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The hallmark of severe COVID-19 is an uncontrolled inflammatory
response, resulting from poorly understood immunological dysfunc-
tion. We hypothesized that perturbations in FoxP3+ T regulatory cells
(Treg), key enforcers of immune homeostasis, contribute to COVID-19
pathology. Cytometric and transcriptomic profiling revealed a distinct
Treg phenotype in severe COVID-19 patients, with an increase in Treg
proportions and intracellular levels of the lineage-defining transcription
factor FoxP3, correlatingwith poor outcomes. These Tregs showed a
distinct transcriptional signature, with overexpression of several sup-
pressive effectors, but also proinflammatory molecules like interleukin
(IL)-32, and a striking similarity to tumor-infiltrating Tregs that sup-
press antitumor responses. Most marked during acute severe dis-
ease, these traits persisted somewhat in convalescent patients. A
screen for candidate agents revealed that IL-6 and IL-18 may individ-
ually contribute different facets of these COVID-19–linked perturba-
tions. These results suggest that Tregs may play nefarious roles in
COVID-19, by suppressing antiviral T cell responses during the severe
phase of the disease, and by a direct proinflammatory role.
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COVID-19 resulting from SARS-CoV2 infection, is a major global
health challenge. Many infected individuals remain asymptomatic

or present with only mild flu-like symptomatology, appearing
5 to 10 d after exposure, and clearing in over 1 to 2 wk. But this is
followed, in patients with more severe disease, by immunopa-
thology and immune dysregulation of poorly understood origin, a
major root of the fatality rate of 1 to 12% in different locales.
Broad immune-profiling studies (1–3) have documented several
immune phenomena that track with disease severity: lymphopenia
(4), myeloid cell abnormalities (5), impaired response to interferon
(6), and high levels of inflammatory cytokines (“cytokine storm”)
(7). Multiomic studies have shown that these manifestations are
embedded within multitrait immunotypes (1–3), complicating
mechanistic inference and the definition of potential therapies.
Regulatory T cells (Tregs) expressing the transcription factor FoxP3

are essential to maintain immunologic homeostasis, self-tolerance, and
to prevent runaway immune responses (8). Tregs regulate the
activation of several lineages of the innate and adaptive immune
systems through several effector mechanisms (9). Furthermore,
particular populations of “tissue Tregs” provide homeostatic reg-
ulation in several nonimmunological tissues, controlling inflam-
mation and promoting harmonious tissue repair (10). On the other
hand, Tregs can also prove noxious, as evidenced most clearly by
their suppression of effective cytotoxic responses in tumors, situ-
ations in which they adopt a distinctive phenotype (11–13). They
can also have paradoxical effects on antiviral responses (14, 15)
In light of these contrasting influences, we hypothesized that

Tregs might contribute to the balance of disease manifestations
that distinguish mild from severe outcomes after SARS-CoV2
infection: for example, by insufficiently curtailing the inflammatory

component, by overcurtailing the antiviral response, or by phe-
notypic destabilization. We thus performed a deep immunologic
and transcriptional analysis of circulating blood Tregs across a cohort
of confirmed COVID-19 patients.

Results
More Tregs, More FoxP3 in Severe COVID-19 Patients.We performed
a deep immunologic and transcriptional analysis of circulating
blood Tregs across a cohort of confirmed COVID-19 patients
(n = 57) (Fig. 1A and Dataset S1): mild, outpatients; severe, hos-
pitalized, 65% of which in intensive care (ICU), mostly sampled
during the cytokine storm period; and recovered, virus-negative
convalescents. Flow cytometry, with a multiparameter panel that
parsed CD25+FoxP3+ Tregs and their different phenotypes (gating
strategies in SI Appendix, Fig. S1A), revealed several perturbations
(representative plots in Fig. 1B). First, several severe patients
showed increased Treg proportions among CD4+ T cells: for some
as an increased proportion only (likely resulting from preferential
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resistance among CD4+ T cells during lymphopenia); for others,
from true numerical increase relative to healthy donors (HD)
(Fig. 1C). This conclusion differs from a recent analysis of CD4+

T cells that up-regulated CD69/4.1BB after 24-h culture with a
multipeptide mixture, hence very different from the present ex vivo
study and possibly complicated by selection in culture (16). Re-
covered patients largely reverted to baseline.
Second, expression of both FoxP3 and CD25 varied in severe

patients, bidirectionally for CD25 (SI Appendix, Fig. S1B), but as
a reproducible increase of FoxP3 mean fluorescence intensity
(MFI) (Fig. 1D). Increased FoxP3 expression coincided with the
increase in Treg percentage in most but not all patients (SI Ap-
pendix, Fig. S1C), and was observed within a broad window of 30
to 50 d after symptom onset, including some recently recovered
patients (Fig. 1E). It was not related to body/mass index (BMI), a
risk factor for COVID-19 (SI Appendix, Fig. S1D), but coincided
with disease severity, particularly marked in ICU-admitted pa-
tients (SI Appendix, Fig. S1E), and in lymphopenic cases (SI Ap-
pendix, Fig. S1F). No dependence of these phenotypes was found

