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In generalized linear modelling of responses and response times, the observed response

time variables are commonly transformed to make their distribution approximately

normal. A normal distribution for the transformed response times is desirable as it

justifies the linearity and homoscedasticity assumptions in the underlying linear model.

Past research has, however, shown that the transformed response times are not always

normal.Models have been developed to accommodate this violation. In the present study,

we propose a modelling approach for responses and response times to test and model

non-normality in the transformed response times. Most importantly, we distinguish

between non-normality due to heteroscedastic residual variances, and non-normality due

to a skewed speed factor. In a simulation study, we establish parameter recovery and the

power to separate both effects. In addition, we apply the model to a real data set.

1. Introduction

One of the dominant approaches to the analysis of responses and response times is the

generalized linear modelling framework (GLM; Molenaar, Tuerlinckx, & Van der Maas,

2015a; Ranger, 2013; Ranger & Ortner, 2012a). In this framework, a measurement model

is specified for the responses to operationalize a normally distributed latent ability factor.

For the response times, a measurement model is specified to operationalize a normally

distributed latent speed factor. Special cases within the GLM differ in the exact way in

which both measurement models are connected. By specifying a linear relation between

the ability factor and the response times, the hierarchicalmodels byVan der Linden (2007,
2009) and Thissen (1983; see also Furneaux, 1961) arise. By using a non-linear relation

between the latent ability factor and the response times, the distance–difficultymodels for

personality data arise (Ferrando & Lorenzo-Seva, 2007a,b).

As response times are typically bounded by zero and skewed (Luce, 1986), researchers

have transformed the raw response times to enable linear modelling of them. Such

transformations mainly serve the purpose of linearizing the relation between the response

times and the underlying normally distributed speed factor, and of making the assumption
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of homoscedasticity of the residual variance in the linear response time model more

plausible. Transformations that have been considered include the reciprocal (e.g., Ferrando

& Lorenzo-Seva, 2007b), square root (e.g., Aberson, Shoemaker, & Tomolillo, 2004), and

logarithm (e.g., Thissen, 1983; Van der Linden, 2007). Assuming that the transformed
response times are indeednormal, these transformations imply respectively anexponential,

chi-square, and log-normal distribution for the untransformed response times.

The log transformation is arguably the most widely used. However, as discussed by

Klein Entink, Linden, and Fox (2009) and Ranger andKuhn (2012), the implied log-normal

distribution does not always provide a satisfactory approximation for the observed

response time distributions. To this end, Klein Entink et al. proposed amore flexible Box–
Coxnormalmodel for the response times. In thesemodels, an extra parameter is estimated

which reflects the degree of non-normality in the log-response times. In addition, various
semi-parametric approaches have been proposed, including a proportional hazardsmodel

(Loeys, Legrand, Schettino, & Pourtois, 2014; Ranger & Ortner, 2012b, 2013; Wang, Fan,

Chang, & Douglas, 2013), a linear transformation model (Wang, Chang, & Douglas, 2013),

and models for categorized response times (Ranger & Kuhn, 2012, 2013).

Here, a new approach is outlined to account for departures from normality in the

transformed response times. This approach is derived by noting that, in the linear model

for the transformed response times,

T �
pi ¼ mi � sp þ epi;

normality of the transformed responses times, T �
pi, implies a normal speed factor, sp, and

homoscedastic and normal residuals, epi. That is, departures from normality in T �
pi will be

solely due to (1) non-normality in sp, (2) non-normality in epi and/or (3) heteroscedastic
epi. The approach by Klein Entink et al. (2009) focuses on (2). In the present paper, we

provide a test on normality of T �
pi based on (1) and (3). That is, we explicitly separate

between non-normality due to a non-normal latent speed factor and between non-

normality due to heteroscedastic residuals.

1.1 Non-normal speed factor

Anon-normal speed factormay arise if there are qualitative between-subject differences in

response speed. For instance, Meyer (2010) showed that if some subjects resort to rapid

guessing for all items ina test, the transformedresponse timedistributionwill have a longer

lower tailwhich canbe captured by a two-class between-subjectmixturemodel. Although

Meyer estimated themixture for each item separately, amore parsimoniouswaywould be

to introduce the mixture into the speed factor as a rapid guessing subject will have an
overallhigher speed levelonall itemsascompared toanon-guessingsubject.Theexistence

of suchabetween-subjectmixturewill thus showupasnon-normality in thespeed factor in

thepresent approach.Another exampleof abetween-subjectmixture of response speed is

givenbyVan derMaas and Jansen (2003)who showed that children on abalance scale task

adopt different solution strategies which differ in their execution time. Again, such

heterogeneity causes the distribution of the speed factor to depart from normality.

