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Abstract
Background: Whole-genome sequence alignment is an essential process for extracting valuable information about 
the functions, evolution, and peculiarities of genomes under investigation. As available genomic sequence data 
accumulate rapidly, there is great demand for tools that can compare whole-genome sequences within practical 
amounts of time and space. However, most existing genomic alignment tools can treat sequences that are only a few 
Mb long at once, and no state-of-the-art alignment program can align large sequences such as mammalian genomes 
directly on a conventional standalone computer.

Results: We previously proposed the CGAT (Coarse-Grained AlignmenT) algorithm, which performs an alignment job 
in two steps: first at the block level and then at the nucleotide level. The former is "coarse-grained" alignment that can 
explore genomic rearrangements and reduce the sizes of the regions to be analyzed in the next step. The latter is 
detailed alignment within limited regions. In this paper, we present an update of the algorithm and the open-source 
program, Cgaln, that implements the algorithm. We compared the performance of Cgaln with those of other programs 
on whole genomic sequences of several bacteria and of some mammalian chromosome pairs. The results showed that 
Cgaln is several times faster and more memory-efficient than the best existing programs, while its sensitivity and 
accuracy are comparable to those of the best programs. Cgaln takes less than 13 hours to finish an alignment between 
the whole genomes of human and mouse in a single run on a conventional desktop computer with a single CPU and 2 
GB memory.

Conclusions: Cgaln is not only fast and memory efficient but also effective in coping with genomic rearrangements. 
Our results show that Cgaln is very effective for comparison of large genomes, especially of intact chromosomal 
sequences. We believe that Cgaln provides novel viewpoint for reducing computational complexity and will contribute 
to various fields of genome science.

Background
Sequence alignment is one of the most fundamental
approaches in bioinformatics. It finds common subse-
quence patterns shared by the input sequences, and this
information supports the identification of evolutionarily
conserved genes or other functional regions, the predic-
tion of 1-3D structures of proteins and RNAs, and the
analysis of evolutionary relationships between the species
[1]. With the rapid increase in genomic sequence data in
recent years, there is great demand for alignment pro-
grams that can allow direct comparisons of whole

genomic sequences. Cross-species genomic sequence
comparison reveals homologous DNA segments and
ancestral rearrangements [2,3], while intra-species
genomic comparisons (e.g., human-human) can identify
individual differences, such as SNPs, indels, copy number
variations, and other types of peculiarities [4,5].

Optimal pairwise alignment can be obtained by a
dynamic programming (DP) algorithm with O(L2) time
and O(L) space, where L is the length of an input
sequence [6]. However, even bacterial genomic sequences
often exceed 1 Mb in length, thus prohibiting the applica-
tion of full-blown DP. Most existing alignment algorithms
apply fast seed-search algorithms, such as suffix trees,
suffix arrays, and hash tables, to extract high-scoring
pairs (HSPs) of subsequences from the input sequences
[7]. Recent efforts have developed some alignment tools
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for genomic sequences, which include global alignment
programs such as GLASS [8], AVID [9], and LAGAN
[10], as well as local alignment programs such as Blastz
[11], CHAOS [12], MUMmer [13], and WABA [14].
Though these programs can align small genomic
sequences such as those of bacteria, the comparison of
large genomic sequences such as those of mammals still
requires large amounts of time and memory. For example,
Blastz succeeded in the whole-genome alignment of
human and mouse by 481 days of CPU time and a half day
of wall clock time on a cluster of 1024 833 MHz CPUs
[11]. The Berkeley Genome Pipeline [15] also reported a
whole-genome human-mouse comparison by using AVID
based on the outputs of BLAT [16] in 17 hours on a clus-
ter of 16 2.2 GHz CPUs (20 CPU d).

This procedure was later expanded to human-mouse-
rat alignment with LAGAN [17]. However, these kinds of
genome comparisons on a standalone computer remain
difficult because of the long computational time and the
large amount of memory necessary for computation, even
on the much-improved hardware systems presently avail-
able.

Although global alignment typically has higher sensitiv-
ity than local alignment for less-similar sequences such as
noncoding regions [18], it should be applied to consis-
tently homologous regions, and hence it cannot treat
rearrangements of genomes. As a genomic sequence pair
generally has rearrangements or unrelated regions, global
alignment is not appropriate for whole-genome compari-
son in most cases. Local alignment can treat rearrange-
ment but is likely to give "noisy" outputs; if there are
unmasked repetitive regions in the input sequences, a lot
of alignments can be generated, most of which may not
be interesting for general users. Shuffle-LAGAN (SLA-
GAN), a "glocal" alignment method, was developed to
overcome the shortcomings of local and global alignment
by identifying the breakpoints of rearrangements [19].
However, the problem of computational complexity
remains poorly resolved.

Moreover, these existing tools require the splitting up
of input genomic sequences into short chunks because of
the limitation in available computer memory. For human-
mouse comparison, Blastz divided the human genome
into 3000 segments of about 1 Mb in length with a 10 Kb
overlap, while AVID and SLAGAN split the mouse
genome into chunks of 250 Kb in length. Such splitting
strategies have several disadvantages [20]. Namely, the
manual splitting and uniting processes of the sequences
and alignment are tedious, potentially invoking several
types of errors. In particular, a splitting strategy may
divide a homologous region into chunks and align them
separately, such that a contiguous orthologous segment
might be recognized as separate entities. Consequently,

there remains no handy, practical method of aligning ver-
tebrate-sized genomes for most researchers.

