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A B S T R A C T   

As the COVID-19 pandemic impacts global populations, computed tomography (CT) lung imaging is being used 
in many countries to help manage patient care as well as to rapidly identify potentially useful quantitative 
COVID-19 CT imaging biomarkers. Quantitative COVID-19 CT imaging applications, typically based on computer 
vision modeling and artificial intelligence algorithms, include the potential for better methods to assess COVID- 
19 extent and severity, assist with differential diagnosis of COVID-19 versus other respiratory conditions, and 
predict disease trajectory. To help accelerate the development of robust quantitative imaging algorithms and 
tools, it is critical that CT imaging is obtained following best practices of the quantitative lung CT imaging 
community. Toward this end, the Radiological Society of North America’s (RSNA) Quantitative Imaging Bio
markers Alliance (QIBA) CT Lung Density Profile Committee and CT Small Lung Nodule Profile Committee 
developed a set of best practices to guide clinical sites using quantitative imaging solutions and to accelerate the 
international development of quantitative CT algorithms for COVID-19. This guidance document provides 
quantitative CT lung imaging recommendations for COVID-19 CT imaging, including recommended CT image 
acquisition settings for contemporary CT scanners. Additional best practice guidance is provided on scientific 
publication reporting of quantitative CT imaging methods and the importance of contributing COVID-19 CT 
imaging datasets to open science research databases.   
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1. Introduction 

The world has experienced three coronavirus outbreaks in the past 
two decades, with a prospect for increasing frequency and virulence in 
the future related to growing population densities, increased urbaniza
tion, and expansion of industrial activity. At the time of this writing, the 
World Health Organization reported over 98 million confirmed COVID- 
19 cases and over 2 million confirmed deaths worldwide.1 The growing 
toll in human life and economic costs of this pandemic demand the full 
attention of the clinical and research communities. While therapies for 
COVID-19 have been made available they are not fully curative, and 
most of the world population is not immune to the virus, thus research 
into more effective disease management methods, including the optimal 
application of CT imaging, remains a high priority. 

Real-time reverse transcriptase–polymerase chain reaction (RT-PCR) 
of samples from nasopharyngeal swabs represents the current standard 
of care.2,3 However, poor sensitivity and specificity of RT-PCR and CXR 
at the early stages of COVID-19, and especially in the setting of limited 
availability or equivocal results,4 reduce effectiveness to identify and 
isolate COVID-19 disease early in patient management. In some settings, 
CT imaging has been deployed as an alternative diagnostic approach, 
and in some countries continues to be standard of care.5 Several recent 
studies have reported a higher diagnostic sensitivity for CT compared 
with RT-PCR6–8 and CXR9; however, use of CT has been discouraged for 
general population COVID-19 diagnosis in many countries because of 
concerns that include low specificity, limited scanner availability, and 
the potential for contamination of the scanner environment.10–12 

Nevertheless, investigations into quantitative CT for COVID-19 continue 
to show promise and the applicability of CT in COVID-19 diagnosis re
mains an active area of research. 

Chest CT imaging also represents a potentially important tool in the 
management of COVID-19 patients. Chest CT has several characteristic 
findings, particularly in the acute phase of COVID-19, including ground- 
glass opacities with a predominantly peripheral and basilar distribution; 
however, there can be uncommon findings associated, such as pleural 
effusions or lymphadenopathy, as well as other superimposed condi
tions, such as other pneumonias or edema. Despite this complexity, the 
CT image features of COVID-19 are sometimes distinguishable from 
other types of viral pneumonia.5,13,14 In the early stages of COVID-19, 
the predominant CT finding is focal rounded ground-glass lesions in 
the posterior lower lungs, with increasing consolidation observed during 
disease progression.15–19 Such imaging features of lung infection pro
gression on CT scans may be prognostic for more severe acute disease.19 

Visual scoring methods for detecting and assessing the severity of 
COVID-19 have been developed20–22 and there are now standard lexi
cons for how CT findings should be reported23,24 and also descriptions of 
the change in CT findings over time.23 

