the direction of regulation.

expression of many antigens, especially platelet endothe-
lial cell adhesion molecule-1 (PECAM-1/CD31 antigen),
which provides survival signals to suppress apoptosis
[35]. However, the regulation of the "Proteasome" path-
way is somewhat complex because proteasome inhibitors
have dual functions, either facilitating or inhibiting apop-
tosis [36]. In conclusion, the expression of genes in the
examined pathways presents a comprehensive illustration
of the state of homeostasis between cell survival and
apoptosis.

Finally, a novel heat shock protein module composed of
the Hsp27, Hsp70, Hsp105, and DnaJ subfamilies was
discovered to underlie the functional modulation of bio-
logical networks under stress. These heat shock proteins
have been individually demonstrated to resist apoptosis
in response to a variety of stimuli including hypoxia [37-
40]. Figure 5 shows that the 70 kDa heat shock protein 1A
(HSPA1A) may function together with other heat shock
proteins to form a protein complex that more effectively
inhibits apoptosis. Notably, HSPA1A has been reported to

confer resistance to apoptosis in conjunction with other
heat shock proteins [41], which is consistent with its fea-
ture as a hub of the scale-free module. This novel module
suggests that heat shock proteins and their collective reg-
ulation may be crucial to controlling HUVEC survival and
apoptosis.

Complex regulation of transcription and splicing in stress
induced HUVECs

Both dependent and independent regulations of tran-
scription and splicing usually coexist under most physio-
logical and pathological conditions. Based on the
observation of a higher rate of overlapping between DEGs
and alternatively spliced genes than that found in other
studies [42,43], we expect the possibility of combinatorial
regulation between transcription and splicing in stress
induced HUVECs. Although we also found that the gen-
eral splicing patterns are highly correlated with gene
expression levels, the exact molecular mechanism of the
coupling regulation is still unknown. We hypothesize that
splicing may modify the transcription activity or RNA sta-
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Comparison of splicing pattern distribution between Bemmo's data and ours. Bemmo A et al. used the MAQC

human tissue samples to obtain an overall estimation of splicing pattern distributions [26]. We selected the data produced by
the "Splicing Index" algorithm, which is the most similar to our approach. The labels on the histograms are percentages of the
splicing patterns for alternative splicing events. It can be seen that the distribution of splicing patterns observed in the affected

HUVEC:s varies with the selected background distribution.

bility [44,45], while transcription may change the splicing
efficiency [46]. On one hand, alternative splicing of
mRNA can change RNA stability, which in turn will prob-
ably affect the expression levels of the gene transcripts
with different RNA stability [47]. On the other hand, it is
also possible that different expression levels of the
upstream genes of splicing factors facilitate or inhibit
splicing machinery by influencing spliceosome assembly
or the cis-elements during the splicing process. These two
aspects of regulations could both possibly result in the
high degree of correlation between splicing patterns and
transcriptional expression. Therefore, it is reasonable to
speculate that HUVECs may utilize the combinatorial reg-
ulation of transcription and splicing to modulate the cel-
lular response to stress finely and efficiently.

Transcription and splicing may be independent processes,
but there are still possible correlations at specific spatio-
temporal stages of the cellular response. In our results, 17
differentially expressed transcription factors (See Addi-
tional file 7) were detected as alternatively spliced
genes(Fisher's exact test, P-value = 2.6 x 10-12). On the

other hand, 15 splicing factors (See Additional file 7),
including 6 SR proteins and 9 hnRNP proteins, were
detected as DEGs (Fisher's exact test, P-value = 1.3 x 10-%).
The existence of two possible regulatory mechanisms for
these transcription factors and splicing factors can be con-
jectured: 1) the 17 alternatively spliced transcription fac-
tors are possible targets of splicing factors; 2) the 15
differentially expressed splicing factors are possible targets
of transcription factors. If the differential expression of
splicing factors directly influences the splicing efficiency
and in turn triggers the alternative splicing of transcrip-
tion factors, a loop of feedback regulation can then be
established in response to stress. Since it is difficult to
reveal the exact regulatory mechanisms underlying these
trans-factors and their targets, further studies are needed to
explain the regulatory model of the complex regulation
under stress in the future.

