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Multiple sclerosis (MS) is one of the most common autoimmune diseases which is
commonly diagnosed and monitored using magnetic resonance imaging (MRI) with a
combination of clinical manifestations. The purpose of this review is to highlight the main
applications of Machine Learning (ML) models and their performance in the MS field using
MRI. We reviewed the articles of the last decade and grouped them based on the
applications of ML in MS using MRI data into four categories: 1) Automated diagnosis of
MS, 2) Prediction of MS disease progression, 3) Differentiation of MS stages, 4)
Differentiation of MS from similar disorders.

Keywords: artificial intelligence, machine learning, multiple sclerosis, disability prediction, magnetic resonance
imaging (MRI)
INTRODUCTION

Multiple sclerosis (MS) is one of the main causes of acquired neurologic disability in young adults.
Its prevalence varies from 5 to 300 per 100 000 (1) representing 2 to 3 million people globally (2).
Disease evolution is marked by unpredictable flares of autoimmune and inflammatory central
nervous system demyelination and axonal transection (3). According to the disease course, different
MS stages exist. Relapsing Remitting MS (RRMS) is the most common form of MS. More than 80%
will experience RRMS with neurological exacerbations separated by complete or incomplete
remission (4). Secondary progressive MS (SPMS) develops from RRMS, followed by gradual
neurologic deterioration not associated with acute attacks (5). Few patients will evolve into a
Primary-Progressive MS (PPMS) or Progressive-Relapsing MS (PRMS) with gradual deterioration
without recovery (6). Clinical presentation and detection of damage to the nervous system could
help to study multiple sclerosis (MS). As MS early stage can be underdiagnosed due to non-specific
clinical presentation, MRI (Magnetic Resonance Imaging) is crucial to diagnose, estimate the disease
stage and predict the outcome (7). Brain lesions in MR images are an efficient imaging biomarker for
multiple sclerosis diagnosis. Since detection of these lesions is laborious and time consuming and
org August 2021 | Volume 12 | Article 7005821
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depends on radiologist experience, image processing methods
based on object classification using ML learning techniques are
used to apply automatic segmentation on MR images.
METHOD

Search Strategy
We conducted an electronic search on PubMed in March 2021
for the studies published from January 1st, 2011 to March 31st,
2021. The articles were searched with several appropriate
keywords in combination with the Boolean operators:

Multiple sclerosis AND [ML Learning OR Artificial
intelligence OR Deep learning OR Neural network] AND
Magnetic resonance.

Inclusion Criteria
We selected original publications written in English.

Exclusion Criteria
Duplicate studies, reviews, comparative publications and case
reports were excluded. Any studies not using methods of ML
learning were also excluded.
Frontiers in Immunology | www.frontiersin.org 2
In total, 106 studies were obtained that all used ML Learning
models to investigate MS disease through MR images. From
those, 52 were omitted according to the exclusion criteria.
RESULTS

After the review process of the 54 publications, we sectioned the
studies into the following four categories: 1) Automated
diagnosis of MS, 2) Prediction of disease progression, 3)
Differentiation of MS stages, 4) Differentiation of MS disease
from similar disorders.

Figure 1 shows the steps of applying ML Learning classifiers
on MRI images to study MS disease for the four different tasks.

We observed that the input MRI images contained different
types of data including images of 1) MS patients and a healthy
control group, 2) MS patients and a set of images that were
segmented by an expert and considered as ground truth, 3)
Patients with different stages of MS, 4) patients with MS and
other diseases, very similar to MS. The images then were
analyzed to extract the most important biomarkers such as
whole brain atrophy biomarkers, gray matter atrophy
biomarkers, spinal cord atrophy biomarkers, etc. The detection
process of these lesions was carried out by using different image
FIGURE 1 | Flowchart showing the process of using ML Learning to study MS through MRI images.
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processing methods that are based on thresholds or various
models of Deep Learning (DL). Afterwards a classifier was
applied on the extracted features of the previous step to
classify the MRI images into several groups and reach the aim
of the study that could be one or two of the four categories: 1)
Automated diagnosis of MS, 2) Prediction of MS disease
progression, 3) Differentiation of MS stages, 4) Differentiation
of MS from similar disorders. The classifier could be a typical ML
learning model (i.e. Support Vector Machine, Random Forest,
etc.) or the layer in a DL model.