Although radiologist visual scoring systems have been developed,20 

these only provide gross estimations of the extent of disease. More 
valuable clinical information may be elucidated through more advanced 
CT image processing to more objectively characterize disease status. For 
example, several promising deep learning-based25 diagnostic classifiers 
have emerged using data from China26–31 where experience with the 
disease began in December 2019. Chest CT was utilized more frequently 
in China, including with less severe cases, as they were first studying this 
disease.21,23 In addition, several studies have reported change in CT 
findings with COVID-19 over time17,32,33 including one study suggesting 
that quantitative CT may contribute to prognosis by predicting future 
rate of disease progression.34 With regard to pulmonary vasculature, a 
recent study reported a measurable impact of vasoconstriction of the 
small vessels leading to vasodilation of medium-sized vessels in COVID- 
19 patients. Quantification of these changes is measurable on CT and 
may be useful to guide specific targeted drug interventions.13,18 

Assessing this type of measurable change in small vessel diameter would 
require precise, consistent performance with the CT imaging process. 
Recently, the use of quantitative CT as an adjunct to RT-PCR in the 

diagnosis of COVID-19 has been shown to improve early detection.35 As 
these promising quantitative CT applications are investigated, it is 
important to recognize that the ability of quantitative image analysis 
and/or machine learning techniques to serve as accurate diagnostic and/ 
or prognostic tools for COVID-19 assessment will depend on the quality 
and consistency of the CT imaging data in conjunction with curation of 
accurate information on patient presentation, timing of disease pro
gression, and patient outcome. 

To achieve consistent CT image-based measurements of early disease 
changes to guide clinical management, the importance of standardiza
tion of scanning protocols for these indications cannot be overstated. 
Reducing variability in dose, pitch, and scanning time in addition to 
minimizing respiratory motion will improve the diagnostic accuracy, 
predictability, and utilization of CT scanning in this disease. Scanning 
protocols will have to meet regional standards of quality and will need to 
incorporate additional considerations to account for the peculiar limi
tations encountered in patients with respiratory symptoms. Challenging 
respiratory symptoms such as shortness of breath are frequently present 
in patients referred for imaging during the COVID-19 pandemic. Proper 
choice of CT image acquisition protocol can minimize motion artifacts 
while maintaining high image quality in a patient who is experiencing a 
rapid breathing rate. Such high image quality will support improved 
image interpretation and precision of computer measurement of image 
features. 

Ideally, CT datasets should be composed of images with consistent 
quality to allow for the best quantitative analyses of the diffuse paren
chymal abnormalities that frequently overlap in COVID-19 pneumonia. 
Radiological features frequently observed with COVID-19 pneumonias 
include ground-glass opacities and different types of consolidation (e.g., 
active inflammation, dependent atelectasis), either as isolated findings 
or as mixed components with variable overlap among them. Image 
acquisition protocols should aim to achieve consistent morphological 
display and quantitative data throughout the density range of these 
findings. 

In this document, the QIBA CT Lung Density and CT Small Lung 
Nodule Profile subcommittees36 suggest best practice methods and CT 
image acquisition parameters to support optimal ongoing and future 
quantitative analysis of COVID-19. We are making provisional recom
mendations to facilitate the collection of CT images with sufficient 
quality to enable development and validation of quantitative imaging 
and machine learning methods for this new lung disease. These rec
ommendations, in part, are designed to mitigate motion artifacts, 
establish minimum spatial resolution standards (for example, for slice 
thickness), and disseminate preferred reconstruction algorithms. The 
intent of this guidance document is to standardize quantitative imaging 
protocols in the clinical care setting, to improve the collection of im
aging data for quantitative imaging research studies, and to support 
development of more precise imaging biomarkers to diagnose and pro
vide quantitative outcome measures to assess new therapies. 

2. Imaging guidance 

Whether applying quantitative CT imaging algorithms in a clinical 
care setting or developing new quantitative algorithms in a research 
setting, the choice of image acquisition and reconstruction parameters 
can have a large impact on the resulting measurements. This guidance 
suggests parameter selection for COVID-19 CT imaging algorithms 
designed to collect high-quality imaging data in the clinical care setting 
and help clinical imaging sites reliably use quantitative CT imaging re
sults. In emergency situations as reported in the early stages of the 
COVID-19 pandemic, conforming with optimal guidelines may not be 
possible; however, clinical care personnel should be aware that higher 
levels of variability and error are likely to be present when lower quality 
CT images are used for quantitative purposes. Some deviations from the 
recommended protocols can yield images unsuitable for quantitative 
analysis. While the recommendations have not yet been rigorously 
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clinically validated, they are based on large numbers of CT lung imaging 
studies and CT lung imaging consensus over the last decade and repre
sent the most reliable guidance information available. 