To overcome the computational difficulty, we previ-
ously proposed the basic idea of the CGAT (Coarse-
Grained AlignmenT) algorithm [21]. This algorithm
involves two levels of computation: block-level and nucle-
otide-level alignments. The former, "coarse-grained" local
alignment step explores the genomic rearrangements and
reduces the sizes of the regions to be aligned in the next
step. The latter step is devoted to detailed global align-
ment within limited regions. By applying this algorithm
to several bacterial genomes, we have shown that this
two-step procedure can not only speed up computation
but also facilitate noise reduction with consideration of
genomic rearrangements. This procedure is a new strat-
egy to overcome the disadvantages of global and local
alignments, and thus differs from glocal alignment of
SLAGAN.

In this paper, we report on an update of the CGAT algo-
rithm and its associated program Cgaln, which both
improves accuracy and lowers computational costs, and
now allows the alignment of not only bacterial genomes
but also whole mammalian genomes in a single run. (For
simplicity, we hereafter use "Cgaln" to refer to both the
updated algorithm and the program.) We quantitatively
evaluated the performance of Cgaln in comparison with
those of several other genomic alignment programs. The
results show that Cgaln is as sensitive and specific as
Blastz, which is shown to perform the best among the
existing programs. Cgaln runs several times faster and is
considerably more memory-efficient than Blastz with a
tuned set of parameters. Cgaln can now regulate the out-
puts of repetitive alignments; under special conditions,
all repetitious outputs other than the best-scored ones
are suppressed. This option is useful for detecting SNPs
and small indels along an orthologous genomic sequence
pair.

The Cgaln source code is freely available at http://
www.genome.ist.i.kyoto-u.ac.jp/~aln_user/cgaln/.

Methods
Overview
Figure 1 shows the flow of Cgaln. First, Cgaln divides the
input sequences into "blocks" with a fixed length (Figure
1A). These blocks are taken as "elements" to be aligned at
the block level. Each cell of the meshlike structure is asso-
ciated with a block-to-block similarity score. The similar-
ity between two blocks, each from the two input
sequences, is evaluated by the frequency of seeds (k-
mers) commonly found in the blocks. Similar methods
based on seed counts have been used to quickly estimate
the degree of similarity between two protein sequences
[22,23]. Based on these similarity scores, the block-level
alignments are obtained by a local DP algorithm (Figure
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1B). For the local DP, we apply the Smith-Waterman algo-
rithm [24] modified so that sub-optimal similarities are
also reported [25]. The size of a block is arbitrary within
the limits that both the number of blocks and the size of
each block should be < 216 in order to be represented by
unsigned short integers.

The nucleotide-level alignment is conducted on the
restricted regions included in the block-level alignment
found in the first stage (Figure 1C). We adopt a seed-
extension strategy widely used in homology search pro-
grams such as Blast [26]. The obtained seed matches are
integrated into gapless HSPs. The HSPs are then filtered

and chained to conform to coherent alignment. If neces-
sary, the chained HSPs may serve as anchor points, the
subsequences between which are aligned by a standard
DP algorithm or recursive search for shorter seeds.

The above-mentioned algorithm implicitly assumes
that genomic rearrangements smaller than the block size
of Cgaln (about 10 Kb) are rare, and they are not searched
for with the default settings. To discover rearrangements
smaller than the block size, we prepared the "-sr" option
that considers inversions as small as a few hundred bases
at the recursive phase applied to inter-HSP regions (see
below).

Figure 1 The flow of the Cgaln algorithm. J indicates the length of a block. Mx,y indicates the similarity score between blocks. (A) and (B) show the 
block-level alignment, (C) shows the flow of nucleotide-level alignment, and (D) shows the alignment result. The cells with oblique lines indicate 
aligned block cells, and the diagonal lines in (D) indicate the aligned subsequences at the nucleotide level.

Genome A Genome A

Genome A

G
en

om
e 

B

)2,1(M)1,1(M

)1,( am
M ),( ba mmM

),1( bm
M

J

G
en

om
e 

B

G
en

om
e 

B

(A) (B)

(C)(D)

Finding “High scoring pairs” (HSPs)

Extending and chaining HSPs

Iterative alignment within inter-HSPs



Nakato and Gotoh BMC Bioinformatics 2010, 11:224
http://www.biomedcentral.com/1471-2105/11/224

Page 4 of 14
Cgaln accepts two single- or multi-fasta files. When
either or both files are in multi-fasta form, Cgaln aligns
every pair of single-fasta entry sequences and outputs the
united results. In this section, we assume for simplicity
that both input sequences are single-fasta files. By setting
the "-r" option, Cgaln examines both orientations of a
sequence in a single run.

Seed designing
Cgaln uses the "spaced seed" proposed in PatternHunter
[27] for fast and sensitive seed matching. A k/w spaced
seed is a discrete series of nucleotides of length w in
which k <w positions are examined for nucleotide match-
ing. Cgaln uses an 11/18 spaced seed by default, with the
same pattern as that used in PatternHunter (expressed as
111*1**1*1**11*111, where "1" and "*" respectively indi-
cate the positions to be examined or ignored). This pat-
tern was designed to be most sensitive for a pair of
randomly generated sequences with 70% nucleotide iden-
tities. Although some other seed patterns are more sensi-
tive than this pattern under some conditions (e.g., for
coding regions), we chose this seed design so that Cgaln
could be generally applicable to whole genome sequences
of various species. Optionally, a 12/19 or 13/20 spaced
seed can be used, as suggested by Mak and Benson [28]
(expressed as 1111*1*1**11**1*111 and
1111*1**11**11*1*111, respectively). We use the term k-
mer hereafter to refer to these k/w spaced seeds, as the
value for k is most important. A larger k is appropriate for
longer sequences but requires more memory, and hence
there is a compromise in the choice of the best value for k.
The "code" of each seed is its quaternary expression cal-
culated from the k examined positions by converting
nucleotides A, C, G, and T into numerals 0, 1, 2, and 3,
respectively. Thus, the code of a k/w seed is between 0
and 4k - 1.