The performance of both segmentation and classification
steps were also quantified with various evaluation metrics. In
this review, we use Accuracy (ACC), Sensitivity, Dice Similarity
Coefficient (DSC), and Area Under the Curve (AUC), Root Mean
Square Error (RMSE), to present performance of the models.
These metrics are derived from the confusion matrix which is a
two by two table formed by calculating the True Positive
classified objects (TP), True Negative classified objects (TN),
False Positive classified objects (FP), and False Negative classified
objects (FN).

ACC =
TP + TN

TP + TN + FN + FP
(1)

Sensitivity =
TP

TP + FN
(2)

DSC =
2TP

2TP + FN + FP
(3)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
SN
i=1(ŷ i − yi)2

r
(4)

Where N = total number of values, ŷ=predicted values, y=
actual values.

AUC also measures the entire two-dimensional area
underneath the entire ROC curve which plots two parameters
of True Positive Rate and False Positive Rate (FPR).

In Table 1 the summary information of the studies is
described, including the quantification of the publications, the
employed ML learning models and their best performances, the
MRI sequences used as input images for feature extraction and
the number of patients in the studies.

Most of the articles studied here, have focused on automated
diagnosis of MS whereas only two publications have used ML
models to differentiate MRI images of MS stages. Three different
strategies were used in the studies for applying ML learning
models on the images. In the first strategy the lesions in the
images were segmented using image processing methods, then
the extracted texture features were fed to a typical ML learning
model to classify the images. The second strategy used a deep
Neural Network for both feature extraction from the MR images
and classification of the images based on the obtained features.
We also found two articles that used a combination of the first
two strategies. Specifically, the first layers of a DL model
extracted the features from the images, while a standard ML
Frontiers in Immunology | www.frontiersin.org 3
learning classifier was applied on the feature map obtained from
the DL model.

Since the most widely used models are Neural Networks, we
divided the different types of neural network into several groups
to better apprehend their performances: Deep Neural Networks
without pre-training, Deep Neural Networks with pre-training
(TL method), U-net and Other NNs.
Automated Diagnosis of MS
According to the McDonald and CSF criteria, the diagnosis
process of MS is based on clinical presentation as well as brain
and spinal cord MRI to study the dissemination of central
nervous system (CNS) lesions in time and space (55). In recent
years, a range of studies have proposed ML learning methods for
automatic detection of central nervous system lesions from MRI
on patients with MS. One of the best results for detecting T1-w
and T2-w MS lesions we found in the articles, was obtained from
a CNN with an accuracy of 98.8%. This model was proposed by
Rocca et al. (18) and is based on four three-dimensional
convolutional layers, followed by a fully dense layer after the
feature extraction. It was trained with 178 scans from
268 patients.

The common problem of using CNNs is that tuning a huge
number of parameters and initialize the weights are both very
complex processes. In addition, such networks require a large
amount of data to generalize and perform well. TL can solve
these problems by employing pre-trained models, trained on a
large dataset. Therefore some recent studies tried to improve DL
model performance using this method. For instance Eitel et al.
(8) investigated the performance of 3D convolutional neural
networks (CNNs) and layer-wise relevance propagation (LRP)
for the detection of brain lesions in MRI images of MS patients
(n = 76) and healthy controls (n=71). They used a network that
was already pre-trained on a MRI dataset from 921 patients with
Alzheimer’s disease. Subsequently the pre-trained model was
applied on the MS data to classify them into two groups, disease
and healthy. The proposed models reached an accuracy level of
87.04% and an AUC of 0.96.

Another common DL architecture in MS image analysis is the
U-net, which was developed by Ronneberger et al. (9). This
model contains a fully convolutional neural network (FCNN)
that includes contraction and expanding paths to perform
segmentation. We found six studies that report high
performance levels and applied this model on different
sequences of MRI, as shown in the Table 1.

Furthermore, the most common typical ML model used in all
studies is SVM. For instance, Zurita et al. (56) extracted
fractional anisotropy maps, structural and functional
connectivity from MR images as biomarkers to diagnose
patients with relapsing-remitting multiple sclerosis and healthy
volunteers. Then they applied SVM on the extracted features,
which was able to distinguish the two groups of patients and the
healthy controls with a high level of accuracy (89% ± 2%).
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TABLE 1 | 54 publications were grouped into 4 categories based on the application of ML Learning in MS disease.
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Prediction of MS Disease Progression
One of the challenges in MS evaluation and the prediction of its
stages is that the symptoms vary widely and as the disease
worsens, new lesions become less frequent (57). In addition,
the MS course in patients, even from the early stages, is
characterized by a slow progression of disabilities independent
of relapses (58). Automatic segmentation of MS lesions,
including gadolinium-enhancing, new T2 or enlarging T2, are
essential biomarkers for the progression of the disease as we as
the treatment options and allow to explore the morphological
changes in relation to clinical disease burden (48, 59).