A review of initial COVID-19 quantitative CT imaging publications 
and areas of active research indicates three main settings for which 
quantitative algorithms are currently being developed:  

1) Assessment of extent and severity of COVID-19 radiological features.  
2) Differential diagnosis of COVID-19 versus other respiratory 

conditions.  
3) Prediction of disease course trajectory. 

Algorithms that perform these analyses must successfully identify the 
lung boundaries in a full anatomic extent lung CT scan and correctly 
classify, delineate, and evaluate properties of lung regions that 
demonstrate manifestations of COVID-19. This will allow for the 
extraction of quantitative information such as the volume (percent) of 
affected lung lobes impacted by consolidation or more diffuse inflam
mation (presenting as ground glass or ground glass – reticular opacities). 
In addition, regions of hyperlucency may provide an indication of micro- 
emboli, hypoxic vasoconstriction, or hyper-inflation associated with 
peripheral airway inflammation. Assessment of subtle lung density 
changes, are especially relevant as they may indicate early disease. 
While peripheral small airways involvement has been assessed on 
expiratory images as air-trapping or through matching of full- 
inspiratory to full-expiratory scans,37,38 in the setting of COVID-19, 
expiratory scans are not currently being advocated. Radiologic 
changes due to COVID-19 may be present concurrent with many other 
comorbid conditions with overlapping radiological characteristics 
including asthma, COPD, interstitial lung disease (ILD), pulmonary hy
pertension, and lung cancer. Because of this, it is important that quan
titative algorithms operate on CT images with accurate Hounsfield Unit 
(HU) values, good low-contrast detectability performance, and high 
three-dimensional resolution so that subtle features specifically associ
ated with COVID-19 can be distinguished from features associated with 
other diseases. 

For meaningful quantification, it is very important that patients be 
coached to full inspiration (total lung capacity) and remain apneic and 
immobile during the time of scanning (or mechanical ventilation be 
temporarily suspended). If an expiratory scan is necessary, it is impor
tant to coach the patient to full expiration (residual volume). Density- 
based quantitative CT requires that the scan be performed without 
contrast agent. If additional scanning requires contrast agent, the scan 
for quantitative assessment of the lung parenchyma should be per
formed first so that there is no contrast agent circulating at the time of 
imaging. 

The following guidance on CT image acquisition parameters has 
been shown to achieve high-quality results for quantitative CT lung 
imaging algorithms including those for measuring lung density39,40 and 
volumetric size changes for small sub-centimeter lung nodules.41–44 

Additional guidance on CT quantitative lung imaging protocols are 
available publicly on the QIBA wiki pages (http://qibawiki.rsna.org/in 
dex.php/Lung_Density_Biomarker_Ctte and http://qibawiki.rsna. 
org/index.php/CT_Small_Lung_Nodule_Biomarker_Ctte). 

2.1. Lung inflation 

Segmentation and classification of structures (e.g., nodules) and/or 
tissue types (e.g., pneumonia, emphysema) is dependent on the HU 
distributions within the lungs, which in turn are affected by the amount 
of air in the lungs. Because of this, controlling for lung inflation volume 
is critical for achieving meaningful and repeatable quantification. Spe
cifically, scanning at full inspiration should be encouraged. A coaching 
protocol that has worked well in quantitative CT settings is the 
following39:  

● “Take a deep breath in” (watch the chest to ensure deep inspiration is 
achieved)  

● “Let it out” (watch chest to ensure exhale is achieved)  
● “Take a deep breath in” (watch the chest to ensure exhale is achieved 

and timing of breath cycle for the patient)  
● “Let it out”  
● “Now breathe all the way IN, IN, IN…” (watch to confirm timing and 

inhalation is fully achieved and chest is still)  
● “Keep holding your breath – DO NOT BREATHE”  
● Visually confirm inspiratory breath-hold by watching patient’s chest 

and commence CT scan.  
● “Breathe and Relax.” 