on any particular treatment, in particular glucocorticoids (Dataset
S1). FoxP3 expression was not directly correlated with blood levels
of the inflammatory marker C-reactive protein (CRP), but es-
sentially all FoxP3hi patients had elevated CRP (SI Appendix, Fig.
S1G). Therefore, severe COVID-19 entails a striking induction of
FoxP3 expression in Tregs.
We examined the expression of several markers and transcrip-

tion factors (TF) to further assess Treg evolution during COVID-
19. CD45RA, which marks naïve Tregs, was reduced in patients,
especially in those with heightened Tregs and FoxP3 (SI Appendix,
Fig. S1 H and I). Expression of the activation markers KLRG1
and PD1 was increased (Fig. 1F), although not necessarily coor-
dinately (SI Appendix, Fig. S1J). Suppression of specific T cell
effector functions is associated with the expression in Tregs of the
same key TFs that drive those conventional T cell (Tconv) func-
tions (8). No patient sample showed significant expression of Bcl6,
which marks T follicular regulators (17, 18). But Tbet, expressed
in Tregs that preferentially control Th1 responses was overrep-
resented in severe patient Tregs (Fig. 1G). Interestingly, severe
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Fig. 1. Treg overrepresentation and FoxP3 induction in COVID-19 patients. (A) Experimental approach. Tregs from PBMCs across mild, severe, and recovered
COVID-19 patients, compared to HD, were assessed by flow cytometry, as well as by RNA-seq. (B) Representative flow cytometry plots of CD25+FoxP3+ Tregs
from COVID-19 patients’ PBMCs. (C) Proportions (Left) and proportions vs. absolute numbers (Right) of Tregs as measured by flow cytometry across donors; H,
HD; M, mild; R, recovered; S, severe. P values from random permutation test quantitating number of outlier values relative to distribution in HDs. (D) FoxP3
expression, measured as MFI in CD127loCD25+ Tregs. Representative flow cytometry profiles (Left) and quantification (Right); Mann–Whitney P values. (E)
Correlation between FoxP3 expression and days post disease symptoms onset across COVID-19 patients; Pearson correlation test (F) Proportion of KLRG1+

(Upper) and PD1+ (Lower) Tregs as determined by flow cytometry across COVID-19 patients; significance computed as for C. (G) Proportion of Tbet+ Tregs as
determined by flow cytometry across COVID-19 patients; significance computed as for C. (H) Correlation between percentage of CD25+FoxP3+ Tregs (x axis),
percentage of Tbet+ Tregs (y axis), and FoxP3 expression as MFI (color gradient) within severe COVID-19 patients. Healthy controls depicted in black dots and
patients with fatal outcome by an “x”; those with an unavailable normalized FoxP3 MFI measurement are depicted as gray dots.
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patients with frequent Tbet+ Tregs were distinguished from those
with highest Treg overrepresentation and FoxP3 overexpression
(Fig. 1H). Ultimately, deceased patients were mostly found in the
latter group. Thus, severe COVID-19 seems to elicit divergent
deviations among Treg cells. We surmise that the presence of
Tbet+ Tregs is related to the control of Th1 antiviral response
among effector cells.

Accentuated Treg Transcriptome in Severe COVID-19 Patients. To
decipher the functional consequences of FoxP3 overexpression
in Tregs from severe COVID-19 patients, we generated 86 RNA-
sequencing (RNA-seq) transcriptome profiles, passing quality thresh-
olds, of blood Treg (CD4+CD25hiCD127lo) or Tconv (CD4+CD25−).
Donors largely coincided with those analyzed above, and we opted
to profile purified populations rather than single-cell (higher
throughput, lower processing/computational costs) after magnetic
purification (SI Appendix, Fig. S2A). The datasets matched profiles
from flow-purified Tregs, with the usual differential expression of
“Treg signature” genes (SI Appendix, Fig. S2B). In line with the
cytometry, Tregs from severe COVID-19 patients showed higher
FOXP3 expression (SI Appendix, Fig. S2C). This overexpression
had a consequence: Tregs from severe COVID-19 patients
displayed a heightened expression of Treg signature transcripts
(Fig. 2A), reflected by a high TregSignature index, most markedly
biased in the severe group, but also in mild and recovered patients
(Fig. 2B), and correlating with FOXP3 expression (SI Appendix,
Fig. S2C). This bias was not homogeneous across all Treg-up
signature genes, a ranked plot of differential expression in each
donor revealing a small subset of TregUp signature genes actually
down-regulated in severe COVID-19 patients (including TLR5,
ID3, and FCRL1) (Fig. 2C). At the other end of the spectrum,
several Treg effector or activation transcripts were up-regulated
in severe patients (ENTPD1, HPGD, IL12RB2). Most transcripts