1.2. Heteroscedastic residuals

In this paper, we use the term ‘heteroscedasticity’ to refer to the observation that the

residual variances in a linear model are not constant across the predictors. In linear
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regression models, heteroscedasticity is a well-studied phenomenon. Methods have been

proposed to test the equality of the residual covariance matrix across the levels of the

predictor variables (e.g., Anderson, 2006), and methods have been studied to account for

possible violations (e.g., Brunner, Dette, & Munk, 1997). In addition, various approaches
exist to assess, test or model heteroscedasticity in linear regression models, including

diagnostic graphical approaches (e.g., Stevens, 2009, p. 90), statistical tests (e.g., Jarque&

Bera, 1980), corrections (e.g., Long & Ervin, 2000), and approaches to model

heteroscedasticity explicitly (e.g., Harvey, 1976). Interestingly, although the GLM for

responses and response times is in essence also a linear regressionmodel (butwith a single

latent predictor variable), tests on heteroscedasticity have not yet received attention. In GLMs

for responses and response times, heteroscedasticity can arise for various reasons, including

item deadlines (censoring), the use of an inappropriate transformation function for the
untransformed response times, and the existence of item-specificmixtures. Examples of item-

specific mixtures include item pre-knowledge (McLeod, Lewis, & Thissen, 2003), post-error

slowing (Rabbitt, 1979), and rapid guessing (Wang & Xu, 2015) on some of the items but not

on all.

1.3. Motivation

In the present paper, we will present a unified model that enables the simultaneous
estimation of heteroscedasticity in the residuals and non-normality in the speed factor.

Such an endeavour is valuable for a number of reasons:

Explicit statistical test. The assumption of normality can be tested usingmarginal tests

like the test of Mardia (1970) on multivariate normality and that of Shapiro and Wilks

(1965) on univariate normality. Such tests aremarginal tests as they do not impose a latent

variable structure on the data. We will show in the present study that by using a latent

variable modelling framework for the responses and response times, the power to detect

an effect is greater than the multivariate test by Mardia (1970). An alternative approach to
the marginal tests, used by for instance Van der Linden, Breithaupt, Chuah, and Zhang

(2007) andVander Linden, Scrams, and Schnipke (1999) employs quantile–quantile plots.
As discussed by Klein Entink et al. (2009), although valuable, quantile–quantile plotsmay

be hard to interpret and they do not penalize formodel complexity. Therefore, an explicit

statistical test may be desirable.

Affected person parameter estimates. As we will illustrate in this paper, results from

response and response time analyses may be affected by the presence of non-normality in

the transformed response time distribution. That is, we find that non-normality affects the
ability and speed estimates in the tails of the latent ability and speed factor distributions.

Although such a discrepancy may not always arise, it is valuable to have a tool at our

disposal that can be used to test the normality assumption and compare the results across

the normal and non-normal models. If results do not differ importantly, one can safely rely

on the normal modelling results. However, if results differ (as is the case in our illustration

below), onemay better rely on the results from the best-fittingmodel, as these are likely to

capture the patterns in the data better.

Aberrant responses. The latent ability and latent speed factor estimates play an
important role in the detection of aberrant responses (Marianti, Fox, Avetisyan,

Veldkamp, & Tijmstra, 2014; Van der Linden & Guo, 2008; Van der Linden & van

Krimpen-Stoop, 2003) and in the selection of items in computerized adaptive testing (Van

der Linden et al., 1999). As discussed above, for the respondents in the tails of the ability

and speed distribution, the speed and ability estimates may be affected by non-normality

Non-normal transformed response times 299



in the transformed response times. Therefore, for these respondents, it is important that

themost appropriate estimates are used to prevent invalid inferences about aberrances or

to prevent a suboptimal item selection procedure in the computerized adaptive testing

procedure. In the case of severe non-normality in the transformed response time
distribution, the ability and speed factor estimates from thenon-normalmodelsmight thus

be preferred.

Using an appropriate transformation. Another motivation for having a statistical test

on normality available within the model for responses and transformed response times is

that it is often unclear which transformation (e.g., logarithmic, reciprocal, or square root)

to adopt for the response times. That is, it is unclear what transformation makes the

linearity and homoscedasticity assumptions plausible. Using the present approach, it can

be investigated which transformation works best in normalizing the transformed
response times. If normality does not hold for any of the transformations considered,

the resulting violation of homoscedasticity and linearity can be explicitly taken into

account in the model.

Increasingpower. In the present paper, the reason to focus onbothheteroscedasticity

and non-normality in the speed factor is mainly to increase the resolution to detect

departures fromnormality. Aswewill show in this paper, both effects are statisticallywell

separable,meaning that the effects of a non-normal speed factor can hardly be captured by

heteroscedastic residuals, and vice versa. Therefore, as both effects pick up distinct
patterns in the data, taking both effects into account increases the power to detect non-

normality.

Personality items. Although the main focus of this paper is on ability measurement,

some of the above motivations also hold for applications to personality items. That is,

faking on personality items (Holden & Kroner, 1992) may be detected using the same

procedures for aberrant responses as discussed above. In addition, research into

responses and response times in personality have focused on the distance–difficulty
hypothesis (Ferrando & Lorenzo-Seva, 2007a,b) or the inverted-U response time
hypothesis (Kuiper, 1981). This hypothesis states that for personality items, if the

distance between the item difficulty parameters and the latent ability parameters

increases, response times decrease. As the models used to test this effect include a

quadratic (or approximately quadratic) effect of the latent ability factor on the

transformed response times (see Molenaar, Tuerlinckx, & van der Maas, 2015b), the

transformed response times will be non-normally distributed if the distance–difficulty
hypothesis holds. Themodels put forward in this papermay thus provide an omnibus test

for the distance–difficulty hypothesis from personality research.