Alternative splicing can influence biological networks
through domain architectures

Since no significant enrichment of alternatively spliced
genes was found in the KEGG pathways, splicing may fol-
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low a different set of regulatory rules than transcription in
pathways. Alternative splicing can expand the protein rep-
ertoire and influence protein function by altering protein
domains. Melissa et al. reported that 7,179 of 22,218
human genes in the Ensembl database encoded two or
more different proteins. Of these, 2,229 genes encoded
proteins with different PFAM domain architectures [48].
The affected domains in the coding regions of alterna-
tively spliced exons confirmed the existence of changes in
the transcriptome and proteome resulting from altera-
tions in the domain architecture of biological networks
[49]. We found that alternative splicing may influence
transcription through the gain or loss of promoter bind-
ing domains. For example, the number of zinc finger
domains (IPR007087) decreased in zinc finger protein
589 (ZNF589), whose transcription factor activity
depends on the number of domain repeats. The same phe-
nomenon was also found in the WD-40 repeat domain
(IPRO01680) of the SH3KBP1 and RRP9 genes. In our
results, the DNA-binding domain HMG-I(Y)
(IPR0O00637) was lost in the high mobility group AT-hook
2 (HMGA2). Previous studies have demonstrated that the
domain HMG-I(Y) functions as part of a hypoxia-induced
enhanceosome, promoting the transcription of COX-2 in
HUVECs [50]. Defects in the HMG-I(Y) DNA-binding
domain will disorganize the transcriptional regulation
under stress. The MAM domain (IPRO00998) in neuropi-
lin 1 (NRP1), representing adhesive function, may be
altered to induce endothelial dysfunction in response to
stress. These changes of domains were analyzed based on
the coding regions of alternatively spliced exons (See
Additional file 3).

Conclusion

In this study, HUVECs were incubated with 300 pM CoCl,
for 24 hrs to induce the balance between cell survival and
apoptosis, followed by a genome-wide expression profil-
ing of transcription and splicing by exon array system.
Functional and pathway analyses of gene levels and exon
levels demonstrated the importance of transcription and
splicing regulation in cellular processes. Evidence from
the splicing classifications and the overlap between the
two levels suggested a combinatorial regulation. Because
very few studies have investigated splicing regulation in
endothelial cell survival and apoptosis, elucidating the
underlying mechanisms associated with these phenom-
ena is critical for a better understanding of vascular biol-
ogy under normal and pathological conditions.

Methods

Cell culture and cell apoptosis analysis
HUVECs were purchased from Cascade Biologics (USA)
and cultured in Medium 200 supplemented with Low

http://www.biomedcentral.com/1471-2164/10/126

Serum Growth Supplement (LSGS) (Cascade Biologics,
USA) in a CO, incubator (5% CO,) at 37°C. The cells
were treated with different concentrations of CoCl, (100
UM, 300 uM, 600 uM, 900 pM) (Sigma, USA) for 0, 12,
24, 36 and 48 hrs to mimic hypoxia. The cells were then
incubated with fluorescein isothiocyanate-conjugated
Annexin V (A-FITC) and propidium iodide (PI) using the
Apoptest kit (Jiancheng, China) according to the manu-
facturer's instructions. Flow cytometry analysis was per-
formed using the FACSCalibur system (Becton Dickinson,
USA). The data were analyzed using CellQuest software to
estimate the apoptosis rate at different time points.

Sample preparation and array hybridization

After being cultured under normoxia or mimicked
hypoxia (300 uM CoCl, for 24 hrs), total RNA was
extracted from the HUVECs using the TRIzol reagent,
according to the manufacturer's protocol (Invitrogen,
USA). Total RNA was dissolved in an appropriate volume
of DEPC-treated water following A,.,/A,g, measurement,
while the total RNA integrity was evaluated by electro-
phoresis in a denaturing gel. The RNA samples were fur-
ther purified using DNase (TaKaRa, Japan). For each
experimental condition, three independent replicate sam-
ples were obtained for exon array analysis. For each sam-
ple, 1 ug of RNA was processed using the Affymetrix
GeneChip® Whole Transcript Sense Target Labeling Assay.
The GeneChip® WT c¢DNA Synthesis Kit, the WT ¢cDNA
Amplification Kit, and the WT Terminal Labeling Kit
(Affymetrix, Inc., Santa Clara, CA) were used for the sam-
ple preparation. 8 pg of cDNA were used for the second
cycle cDNA reaction. Hybridization cocktails containing
3-4 g of fragmented, end-labeled cDNA were applied to
the GeneChip® Human Exon 1.0 ST arrays. Hybridization
was performed for 16 hrs using the MES_EukGE-
WS2v5_450-DEV fluidics wash and stain script. The arrays
were scanned using the Affymetrix GCS 3000 7G and
Gene-Chip Operating Software v1.3 to produce the inten-
sity files.