Block-level alignment (BA)
In this subsection, we describe block-level alignment
(abbreviated as BA hereafter).
Measuring the score between two blocks
Let us denote the given input genomic or chromosomal
(single-fasta) sequences Ga and Gb. Let La and Lb be the
lengths of Ga and Gb, respectively. First, Cgaln divides Ga
and Gb into blocks with the fixed length of J, except that
the last block may be shorter than J. The numbers of
blocks in Ga and Gb are denoted as ma and mb, and thus

ma = LLa/JO and mb = LLa/JO. Let  be the x-th block of Ga

and  be the y-th block of Gb (1 ≤ x ≤ ma, 1 ≤ y ≤ mb).

The score Mx,y, the measure of similarity between 

and , is defined as the summation of the scores of

seeds commonly found in both  and . The score of
seed ki is evaluated by the probability of the chance of

finding one or more matches of ki in a block pair. Let 
be the total number of ki in Ga, then the expected mean

number of occurrences of ki in a block  is

We assume the Poisson distribution for the probability

of ki occurring fi times in a block , i.e.,

pb(fi) is obtained analogously. When ki occurs fi times in

 and hi times in , ki matches fihi times between 

and . It is clearly an overestimation to use this number

as the measure of similarity between  and , because
true homologous matches should line up around a single
diagonal. In such a case, we regard min(fi, hi) as the num-
ber of matches as suggested by [23]. Thus, the score of
seed ki is

where the probability of seed ki occurring more than or
equal to x times in a block is

Summing up s(ki) for all k-mers, we obtain the similar-
ity score as:

Local DP alignment at block level
After obtaining Mx,y for (1 ≤ x ≤ ma and 1 ≤ y ≤ mb), the
local alignment of BA is conducted by using local DP as
follows:
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where d is the gap penalty. In practice, Mx, y is calcu-
lated in the process of this DP procedure to save the
required memory from O(mamb) to O(min(ma, mb)). To
obtain the optimal and suboptimal locally best-matched
alignments, we use the algorithm proposed by Gotoh
[25]. This algorithm assigns each block cell to a "colony",
which is a candidate for local alignment. To define the
colony borders, we apply the X-drop-off approach [29].
At a certain block cell, if the score Fx, y increases from 0 to
a positive value, a new colony starts. A colony is "signifi-
cant" if Fx, y > Tcol somewhere in the colony, where Tcol
denotes a predefined threshold. A colony ends when Fx, y
becomes ≤ 0 or falls by more than Tcol from the maximum
score of the colony, then Fx, y is reset to 0. Only significant
colonies are retained for further analysis. This method
can greatly reduce the storage requirement, while the
computational time remains O(mamb).

It should be noted that Mx, y is always ≥ 0 even between
nonhomologous blocks, while it is a prerequisite that, on
average, the similarity score must be less than zero for the
local DP algorithm to work properly [30]. Consequently,
we subtract a constant bias B from each Mx, y, so that

, i.e., the X-drop-off should finish after
passing through, on average, a unrelated cells (a = 5 by
default). If there are repetitive sequences that escaped
masking, BA may output them many times. Cgaln has an
option for suppressing such repetitious outputs. If there
are inconsistent colonies that overlap each other, the "-fc"
option filters all of them out except for the one with the
highest scored.
Tables of input sequences
BA uses four kinds of tables: a "seed table", an "index
table", and two "Poisson tables". The seed table stores the
number of occurrences of each seed ki in a genomic
sequence, whereas the index table stores a list of blocks
where each ki resides. The seeds occurring more than a
certain number of times (1024 by default) are omitted in
subsequent analyses as highly repetitive sequences. The
two Poisson tables respectively store the probabilities that
a fixed number of kis (p(xi)) and more than a fixed num-
ber of kis (p(≥ xi)) occur in a block, where the probabili-
ties are calculated based on the Poisson distribution. The
probabilities of occurrences exceeding an upper limit (3
by default) are ignored as repeats. It is sufficient to con-
struct these tables only once for each genomic sequence

and for each orientation. They are stored in binary files
and read into memory at run time. By using these tables,
seed matching on Ga can finish in O(La/4k) per k-mer in
Gb [31]. Thus, the similarity measure matrix, Mx, y (x = 1..
ma, y = 1.. mb), is computed in O(LaLb/4k).