1.4. Outline

The outline of this paper is as follows. First, the GLM approach to responses and response

time modelling is outlined. Next, we introduce heteroscedastic residuals and a non-linear

speed factor. In a simulation study we show that the model is viable in terms of parameter

recovery and the power to separate between different sources of non-normality in the

transformed response times. We then apply the model to a real data set and illustrate that
the latent ability and latent speed factor estimates may be different in the normal and non-

normal models for respondents in the tails of the distributions. We conclude with a

general discussion.
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2. The generalized linear model for responses and response times

Let Xpi denote the response of subject p on item iwith transformed response time T �
pi. As

discussed above in the GLM framework, a measurement model is specified for both

variables. To connect the two models, Van der Linden (2007, 2009) and Glas and van der

Linden (2010) used a common distribution for the item parameters and a common

distribution for the person parameters in the two models. In addition, Molenaar et al.

(2015b), Ranger and Ortner (2012a), Van der Linden and Guo (2008), Wang, Change,

et al. (2013), andWang, Fan et al. (2013) specified a common distribution for the person

parameters only. Here we followMolenaar et al. (2015a), Ranger (2013), Thissen (1983),

Furneaux (1961), and Ferrando and Lorenzo-Seva (2007a,b) and specify a cross-loading of
the response times on the latent ability factor. That is, by assuming independence of Xpi

and T �
pi conditional on the random person parameters, the joint likelihood factors as

lðXpi; T
�
pijhp; spÞ ¼ f ðXpijhpÞgðT �

pijsp; hpÞ/ðhpÞ/ðspÞ; ð1Þ

where f(�) is the likelihood function according to the measurement model of the

responses, g(�) is the likelihood function according to the measurement model of the

transformed response times including the cross-loading on hp, and φ(�) is a standard

normal density function for the latent ability parameters, hp 2 ð�1;1Þ, and the latent

speed parameters, sp 2 ð�1;1Þ, respectively. We elaborate on choices for f(�) and g(�)
below.

For f(�) in equation (1), the measurement model of the responses, researchers have
used the Rasch model (Loeys et al., 2014), the two-parameter model (Molenaar et al.,

2015a,b; Ranger & Ortner, 2012a; Thissen, 1983), the graded response model (Ranger,

2013) and the linear factormodel (Ferrando&Lorenzo-Seva, 2007b).Hereweuse the two-

parameter model, but we note that present undertaking is equally amenable to other

generalized linear models (e.g., a graded response models in the case of Likert scale

personality item scores). We thus specify

f ðXpijhpÞ ¼ exp½Xpiðaihp � biÞ�
1þ expðaihp � biÞ

; ð2Þ

where ai 2 ð�1;1Þ is the discrimination parameter which is expected to be strictly

positive in practice and bi 2 ð�1;1Þ is the difficulty parameter.

For g(�) in equation (1), the measurement model of the response times including the

cross-loading on hp, researchers have mainly used a normal model. However, others have

used a proportional hazards model (Loeys et al., 2014; Wang, Fan et al. 2013), a linear

transformationmodel (Wang, Change, et al., 2013), or a categorical model for discretized

time (Ranger & Kuhn, 2012, 2013). There are many possible parameterizations of the

normal model. Here we focus on

gðT �
pijsp; hpÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

ei

p exp � 1

2

½T �
pi � ðmi � khhp � ksspÞ�2

r2
ei

( )
; ð3Þ

where mi 2 ð�1;1Þ is the time intensity parameter, and r2
ei 2 ½0;1Þ is the residual

variance, that is, the variance of T �
pi conditional on sp. In equation (3), kh 2 (�∞, ∞)

denotes the cross-loading of the response times on the ability factor hp to connect the
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measurement model of the responses to the measurement model of the response times

(see Furneaux, 1961; Molenaar et al., 2015a; Ranger, 2013; Thissen, 1983). In addition, in

equation (3), ks 2 ð�1;1Þmodels the scale of sp. Note that themodel in equation (3) is

equivalent to the hierarchicalmodel of Van der Linden (2007, 2009)with fixed item effect
(see Molenaar et al., 2015a; Ranger, 2013). That is, the correlation between sp and hp in
the hierarchicalmodel, q, can be retrieved from the parameters in equation (3) as follows:

q ¼ khffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2h þ k2s

q : ð4Þ

In addition, the variance of sp in the hierarchical model, r2
s , can be retrieved from the

parameters in equation (3) as follows:

r2
s ¼

kh2

q2
¼ k2h þ k2s : ð5Þ

Note that the cross-loading from the present parameterization, kh, is an unscaled

version of the correlation parameter, q, from the hierarchical model. As the correlation

parameter does not depend on the item, kh does not depend on the item either.

3. A heteroscedastic generalized linear model with a skewed speed factor

Here,we extend the traditionalmodel in equations (1–3) by allowingnon-normality in the

speed factor and by allowing the residual variances to be heteroscedastic.