2.2. Contrast agent 

The presence of contrast agent introduces a temporally and spatially 
varying shift in the HU distribution of the lungs, which can adversely 
affect segmentation, texture analysis, tissue classification, and mea
surement performance. However, use of intravenous contrast agent is 
often warranted, such as for CT angiography and many abdominopelvic 
imaging indications, after appropriate consideration of risks and bene
fits. If a contrast agent is prescribed, and if quantification is desired, then 
we recommend performing a non-contrast agent scan before the 
contrast-agent scan.45 Care should be taken when deciding to administer 
contrast agent, as renal toxicity is a concern for many high-risk COVID- 
19 patients. 

2.3. Pitch 

For patient motion considerations, breath-hold time should ideally 
be minimized to <5 s to improve patient adherence and decrease the 
likelihood of motion artifacts in dyspneic patients undergoing CT for 
suspected or confirmed COVID-19 pneumonia. Depending on scanner 
architecture, rotation time can be reduced to 0.25 s/cycle for 64-detec
tor scanners or greater, or typically 0.4 to 0.5 s/cycle for 16 or fewer 
detectors. A pitch of approximately 1 is recommended for 64-detector 
scanners or greater to minimize helical artifact, whereas a pitch of 1.3 
or greater is necessary for conventional single-source scanners with 16 
or fewer detectors to achieve sufficiently short scan times. Dual or 
multiple-source scanners will allow the fastest acquisition time with 
pitch up to 3.4, but substantially lower pitches (<2) are recommended to 
reduce helical artifact assuming a <5 s scan time can be achieved. 

2.4. Table feed direction 

Setting the table feed direction to caudo-cranial can reduce the 
likelihood and/or magnitude of motion artifacts due to respiration. Se
lective timing of anatomic coverage of the lung regions, which exhibit a 
different range of motion over the z-axis, is indeed paramount. If high 
respiratory motion is expected, a CT acquisition starting near the loca
tion of greatest motion is recommended. Lung bases are characterized by 
substantial motion during the respiratory cycle, which is quite unpre
dictable in the case of COVID-19 pneumonia. On the other hand, z-axis 
motion is extremely limited in the lung apices throughout the respira
tory cycle, and minor motion artifacts in this region might have a less 
detrimental effect on the quality of data for quantitative assessment. 
Therefore, the lung bases should be scanned first with the aim of 
acquiring this region within the first second of breath hold. This 
approach might be particularly helpful when using scanners with fewer 
detector rows. 

2.5. Collimation 

The use of a large collimation setting has the potential to cause 
variability in reconstructed HU values. To reduce this, it is recom
mended to restrict field collimation to <80 mm. 
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2.6. Slice thickness and spacing 

Slice thickness has a large impact on the three-dimensional resolu
tion within a CT scan. It is therefore recommended to use ≤1.25-mm CT 
slice thickness for COVID-19 imaging studies. To avoid gaps in collected 
image data, slice spacing (reconstruction interval) should be no greater 
than slice thickness to prevent slice gaps and not less than half slice 
thickness to mitigate axial interpolation error. 

2.7. Radiation dose 

CT imaging is being used and investigated for a range of quantitative 
COVID-19 applications including measurement of baseline disease 
extent, where standard chest CT dose is recommended, and measure
ment of disease extent to assess resolution by conducting follow-up CT 
scans, where lower doses may be warranted. Each CT application sce
nario will require different levels of emphasis on lowering radiation 
dose. In this guidance we provide recommendations for lowering radi
ation dose when needed, recognizing that standard dose CT chest im
aging is predominantly performed. 

Given that one of the major findings on CT is ground glass opacities 
of varying attenuation, some with evidence of crazy-paving and 
consolidation, low-dose scans that have increased amounts of noise may 
not be appropriate as these low-contrast lesions are most affected. Noise 
reduction can be achieved using higher voltage than typically used in 
screening exams. When clinical care indicates that a lower radiation is 
appropriate, it is recommended that radiation dose be consistent with 
the recommendations in the QIBA Lung Density Profile,39 which states 
that CTDIvol be targeted to 3 mGy for an average-sized patient (i.e., 75 
kg) with the amount of radiation adjusted based on patient size and 
shape according to the scanner manufacturer. 

Automated exposure control (AEC) should be used to reduce dose 
and make noise behavior more consistent throughout the image. 
Although different vendors use proprietary AEC techniques, CT radia
tion dose in the chest is expected to vary by ±18% for subject weight 
between 50 and 100 kg,39 which is considered sufficiently small to 
maintain the expected performance of quantitative analysis techniques. 