Our review shows that three studies in this section applied
ML to predict the progression of MS by measuring Expanded
Disability Status Scale (EDSS) in the first years of disease
evolution (38, 46, 49). Two of them used CNN for feature
extraction and image classification, and the third one applied
SVM for MR image classification based on the extracted features
from the images. And also as shown in Table 1, SVM and
Random Forests are the most commonly used models for
studying the prognosis of MS patients, while both provide a
high level of performance.

One of the articles in this direction assessed the influence of
lesion volumes on theCNNdetection performance.Coronado et al.
(19) applied this model on five multispectral MRI images with
different volumes of gadolinium-enhancing. They obtained the best
performance by utilizing as input all five multispectral image sets,
including FLAIR, T2, PD, and pre- and post-contrast T1, as well as
when the enhancement size of the lesions was increased.

Youngjin Yoo et al. (41) improved the performance of their
CNN model in predicting the lesions progression by using a TL
method. At first they applied an unsupervised 3D convolutional
deep belief network (DBN) as a pre-trainedmodel, and then aCNN
was used to extract latent MS lesion patterns. They also compared
their model against the performance of Random Forests. Their
CNNmodel resulted in an average accuracy of 75.0% in predicting
the clinical conversion to definite MS within two years, while the
Random Forests yielded an accuracy of 67.9%.

Differentiation of MS Stages
In our review, we found two studies that differentiated the stages
of MS patients using biomarkers such as lesion location and
metabolic features and SVM classifier. Specifically, Ion-
Mărgineanu et al. (50) combined lesion loads (total amount of
lesion area) with clinical data magnetic resonance metabolic
features to classify 87 MS patients into four groups based on the
progression stages. They applied two different classification
models on the extracted features: LDA and SVM with a
Gaussian kernel (SVM-rbf). The highest classification (F1-
score: 87%) was obtained for RRMS and SPMS after training
the LDA and SVM-rbf models on clinical, lesion loads and
metabolic features.

Differentiation of MS Disease From
Similar Disorders
Another important step in the diagnosis of MS is the
differentiation of the disease from other similar disorders,
since, despite their similarities, the treatments are greatly
T
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different. In our search we retrieved three publications related to
this objective.

Two of them used different biomarkers and ML learning
classifiers to distinguish MS from Neuromyelitis Optical
Spectrum Disorders (NMOSD) (53, 54). The first article
employed a CNN for lesion segmentation of MRI images on 213
patients with MS and 125 patients with NMOSD. This model
yielded an accuracy of 71.1% in differentiating NMOSD from MS
images. The second study utilized TL to pre-train two different
architectures of CNN model on the ImageNet dataset (60); one
model with 34 layers and one with 18 layers. The achieved
accuracies of the two models were 0.75 and 0.725, respectively. In
the last study Mato-Abad et al. (52) exploited a Naive Bayes
classifier in order to distinguish two types of MS patients:
Radiologically Isolated Syndrome (RIS) and CIS, and obtained an
accuracy of 0.765, based on the morphometric measurements in
MRI images.
CONCLUSION

In this review we differentiated the applications of ML learning in
the field of MS disease. The results show that ML can reliably
support the efforts in the research field of MS disease. However, it
is not possible to directly compare all the methods proposed in
the related literature, since most of the works use different
performance metrics to evaluate their results while the lesion
volumes that were segmented in the MR images vary greatly
among the studies. Nevertheless, in all ML applications, one of
Frontiers in Immunology | www.frontiersin.org 6
the most widely used models are the deep neural networks, a fact
that indicates the significance of these models in the field of MS
studies over the last decade. Feature extraction and selection
fromMR images by an expert does not allow for finding new and
hidden information in the data. DL models could help to
overcome this issue by extracting useful information directly
from raw image data. On the other hand, the utilization of TL
methods during the training process of DL models, could help to
increase their performance. This approach has shown notable
performance, especially in medical research where usually
limited image datasets are available while image annotation by
an expert is a rather tedious task.
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