3.1. Heteroscedastic residuals

In factor analysis, methods to account or test for heteroscedasticity include the

generalized least squares procedure of Meijer and Mooijaart (1996), the distribution-

free method of Lewin-Koh and Amemiya (2003), and the two-stage least squares

procedure of Bollen (1996). Here, we adopt the approach of Hessen and Dolan (2009)

which is developed within the GLM framework as adopted in the present paper.

Specifically, Hessen and Dolan proposed to model heteroscedasticity within the linear
one-factor model by modelling the variance of the indicators conditional on the common

factor, r2|gp, by an exponential function (for a similar approach within regression

modelling, see Harvey, 1976). Specifically,

r2jgp ¼ expðd0i þ d1igpÞ; ð6Þ

where gp is the common factor, d0i 2 ð�1;1Þ is an intercept parameter and

d1i 2 ð�1;1Þ is a heteroscedasticity parameter which accounts for the dependency of

the conditional variance on g. That is, for d1i = 0, the residual variance is homoscedastic,

for d1i > 0, the residual variance is increasing for increasing levels of gp, and for d1i < 0,
the residual variance is decreasing for increasing levels of gp.

To introduce heteroscedastic residuals into the traditional GLM given by equation (3),

the residual variances are explicitly conditioned on sp and modelled as in equation (6),

where gp = �kssp. This results in
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gðT �
pijspÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p� expðd0i � d1iksspÞ

p exp � 1

2

½T �
pi � ðmi � khhp � ksspÞ�2
expðd0i � d1iksspÞ

( )
: ð7Þ

Note that we explicitly focus on heteroscedasticity across sp and not across hp.

3.2. Non-normal speed factor

Various approaches exist by which non-normal latent variables can be modelled. For

instance, the latent distribution can be approximated using a constrained mixture
approach (Schmitt, Mehta, Aggen, Kubarych, & Neale, 2006; Vermunt, 2004; Vermunt &

Hagenaars, 2004), Johnson curves (Van den Oord, 2005), and splines (Woods, 2007). In

addition, researchers have used the log-beta distribution (Andersen & Madsen, 1977).

Here, we use the skewnormal distribution (Azzalini, 1985, 1986). The density of the skew

normal distribution is given by

kðgÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
2px2

p Uðf g� j
x

Þ expð� 1

2

ðg� jÞ2
x2

Þ; ð8Þ

where j 2 ð�1;1Þ is a location parameter, x2 2 ½0;1Þ is a scale parameter, and

f 2 ð�1;1Þ is a skewness parameter. That is, for f = 0 the density above reduces to the

density of a normal distribution, for f > 0 the density is right-skewed, and for f < 0 the

density is left-skewed.

Our choice of the skew normal distribution is driven by the following considerations:

1. As the skew normal density includes the normal distribution as special case for f = 0,

the skew normal density enables a straightforward likelihood ratio test on normality

with only one degree of freedom. If we had adopted a two-class mixture distribution
(which is certainly feasible), wewould need test with at least two degrees of freedom

(the mixing proportion and the mean of the second mixture component), probably

lowering power. In addition, a likelihood ratio test is not feasible as a mixture

distribution would require boundary constraints to arrive at a normal distribution. As

the statistical properties of the likelihood ratio are well known, we considered this

test desirable. However, a mixture distribution has some advantages over the skew

normal distribution. We return to this point in Section 6.

2. The skew normal density is unbounded, which is appropriate for the unbounded
transformed response times. The beta distribution and the log-normal distribution,

for instance, are bounded and thus less suitable for this endeavour.

3. The skew normal density is well developed within the present generalized linear

framework (see Azevedo, Bolfarine, & Andrade, 2011; Molenaar, Dolan, & de Boeck,

2012).

4. A linear factor model with a skew normal distribution for the factor is shown to be

equivalent to a one-factor model with quadratic factor loadings (Smits, Timmerman,

&Stegeman, 2015). As suchnon-linear factormodels arewell developed (e.g., Klein&
Moosbrugger, 2000; McDonald, 1962), we can draw from the modelling tools

available for these models and use them in our modelling approach (e.g., parameter

estimation, factor score estimation). In addition, due to this equivalence, our

modelling approach can be implemented in existing software, hopefully increasing

the practical utility of the approach.
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To introduce a skew normal distribution for sp, we use the result of Smits et al. (2015)

mentioned above. Specifically, Smits et al. show that a one-factor model with a skew

normal factor distribution given by equation (8) is equivalent to a model with quadratic

factor loadings up to the first three sample moments.1

Here, we use this equivalence to specify the skew normal speed factor as a quadratic

speed factor. That is, in the model subject to heteroscedasticity in equation (7) we

additionally introduce the effect of non-normality in spby adding the quadratic effect of sp,
that is,

gðT �
pijsp; hpÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p expðd0i � d1i½kssp þ kfs2p�Þ

q

exp � 1

2

T �
pi � ðmi � khhp � ½kssp þ kfs2p�Þ

h i2
expðd0i � d1i½kssp þ kfs2p�Þ

8><
>:

9>=
>;;

ð9Þ

where kf 2 ð�h; hÞ is a shape parameter that corresponds to f in the skew normal density

in equation (8). See Smits et al. for the exact relation between f and kf. Note that the

equivalence between the quadratic model in equation (9) and a model with a skew

normal sp specified through the density function of sp in equation (1) only holds for the

first three sample moments. However, Smits et al. show by means of the L1 norm of the

difference in the model-implied data distributions that for values of f of practical interest,
the differences in the two implied distributions are only minor if all moments are

considered (i.e., as is the case with full-information procedures as adopted here in

equation (1)).