Nucleotide-level alignment (NA)
Cgaln applies the nucleotide-level alignment (abbreviated
as NA hereafter) within the restricted areas that are com-
posed of block cells included in the local alignments of
BA. However, the area covered by the set of block cells
thus obtained is insufficient for NA, because the expected
results of NA may shift slightly away from the aligned
cells. Hence, we extend the area to be searched by NA to
the "envelope" of the block cells found in the first stage
(see Figure 2A).
Generating and chaining HSPs
At NA, Cgaln adopts a seed-finding approach with the
11-mer spaced seed. Figure 2B shows NA within a cell.
First, the seed matches are searched for by using an index
table again. This index table stores the list of positions at
the nucleotide level within the restricted region, while the
index table for BA stores genome-wide positions at the
block level. A group of matches are integrated into one
larger matching segment if the matches are closer to each
other than a given threshold (20 by default) with no gap
(i.e., if they lie on the same diagonal in the dot matrix).
We define such a gapless matching segment as an HSP.
Lonesome matches, individual matches that are not inte-
grated with any other matches, are filtered out. The score
of each HSP is defined as usual as the sum of scores
assigned to individual matches and mismatches included
in it. The masked bases are omitted. Third, the HSPs are
extended to both sides with no gap until the HSP score
drops below a threshold. Finally, the extended HSPs are
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chained by computing a maximal-scoring collinear subset
of them by a sparse-DP algorithm [32]. This step also
helps to eliminate noisy HSPs. Cgaln penalizes a pre-
defined value, penoverlap = max(overlap length - 10, 0) by
default, for partially inconsistent (overlapping in either
projection) HSP pairs. Cgaln may output some inconsis-
tent but high-scoring HSPs. If one wants "unique" out-
puts, e.g. to detect SNPs, the "-cs" option of Cgaln
increases this penalty to infinity and suppresses any out-
puts that are inconsistent with the highest-scoring align-
ment.
Iterative alignment within inter-HSP regions
Additionally, Cgaln aligns iteratively the regions between
neighboring HSPs to improve sensitivity. First, the HSPs
are extended with gaps toward both sides. We adopt DP
with X-drop-off for this gapped extension. The second
step varies with the length of the inter-HSP region. (1) If
an inter-HSP region is shorter than the lower-threshold
Tlow (50 bp by default), Cgaln uses standard global DP. (2)
Or else, if it is below a higher-threshold Thigh (twice the
block size by default), Cgaln applies the seed finding and
chaining approaches again with shorter-spaced seeds (7-
mer by default), and the interval regions are aligned by
global DP if the longer interval is less than the given
threshold Tdp (200 bp by default). (3) If the inter-HSP
region is longer than Thigh, that region is left unaligned.

At the iterative alignment step, Cgaln unmasks the
repetitive sequences because there might be homologous
regions in repetitive (masked) regions. By default, the DP
match/mismatch scores of Cgaln are set to be identical to
those of Blastz, derived by Chiaromonte et al. [33] with
the gap open and extension penalties of 400 and 30,
respectively.

Evaluation method
It is difficult to evaluate the accuracy of genomic align-
ment because of the lack of "true" alignment data [34]. In
this paper, we focused our attention on the orthologous
protein-coding genes and corresponding coding exons.
This approach has obvious drawbacks, as most genomic
alignment programs, including Cgaln, are designed to
find not only orthologs but also other homologs. More-
over, alignment of non-coding genes and intergenic
regions can be misinterpreted in our procedure. How-
ever, we expect that this kind of imprecision would not
much affect the evaluation of the relative performance of
various methods.

Figure 3 schematically illustrates a case of alignment
results. For a bacterial genome pair, we considered how
many homologous base pairs in the reference alignment
of orthologous gene pairs are correctly aligned by a given
method for calculating sensitivity and specificity. A true
positive (TP) indicates the number of genomically aligned

bases that coincide with those in the reference alignment,
a false negative (FN) indicates the number of bases in the
reference alignment not observed in the genomic align-
ment, and a false positive (FP) indicates the number of
genomically aligned bases outside the reference align-
ment. Thus, the sensitivity (Sn) and specificity (Sp) are
defined as:

For the example shown in Figure 3,

and

For a mammalian chromosomal pair, sensitivity is eval-
uated as before, in which homologous exons are consid-
ered homologous regions. However, it is dificult to
evaluate specificity because the biologically significant
regions that hold large amounts of the entire genome are
not clear. In this examination, we counted the total length
of generated HSPs ((b) + (c) + (e) + (f ) in Figure 3) as an
indicator of specificity, for if the total HSP length from
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one alignment program is considerably greater than that
from other programs with the same sensitivity, the pro-
gram may be judged to have low specificity. We also eval-
uated specificity with a human chromosome 20 - mouse
chromosome 2 pair. Human chromosome 20 is consid-
ered completely orthologous to mouse chromosome 2
[35], and the alignment result of human chromosome 20
and mouse chromosome 2 should coincide with that of
human chromosome 20 and the whole genomic sequence
of mouse. Therefore, specificity can be evaluated as

where len20-2 is the total length of HSPs for human
chromosome 20 vs. mouse chromosome 2, while len20-all
is that for human chromosome 20 vs. whole mouse
genome.

Preparation of data
We obtained the whole-genome sequences of Escherichia
coli CFT073 (Accession No. NC_004431.1, 5,231,428 bp),
E. coli K12 (NC_000913.2, 4,639,675 bp), and Salmonella
typhimurium (NC_003197.1, 4,857,432 bp) from NCBI
http://www.ncbi.nlm.nih.gov/. Before applying these
genomic sequences to alignment programs, we masked
repetitive sequences by MaskerAid [36] with default
parameters. We also prepared the whole-genome
sequences of human (build hg19) and mouse (build mm9)
from the UCSC Genome Browser http://
genome.ucsc.edu/. These human and mouse genome
sequences were already soft-masked, and we did not use
any masking tool. We also downloaded the latest version
(KOREF_20090224) of Korean individual (SJK) genomic
sequence [37] from the FTP site ftp://ftp.kobic.kr/pub/
KOBIC-KoreanGenome/.