The use of iterative reconstruction (IR) is desirable to reduce CT dose 
to research subjects and patients undergoing quantitative CT of the 
lungs. Several published works have emerged46,47 demonstrating that IR 
methods reduce noise, while having non-linear effects on texture and 
low-contrast structures. The use of IR statistical and model-based 
methods will affect image noise and fine structures differently, which 
can have negative performance consequences for different types of 
quantitative imaging algorithms. Most IR methods allow for setting a 
strength level. Utilization of IR using low IR strength levels is generally 
advised. However, if that is not possible quantitative imaging re
searchers should take care to validate CT image quality is not negatively 
impacted for their COVID-19 clinical application before using CT images 
with high levels of iterative reconstruction. 

2.8. Reconstruction kernel 

Reconstruction kernels can significantly alter or bias HU values, and 
these biases are not applied consistently across all three imaging di
mensions. To avoid these issues for subsequent quantitative imaging 
analyses and algorithm development, it is recommended to use a 
reconstruction kernel that does not reduce spatial resolution (i.e., too 
“smooth”) and does not introduce high levels of edge enhancement (i.e., 
too “sharp”). Ideally, scanning should be performed with the highest 
resolution reconstruction kernel available that does not result in high edge 
enhancement and/or noise (e.g., we do not recommend GE “LUNG”, 
Siemens “B60f”, or Philips “D”). Multiple methods exist to determine the 
level of edge enhancement in a CT image acquisition, including mea
surement with MTF analysis and other approaches.41 Several recom
mended kernel selections are listed in Table 1 below. 

2.9. Follow-up scanning 

When measuring quantitative change across temporally sequential 
CT scans, such as measuring disease progression or resolution in a 
COVID-19 patient, it is important to maintain the same or similar CT 
image quality over successive measurement time points. In an ideal 
setting, follow-up CT scanning would be performed on the same CT 
scanner with an acquisition protocol that is as identical to the baseline 
scan as possible. For quantitative results, it is particularly important to 
use the same reconstruction kernel, slice thickness, slice spacing, and 
dose. If possible, attempts should also be made to match FOV. Ideally, 
when there are multiple manufacturers and models of scanners at a 
single site, a standard quantitative chest protocol should be recorded 
into each scanner with settings already protocoled such that image 
quality (noise, resolution, etc.) is as equivalent as possible across scan
ners. Having COVID-19-dedicated scanners can help enforce the use of 
the same imaging protocols while at the same time limiting the risk of 
spreading infection to a single or single set of scanners.48,49 

2.10. Retrospective studies using previously-acquired clinical CT scans 

Diagnostic CT protocols used in the clinical setting frequently do not 
adhere to the technical specifications recommended here for prospec
tively designed studies. Slice thickness is often >1.25 mm. Reconstruc
tion kernels may have been selected based on subjective visual 
preferences rather than quantitative accuracy. Implementation of radi
ation dose guidelines and use of automated exposure control methods 
may be variable. Multiple scanner models with different capabilities are 
typically available, and considerations other than those related to image 
quantification may determine the choice of which one to use with a 
particular patient. 

Retrospective quantitative studies using CT scans previously ob
tained in the clinical setting therefore should be approached with 
rigorous assessment of the appropriateness of the scan acquisition and 
reconstruction techniques that were used. Some quantitative CT pa
rameters may be assessable from images with >1.25 mm slice thickness, 
such as the volume and attenuation of regions or lesions much larger 
than the slice thickness; others may not, such as airway and vessel di
mensions, or automated determination of lobar and segmental volumes. 
Studies relying on quantification of radiomics variables such as volume, 
shape, attenuation, and texture generally will require equivalence of 
technical scan parameters as an important factor for inclusion or 
exclusion; machine learning applications may permit greater variability 
in use of scans with different technical parameters if the data set is of 
adequate size. 

QIBA is developing a set of CT image acquisition protocols for major 
CT scanner models that adhere to the above guidelines. More informa
tion on COVID-19 CT quantitative imaging protocols is available on the 
QIBA wiki page link referenced above. 