3.3. Estimation of the parameters

Together with the two-parameter model for Xpi the marginal log-likelihood of the matrix

of item responses, X, and the matrix of transformed response times, T*, given the model
parameters,x = [a1,. . .,an,b1,. . ., bn, m1,. . ., mn, d01, . . ., d0n, d11, . . ., d1n,kh,ks,kf] is given
by

‘ðX;T�;xÞ ¼
XN
p¼1

ln

Z Z 1

�1

Yn
i¼1

f ðXpijhpÞgðT �
pijsp; hpÞ/ðhpÞ/ðspÞdhds; ð10Þ

where n denotes the number of items, N denotes the number of subjects, f(�) is given by

equation (2) and g(�) is given by equation (9).

All free parameters in the likelihood function in equation (10) can be estimated

simultaneously using marginal maximum likelihood (MML) estimation (Bock &

Aitkin, 1981). To this end, the integrals in the likelihood function are approximated

by Gauss–Hermite quadrature (GHQ). We implemented the model in Mplus (Muth�en
& Muth�en, 2007) using 15 nodes for each of the hp and sp dimensions. As the

1 Specifically, let T = a + b X + e denote a factor model with the factor,X, subject to a skew normal distribution
with skewness parameter s. Next, let T0 = a0 + c X0 + d X02 denote a quadratic factor model with the factor, X0,
subject to a normal distribution. Smits et al. show that you can expressd (the quadratic loading effect) in terms of
s (the skewness parameter) such that T and T0 are equivalent up to the first three moments.
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syntax to fit the model can become very large for an increasing number of items, n,

we implemented an R script that generates the Mplus syntax to fit the model for any

choice for n and number of nodes. In addition, we wrote some documentation which

gives a guide to how to read the Mplus output. See http://www.dylanmolenaar.nl
for the R script and the documentation.

3.4. Evaluating model fit

As for d1i = 0 the residuals are homoscedastic and for kf = 0 the speed factor is

normal, inferences about the sources of non-normality in the transformed response

times can be based on models that do and do not include these parameters. Note

that as both constraints do not involve a boundary constraint, a likelihood ratio test
or fit indices like the Akaike information criterion (AIC; Akaike, 1974), Bayesian

Information Criterion (BIC; Schwarz, 1978), and the saBIC (sample size adjusted BIC;

Sclove, 1987) are suitable for model comparisons with and without heteroscedas-

ticity and/or a skewed latent speed factor. However, the standard errors of these

parameters might be biased as, within MML estimation, these are based on the

assumption of an asymptotic normal parameter distribution which is likely to be

violated for the parameter distributions of d1i and kf.

4. Simulation study

4.1. Design

To investigate parameter recovery, Type I error, and the power to distinguish between the

different sources of non-normality in the transformed response times, a simulation study

was conducted. In this study we focus on four models:

1. M1: het-GLM-skew. A heteroscedastic generalized linear model for responses and

response times with a skew normal speed factor where kf is a free parameter and d1i
are free parameters for all i.

2. M2: het-GLM. A heteroscedastic generalized linear model for responses and response
times with a normal speed factor where kf = 0 and d1i are free parameters for all i.

3. M3: GLM-skew. A homoscedastic generalized linear model for responses and

response times with a skew normal speed factor where kf is a free parameter and

d1i = 0 for all i.

4. M4: GLM. A homoscedastic generalized linear model for responses and response

timeswith a normal speed factorwhere kf = 0 and d1i = 0 for all i (i.e., the traditional

model given by equations (1–3)).

We simulated data according to these four models. In this simulation study, we used
the log transformation for the response times, that is, T �

pi ¼ lnðTpiÞ. In addition, we used

N = 500 andn = 20.Difficulty parameters,bi, were chosen at equally spaced values in the

[�3, 3] interval. Discrimination parameters, ai, were equal to 0.5 and 1.5 for the odd and

even items, respectively. Time intensity parameters, mi, were equal to 2. In addition,

kh = 0.1 andks = 0.25 such that in the hierarchicalmodel of Van der Linden (2007, 2009),

the correlation between sp and hp equals .37 and the standard deviation of sp equals 0.27
(see equations (4) and (5)). The residual intercept parameters, d0i, were equal to �1.0.

The values above already provide all parameters for the GLM. Next, for the GLM-skew, kf
was chosen to equal �0.025. This choice for kf given the choices for mi and ks above
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corresponds to a ‘medium’ effect on the skewness of the speed factor distribution

according to Molenaar, Dolan, and Verhelst (2010) and Smits et al. (2015).2 For the het-

GLM, data are generated using d1i = �0.8 for all i. This choice for d1i corresponds to a

standardized value of d1i rs = �0.8 9 0.27 = �0.22 which is a ‘medium’ effect
according to Molenaar et al. (2010); standardizing d1i is necessary as its value depends

on the scale of sp. Finally, for the full model, het-GLM-skew, data are generated using both

kf = �0.025 and d1i = �0.8 for all i.