Our examination requires reference data on the loca-
tions of homologous regions on the input sequences. To
obtain such a reference dataset, we first collected sets of
orthologous gene pairs. For bacterial genomes, we used
MBGD (Microbial Genome Database for Comparative
Analysis) [38] for this purpose. MBGD is a database for
comparative analysis of microbial genomes, and pos-
sesses data on orthologous gene clusters of bacteria.
While COG [39] is well known as an orthologous gene
database, we preferred MBGD because MBGD is better
than COG at clustering orthologous genes in more detail.
Data on orthologous gene pairs between human and
mouse were obtained from RefSeq http://
www.ncbi.nlm.nih.gov/RefSeq/ and Ensembl http://
www.ensembl.org/. Next, we aligned corresponding
cDNA sequences of all gene pairs by the standard local
DP algorithm [24]. Finally, we located each gene on the

reference genome. For bacterial pairs, the information on
location was obtained from GenBank. For mammalian
pairs, we mapped the cDNA sequences on the respective
genomic regions by Spaln [40,41]. From 10042 original
gene pairs, 9373 pairs (= 18746 genes) could be mapped
on the reference genomes for the homologous genomic
regions. As 97% (18252) cDNAs were mapped on the ref-
erence genomes with 100% identity and the other genes
were mapped with more than 95% identity, we regarded
these data as valid. By combining the cDNA alignment
and the mapping coordinates, we obtained the homolo-
gous exonic regions on the genomes.

Programs used for tests
To compare the performance of our algorithm with other
leading programs presently available, we developed the
Cgaln program that implements the above-mentioned
algorithm in C on a Linux platform. We report on com-
parisons of the accuracy and computational speed of
Cgaln with those of Blastz, AVID, and NUCmer. Blastz is
one of the principal pairwise alignment programs for
long sequences, and is used as an internal engine of sev-
eral multiple genomic sequence alignment programs,
such as MultiPipMaker [42], TBA, and MultiZ [43]. We
examined Blastz with two sets of parameter values; with
the default parameter set and with the tuned parameter
set (T = 2, C = 2). The option "T = 2" disregards transi-
tions as matches; this speeds up computation but slightly
reduces sensitivity. The option "C = 2" directs "chain and
extend", which helps to reduce false positives. AVID is
also a fast and accurate genomic alignment program, but
it is a global aligner and not suitable for the alignment of
genomes with large rearrangements. We applied AVID
only to bacterial genome pairs. NUCmer is a variant of
MUMmer 3.0. It clusters the matches of MUMmer 3.0
and tries to align the non-exact regions between the
matches by DP.

Although there are other genomic alignment tools,
such as CHAOS, LAGAN, SLAGAN, DIALIGN, GLASS,
and WABA, they are either too slow to execute or their
source codes are not available. All experiments were per-
formed on a 2.0 GHz Core2Quad (64-bit CPU) with 8 GB
memory.

Results
Parameter tuning
Preliminary examinations indicated that the performance
of Cgaln depends strongly on the outcome of BA, and
hence a proper choice of parameter values at this level is
essential, especially for distantly related genome pairs.
We tested Cgaln with various block sizes and k-mer sizes,
and found that, if appropriate threshold values for "signif-
icant" colonies Tcol are used, there is no remarkable differ-
ence in accuracy or computational time in a wide range of

Sp
len
len all

mam = −
−

20 2
20

(10)

http://www.ncbi.nlm.nih.gov/
http://genome.ucsc.edu/
http://genome.ucsc.edu/
ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/
ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.ensembl.org/
http://www.ensembl.org/


Nakato and Gotoh BMC Bioinformatics 2010, 11:224
http://www.biomedcentral.com/1471-2105/11/224

Page 8 of 14
block sizes. However, if a block is too large, computation
will be slow because a lot of spurious HSPs tend to be
generated within block cells. Thus, block sizes between
5,000 bp and 30,000 bp are proven to be almost equally
appropriate for both bacterial and mammalian genomes.
It is desirable to automatically estimate the optimal Tcol
value for a given set of block sizes, k-mer size, and overall
divergence between the sequences under comparison. In
this study, we first tuned Tcol for default block size and k-
mer size (expressed by Tcol-default), and then derived an
empirical rule applicable to other block sizes:

where rb is the ratio of the given block size to the default
block size.

For a given k-mer size, we use the relation:

where kdif f is the difference between the given k-mer
size and the default k-mer size. Although these empirical
rules work satisfactorily, a theoretically supported tuning
algorithm remains to be established. We set the default
value as follows: block size = 10000, Tcol-default = 3000, gap
penalty at BA d = Tcol-default/15. These parameters can be
changed by selecting various options.

Alignment of bacterial genomes
We first examined the performance of Cgaln in compari-
son with Blastz, AVID, and NUCmer for two sets of pair-
wise alignments of bacterial genomes: (E-E) E. coli
CFT073 vs. E. coli K12 (2531 gene pairs), and (E-S) E. coli
CFT073 vs. S. typhimurium (3385 gene pairs).

Table 1 and Table 2 summarize the results of the com-
parison (E-E) and the comparison (E-S), respectively. For
Cgaln, the time spent to make the four kinds of tables is
not included. It requires several seconds for a bacterial

genome and about 20 minutes for a mammalian whole
genome.