2.11. Guidance on writing and reviewing CT imaging methods sections 

A fast-paced research and development environment has emerged in 
response to the COVID-19 pandemic. This has pressured the research 

Table 1 
Recommended reconstruction kernels for quantitative CT COVID-19 
applications.  

CT scanner 
manufacturer 

Models Recommended reconstruction 
kernels 

Canon/Toshiba All FC05 
General Electric All STANDARD 
Philips All F, L 
Siemens Force Br40 

All 
Others 

B40, I40  
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community to accelerate the publication process, but despite the med
ical nature of this urgent situation, quality control of the publication 
process should not be compromised. Clinical publications must 
contribute to the literature in objective and meaningful ways, enabling 
other investigators to repeat, validate, and further advance the reported 
methodologies. Quantitative methods developed for the images used in 
one study might not generalize to images acquired in others, which can 
only be known if the technical parameters of the images used in the 
study are sufficiently reported. At a minimum, reported CT image 
acquisition parameters should include x-ray beam energy (kVp), tube 
current (mA), pitch, table feed direction, tube rotation time, collimation, 
reconstruction interval, in-plane pixel dimension, reconstruction algo
rithm, and scanner manufacturer and model along with information 
regarding contrast agent administration (if applicable) such as bolus 
volume, injection rate, and delay time. When any parameter is not 
uniform across all scans used in the study, the range and mean/median 
(as appropriate) of that parameter should be reported. Studies should 
report these parameters so that their impact on image quality and the 
underlying numeric data that constitute the image may be assessed and 
potentially reproduced by the reader. 

Adherence to standard imaging protocols (and meeting defined 
minimum parameters) is useful for consistent clinical care and is 
essential to quantitative measurement as well as the training, testing, 
and validation of machine learning systems. Quality control of chest CT 
can be facilitated by a review of DICOM header fields to confirm that 
parameter selection was within the ranges recommended above to 
improve consistency of analysis and modeling of severity and response. 
More guidance on header fields is available publicly in the specific QIBA 
profiles for lung CT on the wiki page link referenced above. Moreover, 
complete and accurate reporting of the image acquisition parameters 
used in case reports or clinical or research studies submitted for publi
cation is crucial for the further advancement of such methods and the 
eventual broad clinical adoption of the reported techniques. As repro
ducibility is a guiding principle of science, detailed image acquisition 
parameter reporting is a necessity. Authors are responsible for providing 
this information, but reviewers and journal editors represent an 
important check point for ensuring the information is complete. 

2.12. Software performance reporting 

A wide variety of artificial intelligence approaches are being tested 
and promoted by different companies to automate and quantify the 
radiological findings consistent with COVID-19. Artificial intelligence 
techniques can be classified into three general categories: image pro
cessing (e.g., lung and lobar segmentation), image analysis (e.g., voxel- 
level tissue classification), and disease diagnosis directly from images 
without intermediate image analysis (e.g., diagnosis of COVID-19 
directly from CT scans). AI-powered image processing is used to 
improve the results of traditional quantitative imaging techniques by 
making the underlying quantification workflow more accurate and 
robust. Voxel level tissue classification is used to help visualize and more 
accurately detect and quantify the extent and severity of disease. Direct 
AI-based diagnosis can be used to inform clinical decision making by 
computing personalized disease risk probabilities directly from the CT 
image or in conjunction with other data. 

The majority of these methods rely on training datasets that have 
been previously adjudicated and annotated. Training data provenance is 
a fundamental element that requires a description of important training 
dataset characteristics: patient demographics, imaging protocol, 
outcome adjudication, and inclusion/exclusion criteria. Training prov
enance is essential to assess potential use cases for the proposed method 
and to enable comparisons across different approaches. It is of particular 
importance when employing direct disease classification, as the classi
fication performance can be greatly influenced by the distribution of 
patient and imaging characteristics of the training data.50 Ongoing ef
forts to create open databases that can facilitate the development of new 

approaches should be adopted as much as possible. Several approaches 
rely on data augmentation techniques and transfer learning approaches 
that should be carefully described. A systematic report of the parameters 
used for training (optimizer parameters, number of epochs, and final 
model selection) are also important. The Food and Drug Administration 
recently requested comment on a document in which they proposed a 
framework for this review process.51 

Validation and external replication are critical to assess the gener
alizability of the automated methods and the performance characteris
tics of data-driven approaches in a context different from that of the 
training. For example, a COVID-19 mortality risk prediction algorithm 
trained from data acquired in a country that used CT scanning heavily 
for COVID-19 screening may not be appropriate for use in country that 
only scans patients who have severe clinical features, as the underlying 
mortality risk distributions between the training and test cohorts are 
potentially very different. Information about the validation approaches 
that rely on resampling techniques such as cross-validation should 
provide details about the data selection process. Finally, external 
replication datasets should carefully describe patient demographics 
along with clinical and imaging characteristics. 