We conducted 100 replications for each truemodel. To each data setwe fitted the four

models discussed above. For all models we determined the AIC, BIC, saBIC, and the

likelihood of the data given the model parameters. In addition, we conducted the

multivariate normality test of Mardia (1970) to see how this test performs as compared to

our modelling approach.

4.2. Results

4.2.1. Parameter recovery

Here, we focus on the recovery of the main parameters in the full model (M1: het-GLM-

skew): the heteroscedasticity parameters, d1i, and the scale and shape parameters of the

speed factor, ks and kf. First, Table 1 contains the mean parameter estimates, mean

standard errors, and the rootmean squared error (RMSE) of ks, kf, and d1i in the full model

for the different true models. As can be seen, for all parameters, the results seem

acceptable, that is, the parameters are acceptably recovered in all cases with the mean

standard errors close to the RMSE, indicating no bias. That is, in the cases that the speed
factor is skew normal (i.e., M1: het-GLM-skew and M3: GLM-skew), the mean estimates of

kf are equal to their true values (�0.025) and in the caseswhere the speed factor is normal

(i.e., M2: het-GLM and M4: GLM), the mean parameter estimates for kf are 0. A similar

pattern holds for the recovery of d1i. That is, in the cases where the residuals are

heteroscedastic (i.e., M1: het-GLM-skew and M2: het-GLM), the parameter estimates are

close to their true value (�0.8), and in the cases that the residuals are homoscedastic (i.e.,

M3:GLM-skewandM4:GLM), the parameter estimates for d1i are close to 0. The results for
ks are also acceptable. Note that in the table, the results for d1i are aggregated over items.
To present the results concerning these parameter estimates for each item separated we

created box plots of the parameter estimates for d1i in the full model for the different true

models in Figure 1.

4.2.2. Power and Type I error

Weestablished the power to detect the different effects by determining the non-centrality

parameter of the v2 distribution under the less restricted model using the procedure

2 Smits et al. (2015) give algebraic expressions to transform f into kf for mi = 0. As in our simulation study, mi
departs from 0, these expressions do not apply. However, we established that if

Z ¼ 2þ 0:1X þ 0:25Y � 0:025Y 2;

whereX ~ N(0,1) andY ~ N(0,1) (i.e., a regressionmodel that corresponds to the design of themain simulation
study discussed abovewhereX represents hp andY represents sp), the f estimate ofZ over 100 replications has a
mean of�2.06 (SD = 0.26). Note that Molenaar et al. (2010) defined f = 2.17 as a medium effect size based on
the standardized skewness coefficient of the skewnormal distribution as proposed by Azzalini (1985). This value
proposed by Molenaar et al. is thus close to the absolute value for f that is implied by our choice for kf in the
design of the main simulation study (i.e., �0.025).
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outlined by Satorra and Saris (1985; see also Saris & Satorra, 1993) with a .05 level of

significance. For the full model (M1: het-GLM-skew), we separate between the power to

detect heteroscedastic residuals in the presence of a skew normal speed factor (i.e., the

power to reject d1i = 0 for all iwhere kf is freely estimated) and the power to detect a skew

normal speed factor in the presence of heteroscedasticity (i.e., the power to reject kf = 0

where d1i is freely estimated for all i). ForM2: het-GLMweonly consider thepower to detect
heteroscedasticity (i.e., the power to reject d1i = 0 for all i) and for M3: GLM-skewwe only

consider the power to detect skewness in the speed factor (i.e., the power to reject kf = 0).

The results concerning the power to detect the different effects are in Table 2. As

can be seen, in the full model (M1: het-GLM-skew) both effects can be well separated.

That is, if both effects are in the data (i.e., the true model is M1: het-GLM-skew) these

are detected with a power close to 1.00, and if one of the effects is in the data, that

effect is detected with an acceptable power, and the other effect (which is not in the

data) is detected with a power close to the level of significance (indicating that the
Type I error rate is not increased). For the model with heteroscedasticity only (M2: het-

GLM), power and Type I error rate are also acceptable. That is, if there is

heteroscedasticity in the data, it is well detected, and if the residuals are homoscedastic,

power approaches the level of significance. For the model with a skew normal factor

distribution only, the power to reject kf = 0 is moderate (.68) if the data contain

Figure 1. Box plots of the parameter estimates for d1i in the full model (M1: het-GLM-skew) across

replications for the different true models. The grey solid line denotes the true values.
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heteroscedasticity residuals as well (i.e., the true model is M1: het-GLM-skew). In

addition, the Type I error rate seems increased. That is, if the data contain

heteroscedastic residuals but no skewness in the speed factor distribution (i.e., the

true model is M2: het-GLM), the power to reject kf = 0 is still .22.