Blastz with the default parameters produced a lot of
spurious alignments, which resulted in high sensitivity
but low specificity. With tuned parameters, Blastz
improved the specificity and computational time but
decreased sensitivity. AVID, a global alignment tool,
shows high sensitivity and specificity in the intra-species
comparison (E-E). However, it cannot consider inversion
and is proven to be insensitive and not specific in inter-
species comparisons (E-S). Moreover, AVID consumes a
lot of memory, about 2.2 GB. NUCmer is fast and more
memory-efficient than Cgaln but is much less sensitive.
In (E-E), Nucmer could identify about 82% of all genes,
but the coverage of almost all genes was low (~50%), pos-
sibly due to the use of long seeds (20-mer), and so it is
applicable only to closely related sequence comparisons.
Table 1 and Table 2 show that Cgaln is the fastest and sec-
ond most memory-efficient among these programs, with
high accuracy. Compared with Blastz with tuned parame-
ters, Cgaln is twice as fast and more space-efficient, com-
parably sensitive, but less specific. This inferiority in
specificity is due to overalignment at BA. Cgaln with the
"-fc" option (see Methods) could improve specificity to a
level comparable to that of tuned Blastz. However, it is
not always better to use this option, as there is a trade-off
between sensitivity and specificity.

Alignment of mammalian chromosomes
We also compared the performance of Cgaln with that of
Blastz and that of NUCmer on two kinds of mammalian
homologous chromosome pairs: (H20-M2) human chro-
mosome 20 (63,025,520 bp) vs. mouse chromosome 2
(181,748,087 bp), and (X-X) human chromosome X
(155,270,560 bp) vs. mouse chromosome X (166,650,296
bp). The numbers of orthologous gene pairs on (H20-M2)
and (X-X) are 278 and 341, respectively.

The results are summarized in Table 3 and Table 4. We
applied Blastz to two types of input sequences: (i) intact
chromosomal sequences, and (ii) chromosomal
sequences split into chunks of 10 Mb with 10 Kb overlaps.
The third rows of Table 3 and Table 4 labeled with "*"

T T rb rbcol col default= +− *( * * ),
3

14
2 11

14
(11)

T Tcol col default
kdiff= − *( ) ,

11
14

(12)

Table 1: Comparison of performance with E. coli CFT073 -E. coli K12 pair.

length (bp) Sn (%) Sp (%) time (s) memory (MB)

Blastz (default) 5,643,656 97.4 44.4 72 348

Blastz (T = 2 C = 2) 4,035,271 95.3 60.0 22 346

AVID 4,044,527 94.7 59.3 147 2297

NUCmer 1,121,714 26.1 59.2 12 90

Cgaln (-X4000) 4,313,795 96.3 57.2 9 167

Comparison of the performance of Cgaln with other programs for E. coli CFT073 vs. E. coli K12. The length indicates the total length of 
generated HSPs. Sn and Sp indicate sensitivity and specificity, respectively. "-X4000" of Cgaln indicates that the threshold Tcol was set at 4000.
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show the results obtained with the split sequences. The
time for splitting and uniting is not included. Blastz with
the default parameters resulted in nearly the same accu-
racy in the cases of (i) and (ii) above. This is not surpris-
ing, because Blastz with the default parameters does not
chain HSPs. As in the case of bacterial genomes, the
results of Blastz with the default parameters were sensi-
tive but not specific, and the computation was slowest
among all of the programs and settings examined. The
low specificity (56.2%) and the large HSP length (espe-
cially in (X-X)) indicate that Blastz generates a lot of repe-
titious HSPs, although we used masked sequences. The
"C = 2" option improved the specificity of Blastz drasti-
cally, and the "T = 2" option reduced the computational
time with a slight decrease in sensitivity. However, when
applied to the intact sequence pair of chromosome X, the
tuned Blastz missed some long homologous regions
(shown in Figure 4A), which resulted in poor exon cover-
age (36.5%). With the split sequences, this deficit was not
observed (Figure 4B), while specificity declined because
filtering by the chaining process was not sufficient. In the
case of the chromosomal pair (H20-M2), such a big defi-
cit was not observed, possibly because of the high simi-
larity and the small number of rearrangements between
the two chromosomes. The consumed memory of Blastz
was large, especially for (X-X) (2.8 GB) when intact chro-

mosomes were examined, regardless of the choice of
options. NUCmer was as fast and memory-efficient as
Cgaln in examination (H20-M2), but consumed twice as
much memory as Cgaln in examination (X-X). Moreover,
NUCmer was shown not to be sensitive in the pairwise
alignment of mammalian chromosomes.

We examined Cgaln with two kinds of k-mer spaced
seed, 11-mer and 12-mer. Cgaln with 12-mer required
more memory than that with 11-mer, but much less than
Blastz. Cgaln performed better with the 12-mer spaced
seed than with the 11-mer. In fact, several genes were
missed with the 11-mer but identified with the 12-mer.
With the 11-mer, the number of occurrences of each seed
in a block often exceeds the proper range suitable for
scoring by Poisson distribution, which we consider the
main reason for the lower performance with the 11-mer.
It should be noted that with either k-mer, Cgaln does not
generate much noise like Blastz with default parameters,
nor does it cause a big deficit like Blastz with tuned
parameters for the intact chromosomal pair (X-X).