RT-PCR and quantitative Real-time RT-PCR

1 pg of each RNA sample was used for first strand cDNA
synthesis using SuperScript II reverse transcriptase (Invit-
rogen, USA) and a combination of random hexamer
primers and oligo-dT in a total volume of 10 ul. PCR was
carried out using 2 ul of cDNA, with specific primers
flanking the constitutive exons, and ExTaq Polymerase
(TaKaRa, Japan) in a volume of 25 pl. The conditions for
PCR amplification were denaturation at 95°C for 5 min,
32 cycles of 95°C for 30 sec, 55°C for 30 sec, and 72°C
for 45 sec, followed by a final elongation step at 72°C for
7 min. The PCR products were then separated on 1.5%
agarose gels. The RT-PCR products were gel-purified using
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a PCR purification kit (Promega, USA) and subcloned
into the pGEM-T Easy Vector (Promega, USA) for direct
sequencing to validate the transcript variants.

1 ul of each cDNA product was used for quantitative real-
time PCR amplification with SYBR Green PCR Master Mix
(TianGen). The primers were designed and verified by the
primer specificity-checking program MFEprimer http://
biocompute.bmi.ac.cn/MFEprimer[51]. PCR was carried
out with an iCycler Real-time PCR detection system (Bio-
Rad) under the following conditions (40 cycles): 95°C for
2 min, 95°C for 30 sec, 57°C for 30 sec, and 68°C for 30
sec. SYBR Green analyses were followed by dissociation
curves in a temperature range of 60°C~90°C to assess the
amplification specificity. Each sample was tested in tripli-
cate and quantified according to the mean expression val-
ues obtained for both samples.

Low level analysis of the exon array

Low-level analysis of the optical intensity files of the exon
array (".CEL" format) was performed by Affymetrix Power
Tools (APT). Background noise was detected by the
"Detection above Background (DABG)" algorithm. Nor-
malization was performed using the "quantile normaliza-
tion" algorithm for both the exon and gene levels. The
"Probe Logarithmic Intensity Error Estimation" (PLIER)
algorithm was used to estimate exon signals based on
probe intensities. At the gene level, a variant algorithm
called "Iter-PLIER" was used to summarize gene signals
from probeset intensities. The "Iter-PLIER" algorithm can
discard probesets with inconsistent signals to avoid low-
weighted effects introduced by differentially expressed
exons.

Filtering

Hierarchical filtering was then performed to eliminate
noise and outliers at both the gene and exon levels. At the
exon level, only the probesets considered "Present"
(DABG P < 0.05) in at least 50% of the samples in either
group were reserved. At the gene level, only the "core"
meta-probesets with high confidence were used to esti-
mate gene signals. The differentially expressed genes were
considered acceptable based on two principles. First,
genes with more than 50% of the "core" exons designated
as "Present" (DABG P < 0.05) should appear in more than
50% of the samples in both groups. Second, the gene sig-
nals needed to exceed 100. We subsequently removed the
probesets labeled as potential cross-hybridization targets
based on Affymetrix CSV annotation files.

Detection of differentially expressed genes and alternative
splicing

A Bioconductor package called "samr" was used to infer
the differentially expressed genes (DEGs) between mim-
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icked hypoxia and normal groups. Corrections for multi-
ple hypothesis testing included using the Benjamini-
Hochberg method [52]. We set parameters A = 2.3 and
FDR < 2.6 x 104 as cut-off values for DEGs. Other than
some regression models [53,54], most of the previously
published papers used the "Splicing Index" model [55,56]
to detect alternative splicing events from the exon array
data. A program built in-house based on the "Splicing
Index" model was used to detect differentially expressed
exons. The rate of exon signals to summarized gene sig-
nals were defined as the transcription normalized exon
signals:

Transcription Normalized Signal (TNS) = Slngal of the pro?eset
Estimated gene signal

The "Splicing Index (SI)" model was then employed to
indicate alternative splicing capability based on the rela-
tive inclusion rate of exons:

INS Groupl
INS Group2

The absolute value of SI represented the magnitude of dif-
ference of the exon inclusion rate between the two groups.
To identify the significant alternatively spliced exons, a
Student's t-test was used to compare TNS values between
the two groups. Finally, the high proportion of true posi-
tives, with P-value < 0.015 and fold change magnitudes >
0.5, were retained as potential alternatively spliced exons.