With respect to the fit indices, we focused on the hit rates and false positive rates of the

different models for the different effects in the data. That is, the hit rate is defined as the

proportion of replications inwhich the truemodel is correctly identified as the bestmodel

according to the AIC, BIC and saBIC, and the false positive rate is defined as the proportion
of replications in which the wrong model is identified as the best model. See Table 3 for

the results. As can be seen, all fit indices perform acceptably in terms of the hit rates. In

addition, the effects are statisticallywell separable,meaning that heteroscedastic residuals

are seldomdetected as skewnormal factors or vice versa (i.e., the off-diagonal proportions

are close to zero for het-GLM and GLM-skew). This emphasizes the need to consider both

effects: they pick up different aspects in the data.

For each replication in the simulation study, we also conducted the test by Mardia

(1970) on multivariate normality. Results indicate that non-normality was rejected in 98,
99, 5 and2%of the replications if the truemodelwasM1: het-GLM-skew,M2: het-GLM,M3:

GLM-skew and M4: GLM, respectively. Thus, normality was rejected if the data contained

both effects, and the effect of heteroscedasticity only, but normality was not rejected

when the data contained a skewed speed factor.

5. Illustration

5.1. Data

The data comprise the responses and response times of 668 Dutch high school students

on 23 items from the ‘path finder’ test. This test resembles the embedded figures test

(Witkin, 1950). In the test, respondents have to decide which of five simple figures occur

within a more complex target figure. Two of the respondents were omitted from the

analyses because they showed suspiciously small response times (1 s on most of the

items). Following the simulation study,we focus on the log-transformed response times. A
time deadline of 40 s was imposed on all items. As a result, the observed response times

showed ceiling effects which caused the log response time distribution to be non-normal.

To illustrate how this source of non-normality can bedetected and accounted for using the

present approachwe fit the differentmodels as studied in the simulation study to the data.

Table 2. Power and non-centrality parameter (ncp) of the likelihood ratio test to reject d1i = 0 and

kf = 0 in the different models at the .05 level of significance

True model

M1: het-GLM-skew M2: het-GLM M3: GLM-skew

d1i kf

power ncp power ncppower ncp power ncp

M1: het-GLM-skew 1.00 141.27 0.95 12.95 1.00 134.15 0.68 5.83

M2: het-GLM 1.00 142.36 0.08 0.23 1.00 143.57 0.22 1.44

M3: GLM-skew 0.05 0.00* 0.93 11.98 0.05 0.00* 0.94 12.11

M4: GLM 0.06 0.59 0.05 0.00* 0.06 0.59 0.05 0.00*

Note. *These ncp values are fixed to 0 as their estimatewas slightly negative (which can happen due

to sampling fluctuations).
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Next, we showhowestimates for hp and sp differ between the present non-normalmodels

and the more traditional normal baseline model.

5.2. Results

Table 4 contains the results concerning the fit of the different models. As can be seen, the
likelihood ratio test between each of themodels and the full model (M1: het-GLM-skew) is

only significant for the model with heteroscedasticity only, M2: het-GLM, v2(1) = .74,

p = .39, indicating that dropping the skewness parameter, kf, from the full model does

not deteriorate model fit. As both the model with skewness only (M3: GLM-skew) and the

model without effects (M4: GLM) are associated with a significant likelihood ratio test, we

choose M2: het-GLM as the best-fitting model. This conclusion is supported by the AIC,

BIC, and saBIC. See Table 5 for the item parameter estimates within this model. As can be

seen, d1i < 0 for all i, indicating that the residual variance is smaller for subjectswith lower
levels of sp. This is likely due to the item deadline which results in less variance at the

upper range of the log response time distribution.

Table 3. Hit rates and false positive rates for the AIC, BIC and saBIC for the estimatedmodels across

the different true models

True model

Estimated models

het-GLM-skew het-GLM GLM-skew GLM

AIC het-GLM-skew .99 .01 0 0

het-GLM .23 .77 0 0

GLM-skew 0 0 .97 .03

GLM 0 .01 .12 .87
BIC het-GLM-skew .73 .14 .05 .08

het-GLM .02 .93 0 .05

GLM-skew 0 0 .82 .18

GLM 0 0 .01 .99
saBIC het-GLM-skew .95 .05 0 0

het-GLM .13 .87 0 0

GLM-skew 0 0 .94 .06

GLM 0 0 .07 .93

Note. Hit rates are in boldface (i.e., the proportion of replications in which the true model is

correctly identified as the best model).

Table 4. Likelihood ratio test with M1: het-GLM-skew and fit indices for the models considered in

the illustration

‘ LRT df AIC BIC saBIC

M1: het-GLM-skew �20,914.49 – – 42,065 42,596 42,221

M2: het-GLM �20,915.23 0.74 1 42,064 42,591 42,220
M3: GLM-skew �21,740.77 826.28 23 43,672 44,099 43,798

M4: GLM �21,785.36 870.87 24 43,759 44,182 43,883

Note. For the fit indices, best values are in bold.
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To see how the effect of heteroscedasticity affects the results of the normal baseline

model, we plot the estimates of hp and sp in the final model, M2: het-GLM, against the

estimates of respectively hp and sp in the baseline model, M4: GLM (see Figures 2 and 3).