2.13. Open science 

The numerous benefits of open science for improving and acceler
ating medical research have been well documented over the last 
decade.52,53 Given the current urgency to rapidly develop and evaluate 
new quantitative imaging algorithms for COVID-19, it is particularly 
important that the global CT imaging community work toward making 
large, diverse, and high-quality imaging datasets openly available to the 
medical imaging research community. 

Openly available COVID-19 imaging and metadata databases will 
allow numerous international research groups to immediately pursue 
research topics that use the open image data resources, thereby reducing 
development time and avoiding what are usually substantial costs 
needed to acquire image datasets. More importantly, numerous research 
groups will be able to operate in parallel on a common dataset, 
permitting a more direct comparison of algorithm results among 
research groups. Such direct comparison is a common feature of chal
lenge initiatives where numerous algorithm development groups 
compete to achieve the best clinical application performance when 
running on the same dataset. 

Large and openly available imaging and metadata databases will also 
be useful for COVID-19 clinical researchers pursuing data to investigate 
numerous potential questions regarding COVID-19 that CT lung imaging 
and thoracic image phenotype measurements are well suited to address. 
This includes investigations into new disease subtypes and relationships 
with other respiratory and cardiac diseases. 

In addition, such open image databases allow for quantitative anal
ysis required for multi-center research trials that ultimately can be 
collected for pooled analysis to accelerate our understanding of the 
evolution and natural history of this new viral pathogen. It is important 
to provide radiological image data in DICOM format so as to preserve 
image acquisition protocol and other information that is essential for 
understanding the quality and circumstances of the image data 
collected. 

There are several initiatives underway throughout the world to 
create open image databases to accelerate COVID-19 imaging research. 
The RSNA has announced an initiative to build an open COVID-19 Im
aging Data Repository, which will compile images and clinical data from 
the world to support COVID-19 research efforts.54 Additional initiatives 
are also preparing to assemble and openly distribute longitudinal 
COVID-19 CT imaging datasets. The ramp-up of multiple open COVID- 
19 CT imaging databases should accelerate the development of quanti
tative COVID-19 CT imaging algorithms to provide quantitative metrics 
for diagnosis and therapy. 
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3. Conclusion 

As global healthcare systems face unprecedented challenges to 
adequately care for massive numbers of COVID-19 patients, the clinical 
care community is starting to use quantitative COVID-19 applications to 
help improve diagnosis, assess stage, predict severity, and evaluate 
therapies. In addition, the quantitative CT lung imaging research com
munity is rapidly developing quantitative CT imaging tools for COVID- 
19 clinical applications. Decades of CT lung imaging research has 
demonstrated that careful attention to CT acquisition protocols and 
image quality are critical to developing resilient quantitative imaging 
biomarkers and reliably determining their performance. Progress will be 
accelerated and fewer opportunities will be missed if quantitative CT 
imaging best practices advocated by quantitative lung imaging research 
communities are widely adopted. This is particularly important at the 
early stages of this global pandemic as the first studies, reports, and 
public imaging databases are disseminated to, and used by, global re
searchers. Important CT image acquisition considerations include use of 
elevated pitch scans to require less time for respiratory challenged pa
tients to hold their breath, keeping respiratory level and CT image 
acquisition settings consistent over time, and selecting reconstruction 
kernels that minimize HU measurement bias. In addition, it is important 
that research publications follow recommended guidelines for speci
fying image acquisition methods in publications as this is critical to 
maintaining high scientific reproducibility. Global adoption of the 
quantitative imaging best practices outlined here and open dissemina
tion of COVID-19 standardized CT imaging datasets will accelerate the 
development and validation of quantitative imaging biomarkers and 
potentially improve diagnosis and treatment of respiratory diseases. 
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