SI =log,

Data deposition

The raw ".CEL" files and normalized data at both the gene
and exon levels have been deposited in the Gene Expres-
sion Omnibus (GEO) of the National Center for Biotech-
nology Information http://www.ncbi.nlm.nih.gov/geo
under GEO Series record GSE12546.

Visualization and classification of alternative
splicingevents

Before validating the exon array data by various
approaches, an expert investigation on gene structure and
genomic context was carried out to assess the positions
and surrounding mRNA/cDNA sequences of alternatively
spliced exons. The Blat program [57] was used to map
alternatively spliced exons in the UCSC Genome Browser
http://genome.ucsc.edu/ referred to the mRNA/cDNA
sequences (from the NCBI RefSeq and GenBank data-
bases) or expressed sequence tags (ESTs). Alternatively
spliced multi-exon genes were classified into six splicing
patterns according to the relative positions of the affected
probe selected regions (PSRs) in exons and genes based
on the sequence mapping. These classifications were cas-
sette exons, namely exon inclusion and exon skipping,
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alternative promoters, alternative polyadenylation, alter-
native donor sites, alternative acceptor sites and intron
retention.

Function and pathway analysis
GO, protein function, and pathway enrichment analyses

were carried out by the DAVID tool http://
david.abcc.nciferf.gov/[58]. DEGs and alternatively

spliced genes were mapped to the KEGG database using
GenMAPP software, in order to visualize their distribu-
tions in the pathways [59].

After detecting alternatively spliced exons, their sequences
and gene annotations were obtained from the Affymetrix
website  http://www.affymetrix.com/support/technical
byproduct.affx?product=huexon-st. The protein
sequences of the coding regions of alternatively spliced
exons were extracted from the NCBI RefSeq database by a
in-house developed Perl program [60]. The InterProScan
software was used to search protein domains via the inter-
faces of the PFAM, PROSITE, PRODOM, and SMART data-
bases [61].

Literature mining for functional modules

The purpose of the analysis is to find functional modules
from complex biological networks. The functional mod-
ule was defined as a part of a biological network with spe-
cific functions and topological features [62]. The nodes
represent genes, and the links represent regulatory rela-
tionships between genes in the modules. A two-step liter-
ature mining strategy was performed on up- and
downregulated genes to find activated functional mod-
ules in affected HUVECs. First, we used the cytoscape
plugin "Agilent Literature Search" to construct the biolog-
ical networks by a literature mining algorithm [63]. Only
direct regulatory relationships between genes were pre-
served in building the network. Second, some orphan
nodes and fake links were manually removed by checking
relevant sentences in the obtained literatures in the first
step. During the manual module check, the nodes were
annotated by description from NCBI Entrez Gene [64],
and the links were classified by regulatory relationships
stated in the sentences from the relevant literature.
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Additional material

Additional File 1

List of upregulated and downregulated genes in hypoxia-treated
HUVECs. Upregulated genes are listed in sheet 1, and downregulated
genes are listed in sheet 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-S1.xls]

Additional File 2

List of differentially expressed exons in hypoxia-treated HUVECs. Gen-
eral inclusion events are listed in sheet 1 and general exon skipping events
are listed in sheet 2. Overlaps between alternatively spliced genes and dif-
ferentially expressed genes are listed in sheet 3.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-S2.xls]

Additional File 3

List of domains affected by alternative splicing. Domains affected by
alternative splicing are listed with their InterPro ID, names, alias, descrip-
tion, and literature, with functions relevant to hypoxia conditions.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-S3.xls]

Additional File 4

Figure S1 RT-PCR validation of selected DEGs. The 18S rRNA was
used as a control. The primer sequences are available in an online Excel
table (See Additional file 5).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-4.pdf]

Additional File 5

Primer sequences for validating DEGs and alternative splicing events.
None.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-S5.xls]

Additional File 6

Annotation of nodes and edges in Figure5. Functional descriptions of
the "Node" (genes and proteins participated in the module) are listed in
"Notes" column. The regulatory relationships between nodes (edges) are
supported by literature citations.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-S6.xls]

Additional File 7

Evidence of combinational regulation between transcription and splic-
ing. Seventeen transcription factors undergoing alternative splicing are
listed in sheet 1. Differentially expressed splicing factors (including SR
proteins and hnRNP proteins) are listed in sheet 2.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-126-S7 xls]
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