As can be seen, the estimates are highly comparable in the mid-range of hp and sp.
However, in the tails, the estimates diverge. This is because the non-normality in the log

response time distribution is most evident in the tails of the distribution (in this case, a

thicker lower tail and a thinner upper tail). As M2: het-GLM fits the data best according to

the fit indices, the hp and sp estimates from this model can be better trusted than those
from the baseline model. Especially in an applied setting where the interest is in

identifying high- or low-scoring respondents (e.g., personnel selection or admission for

extra training forweak students), the hp estimates from thenon-normal approachmight be

the preferred basis for inferences.

6. Discussion

In this paper, we have presented a method to test for departures from a normal

distribution for the transformed response times within the GLM framework for responses

and response times (e.g., Van der Linden, 2007). Most importantly, we distinguished

between non-normality due to a non-normal speed factor and non-normality due to

heteroscedastic residual variances. Our simulation study showed that this distinctionmay

be valuable as the power to detect violations of normality in the transformed response

times due to a non-normal speed factor is small for the more traditional marginal test of
Mardia (1970) on multivariate normality. Molenaar et al. (2010) found a similar result

within the one-factor model.

Table 5. Parameters estimates (est) and standard errors (SE) for the parameters in M2: het-GLM

ai bi mi d0i d1i

est SE est SE est SE est SE est SE

0.65 0.10 �0.88 0.09 2.44 0.04 �0.44 0.05 �0.45 0.28

0.61 0.11 �0.02 0.08 2.51 0.03 �0.79 0.05 �0.23 0.33

0.80 0.11 �1.04 0.10 2.60 0.03 �0.73 0.05 �0.83 0.29

0.25 0.09 �1.06 0.09 2.71 0.03 �1.01 0.06 �0.65 0.38

0.36 0.12 1.04 0.09 3.04 0.03 �2.16 0.10 �4.25 0.58

0.54 0.13 0.96 0.09 2.75 0.04 �1.40 0.09 �2.73 0.40

0.15 0.09 0.49 0.08 3.02 0.03 �1.91 0.09 �2.56 0.60

0.40 0.11 0.71 0.09 2.98 0.03 �1.98 0.08 �3.70 0.84

0.36 0.12 1.11 0.09 2.95 0.03 �1.81 0.12 �2.79 1.00

0.39 0.09 0.25 0.08 2.93 0.03 �1.81 0.09 �3.31 0.96

0.20 0.09 0.60 0.08 2.92 0.03 �1.84 0.08 �2.52 0.51

0.22 0.12 1.21 0.09 2.80 0.03 �1.39 0.09 �3.61 0.55

0.53 0.11 0.19 0.08 2.73 0.03 �1.34 0.08 �1.50 0.38

0.48 0.11 0.39 0.08 2.85 0.04 �1.58 0.11 �2.54 0.57

0.53 0.11 0.70 0.09 2.88 0.04 �1.62 0.12 �3.34 0.93

0.52 0.10 0.16 0.08 2.94 0.03 �1.47 0.09 �1.81 0.59

0.40 0.12 0.90 0.09 2.93 0.02 �1.81 0.09 �3.28 1.20

0.36 0.11 0.62 0.08 2.93 0.03 �2.02 0.11 �4.37 0.85

0.66 0.17 1.05 0.10 2.82 0.03 �1.48 0.08 �3.20 0.63

0.29 0.10 0.81 0.09 2.79 0.03 �1.39 0.08 �3.22 0.52
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Our main motivation to adopt the present modelling approach was, first, to have a

statistical tool available to study whether results from the traditional normal approaches
are affected by non-normality in the transformed response times; and second, to test for

Figure 2. Plot of estimates of hp inM2: het-GLM (y-axis) againstM4:GLM(x-axis). The solid grey line

denotes a one-to-one correspondence.

Figure 3. Plot of estimates of sp inM2: het-GLM (y-axis) againstM4:GLM (x-axis). The solid grey line

denotes a one-to-one correspondence.
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qualitative differences in response behaviour, including differences in solution strategies,

guessing, etc.With respect to the lattermotivation, differences in responsebehaviourmay

be detected because they will produce a mixture of two or more qualitatively different

classes of respondents. In the present approach, the presence of different classes in a
given data set can be detected in the speed factor distribution (indicating between-subject

differences) or in the residuals (indicatingwithin-subject differences). However, the exact

number of classes cannot be determined. That is, violations of normality may indicate

qualitative differences in the response behaviour of the respondents, but the results give

no indication about the nature or number of classes.

If qualitative differences in the response behaviour of the respondents result in amulti-

modal mixture, the present approach can still be used as a statistical test for the presence

of such differences, but it cannot be used to actually model the bimodality in the
distribution. In addition, if the mixture is perfectly multi-modal (i.e., the mixture

distribution is symmetrical), the present modelling approach will not be suitable as the

observed data distribution will not be skewed. However, in less perfect cases (e.g., one

mixture component is smaller than the other or one mixture component has smaller

variance), the multi-modality that arises will be characterized by skewness and our

approach can be used to test for this effect, given that the effect size is large enough.
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