However, Cgaln was slightly less sensitive than Blastz
because the nucleotide-level coverage of gene pairs in the
former was slightly worse in the latter. Scrutinizing the
computational processes, we found that the differences in
gene coverage between Cgaln and Blastz originate mainly
when HSPs are extended with gaps. In fact, we confirmed

Table 2: Comparison of performance with E. coli CFT073 - S. typhimurium pair.

length (bp) Sn (%) Sp (%) time (s) memory (MB)

Blastz (default) 4,952,433 83.0 61.2 73 348

Blastz (T = 2 C = 2) 3,330,116 79.5 84.2 22 347

AVID 3,263,793 78.1 73.8 178 2365

NUCmer 219,651 4.9 69.7 27 90

Cgaln (-X4000) 3,456,219 78.7 81.0 11 167

Comparison of the performance of Cgaln with other programs for E. coli CFT073 vs. S. typhimurium. "-X4000" of Cgaln indicates the threshold 
Tcol was set at 4000.

Table 3: Comparison of performance with human chromosome 20 - mouse chromosome 2 pair.

length (bp) Sn (%) Spmam (%) time memory (GB)

Blastz (default) 18,598,895 85.9 57.5 66 m 40 s 1.6

Blastz (T = 2 C = 2) 16,353,601 85.1 95.5 9 m 45 s 1.6

Blastz* (T = 2 C = 2) 16,665,937 85.3 80.8 12 m 20 s 0.4

NUCmer 1,118,494 5.8 75.2 3 m 55 s 1.0

Cgaln (-X2500 k = 11) 13,964,626 79.2 92.3 2 m 14 s 0.8

Cgaln (-X2500 k = 12) 15,154,530 81.4 90.6 2 m 16 s 1.1

Performance of alignment programs examined on human chromosome 20 (chr20) vs. mouse chromosome 2 (chr2). The row of Blastz with 
the symbol "*" refers to the examination on split chromosomal sequences. The threshold Tcol was set to "-X2500". Spmam is evaluated as the 
ratio of the coverage with human chr20 - mouse chr2 to that with the human chr20 - whole-genome sequence of mouse.
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that the sensitivity of Cgaln was slightly improved when
the X-drop-off threshold for gapped extension of HSP or
the length-threshold for DP (Tdp) was augmented. The
slightly smaller total length of HSPs compared with those
of Blastz also indicated that Cgaln "underaligns" the
sequences. However, we question the significance of the
difference in coverage, because Blastz might "overalign"
sequences, as the X-drop-off parameter of Blastz is so
large that it may improve nominal sensitivity but may
align some non-homologous regions [44].

Application of Cgaln to human and mouse whole genomes
We also applied Cgaln to whole genomic sequences of
human and mouse to investigate how many homologous
genes Cgaln had caught. In this examination, we set a
threshold parameter of Tcol = 3000 and used the 12-mer

seed. As the average nucleotide identity levels vary con-
siderably among chromosomal pairs between human and
mouse, it might be preferable to change Tcol values
depending on the chromosome pairs. However, for sim-
plicity we used a fixed value in this examination. The
computation took 750 m with 1.8 GB of memory on a
desktop computer. Cgaln generated HSPs totaling
693,583,236 bp with 73.6% average nucleotide identities.
A total of 8897 gene pairs (95%) were identified, including
7229 pairs (77%) with coverage of more than 80% of their
entire exon lengths. The total coverage for all genes at the
nucleotide level was 70.2%. Dot plots are shown in Figure
5, and indicate that Cgaln can be conveniently used to
draw a general view of a homology map between mam-
malian whole genomes.

Table 4: Comparison of performance with human chromosome X - mouse chromosome X pair.

length (bp) Sn (%) time memory (GB)

Blastz (default) 41,649,203 58.9 117 m 03 s 2.8

Blastz (T = 2 C = 2) 21,094,947 36.5 15 m 21 s 2.8

Blastz* (T = 2 C = 2) 32,684,714 58.0 23 m 22 s 0.4

NUCmer 1,299,148 5.4 4 m 01 s 2.3

Cgaln (-X2500 k = 11) 25,675,191 54.4 5 m 56 s 0.9

Cgaln (-X2500 k = 12) 27,776,861 56.0 4 m 21 s 1.2

Performance of alignment programs examined on human chromosome X (chrX) vs. mouse chromosome X. The threshold Tcol was set to "-
X2500".

Figure 4 The alignment results of Blastz between human chromosome X and mouse chromosome X. The alignment results of Blastz with 
tuned parameters (C = 2 T = 2) between human chromosome X and mouse chromosome X are represented as dot plots. (A) Non-split sequences. (B) 
Split sequences. In (A), a homologous segment is lost upon chaining (dotted ellipse).
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Identification of human individual differences
Recently, Ahn et al. reported individual differences
between the human reference genome sequence (UCSC
build hg18) and a Korean individual genome (SJK)
sequence [37]. We applied Cgaln to these genomic
sequences to test its ability to identify individual differ-
ences. We used Tcol = 10000 and the 12-mer spaced seed.
We also used options "-fc" and "-cs" to filter out repetitive
outputs at both BA and NA. The results are summarized
in Table 5. As the table shows, the generated HSPs totaled
2,849,038,447 bp including a soft-masked region of
1,421,050,705 bp. The average nucleotide identity was
99.5%. Cgaln identified 3,385,085 SNPs, 98% of those
reported in [37] in which 1,702,430 (50%) SNPs were
found in masked regions. The SNPs not identified were
embedded in entirely masked regions that were omitted
in BA. Cgaln also identified 5,932,816 mismatches that
were not reported in [37]. Most of them are derived from
Ns in the SJK sequence. The others might be derived
from the difference between our alignment and that of
Ahn et al.

Discussion
With the dramatic increase in available genomic
sequence data, comparative studies using these data are
getting wider application, from identification of individ-
ual differences in a population to reconstruction of the
long-range evolutionary history of genome organizations.
Such applications are becoming more and more demand-
ing, in both speed and accuracy, for computational tools
that compare whole genomic sequences. Our primary
aim in designing Cgaln was to develop an alignment pro-
gram that can handle large genomic sequences directly
on a standalone computer so that it is handy and useful
for a wide range of researchers. Our results show that
Cgaln is very effective for comparing large genomes,
especially of intact chromosomal sequences. Cgaln is sev-
eral times faster and more memory-efficient than any
presently available programs for whole genome align-
ment; it requires less than 13 hours and 2 GB of memory
to align a pair of typical mammalian whole genomes in a
single run.

Figure 5 The result of whole-genome alignment between a human-mouse genome pair. The result of whole-genome alignment between hu-
man and mouse at the block level. The horizontal and vertical lines indicate the delimiters between chromosomes.
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The main feature that distinguishes Cgaln from similar
tools is a coarse-grained strategy. This two-step proce-
dure helps to restrict the regions that must be aligned at
the nucleotide level; such restriction can drastically
reduce the computational time and memory for genomic
alignment. While there are several alignment algorithms
that adopt preprocessing before detailed alignment to
accelerate computation [45,46], the sequences subjected
to these algorithms are confined to small genomic regions
with high sequence identity. Our algorithm is unique in
that it aims at alignment on a much larger scale of more
distantly related sequences than other algorithms. More-
over, Cgaln can identify large-scale genomic rearrange-
ments such as inversions, translocations, and
duplications at BA. This feature reduces noisy outputs
without missing true homologous blocks, while the
detected homologous regions can be globally aligned by
NA. If one wants simply to take a global view of homol-
ogy between two genomes, e.g., to infer gross evolution-
ary events that occurred after their speciation, it is
enough to output the BA results obtained at the first
stage, which requires much less time than NA.

One issue with the coarse-grained approach is to what
extent sequence divergence can be tolerated to achieve a
sufficiently sensitive alignment. In this report, we have
shown that Cgaln is nearly as sensitive as the best existing
programs for the alignment of mammalian genomes. At
this moment, we are not confident that the proposed
approach is also useful for the alignment of, say, mamma-
lian vs. avian or mammalian vs. fish genomes. However,
the problem of insufficient sensitivity could be resolved
in several ways, such as by the use of multiple spaced
seeds [47], deeper recursive HSP searches, and finding
initial seed matches at the translated sequence level
rather than at the nucleotide sequence level.

Another issue with the current version of Cgaln is its
ability to detect small-scale rearrangements, especially
inversions, when it is applied to intra-species genome
comparison. Presently, Cgaln can normally detect only
inversions larger than the block size (10 Kb by default). To
discover smaller rearrangements, we need some modifi-
cations. Although the exact solution is a computationally

hard problem, we have developed a heuristic method that
considers inversions as small as a few hundred bases at
the recursive phase applied to inter-HSP regions. Prelimi-
nary examination of this modified version of Cgaln on the
reference human genome and a Korean individual's
genome failed to find additional inversions, including
those suggested by [37], some of which were confirmed to
be palindromes rather than true inversions. Obviously, it
is premature to draw any definitive conclusions from a
single example. However, we consider that whole genome
alignment may play an essential role in controlling the
quality of the outcomes of high-throughput sequencing
and analyses.

Conclusion
Currently, Cgaln is the only program that can align a pair
of whole intact genomic sequences of mammals in a sin-
gle job. Although how to evaluate the accuracy of
genomic alignment remains an unsolved problem, our
examinations indicate that Cgaln is almost as sensitive
and accurate as the best program available today. We
believe that Cgaln provides a novel viewpoint for reduc-
ing computational complexity, and contributes to other
fields of sequence analysis as well as to genomic align-
ment.

Cgaln needs very little time for BA (about 2 minutes to
compare typical mammalian chromosomes), suggesting
that Cgaln is capable of extending fast multiple genomic
alignment. To this end, we are developing a progressive
algorithm that can properly treat rearrangements such as
inversions.

Authors' contributions
RN wrote the program, carried out the experiments, and drafted the manu-
script. OG provided the initial conception of Cgaln, suggested ways to improve
the code, and helped to improve the manuscript. Both authors read and
approved the final manuscript.

Acknowledgements
The authors would like to thank Drs. T. Yada, N. Ichinose, and S. Park for valuable 
discussions and helpful comments. This work was supported in part by a 
Grant-in-Aid for Scientific Research (B) and that on Priority Areas "Comparative 
Genomics" from the Ministry of Education, Culture, Sports, Science, and Tech-
nology of Japan.

Table 5: Results of human-human comparison.

strand length (bp) length
masked (bp)

pi (%) SNP SNP masked mismatch

Forward 2,799,061,317 1,390,502,477 99.6 3,383,112 (98%) 1,704,098 (50%) 3,295,174

Reverse 49,977,130 30,548,228 94.3 35,368 (1.0%) 14,900 (0.4%) 2,691,595

Both 2,849,038,447 1,421,050,705 99.5 3,385,085 (98%) 1,702,573 (50%) 5,932,816

Result of Cgaln with -fc -cs options. "pi" indicates the percent identity of HSPs in total. "SNP" indicates the number of identified SNPs reported 
in [37], while "mismatch" indicates the number of nucleotide mismatches not reported.
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