encoding known Treg effector molecules were up-regulated, albeit
to various degrees (Fig. 2D), with the marked exception of AREG,
a dominant player in Treg promotion of tissue repair (19, 20).
We also examined transcripts associated with effectiveness at

suppressing different Tconv functions (8). Transcripts associated
with T follicular regulators were largely unaffected in Tregs from
severe patients (Fig. 2E), with the exception of PDCD1 (encodes
PD1), consistent with cytometry results. In contrast, they gen-
erally up-regulated markers related to Th1 suppression (CXCR3,
GZMK, IL12RB1, or TBX21 [encodes Tbet]), especially marked
in patients with low percentage of Tregs (Fig. 2E), in line with the
overrepresentation of Tbet+ Tregs noted above. Profiles from
Tconv cells did not denote a particular bias toward any Th phe-
notype (SI Appendix, Fig. S2 D and E). Thus, Treg traits observed
in the flow cytometry data were confirmed by the transcriptomic
signature of these Tregs, which tends toward a supersuppressive
phenotype in severe COVID-19 patients.

A Distinct COVID-19 Disease Treg Signature Correlates with Severity.
We then asked more generally what changes, beyond Treg signature
and effector transcripts, characterized Tregs in severe COVID-19
patients, relative to HD (Fig. 3A and Dataset S2) (hereafter “Severe
COVID19 Treg Signature,” SCTS); only a minority of these
transcripts belong to the classic Treg signature analyzed above. An
SCTS index computed from this gene set was high in all severe
patients, but also persisted in muted fashion in many recovered
patients (Fig. 3B), correlating with FOXP3 expression (SI Ap-
pendix, Fig. S3A). The index was not directly related to patient age
or BMI (SI Appendix, Fig. S3B). Grouping SCTS transcripts into a
biclustered heatmap (Fig. 3C) revealed several interesting fea-
tures. Most donors clustered according to severity group, in rela-
tion to disease duration (more marked deviation at shorter times),
but not to donor age (except inasmuch as severe patients were
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19 patients compared to HD. Differentially expressed genes are highlighted (at an arbitrary threshold of P < 0.05, FC > 2, or < 0.5). (B) Severe COVID-19 index
(computed from relative expression of selected genes from A) in Tregs from COVID-19 patients and HD; P values from Mann–Whitney test. (C) Clustered
heatmap of differentially expressed genes (selected as P < 0.05, FC > 2 or < 0.5) across all donors (as ratio to mean of HD values). Each column represents one
donor. Top ribbons indicate for each individual: severity group, days from symptom onset to sample collection, age, CRP level at sampling, tumor infiltrating
Treg index, ICU admission, and final outcome (deceased in red). Left ribbon indicates the coregulated modules and their dominant composition; right ribbons
denote transcripts related to cell cycle, interferon responsive genes, Treg signature genes, and Pearson correlation of each gene’s expression to FOXP3 MFI
across all samples. (D) Representation of the average expression of each module across each group (from C, mean and SEM). Score computed independently
for each module, where 0 corresponds to the average expression of the module in HD Tregs and 1 the average expression in severe COVID-19 Tregs (red line).
(E) Changes in expression of cytokine-encoding transcripts (on a fold-change vs. average expression plot, severe COVID-19 vs. HD Tregs). (F) Treg cells
extracted from single-cell RNA-seq dataset (GSE150728) displayed as a two-dimensional UMAP. The samples are color-coded by group. (G) Same plot as F,
where each cell is color-coded according to expression of the SCTS-Up signature genes. (H) Expression of selected transcription factors in Tregs from each
donor (as ratio to mean of HD values). Each column corresponds to one individual, with severity group color-coded and a ribbon indicating CRP levels.
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generally older). Transcripts could be parsed into eight differ-
ent modules of distinct composition. Among these, module M4
was almost exclusively composed of cell cycle-related transcripts,
and strongly correlated with FoxP3 MFI, indicating that Tregs in
COVID-19 patients are highly proliferative, plausibly a compen-
sation for the lymphopenia in many severe patients. M2 mostly
included interferon-stimulated genes (ISGs). The other coregu-
lated modules included transcripts related to immune cell cross-
talk (Fig. 3C, Right). Expression of these modules evolved differ-
ently during the course of the disease (Fig. 3D). The ISGs in M2
were mostly overrepresented at early times, consistent with sharp
induction at the early phase of antiviral responses. Changes in
other modules, especially M3 and M6, were shared across all
disease stages, indicating a broader and longer-lasting perturba-
tion of the Treg pool, likely caused by secondary consequences of
the disease rather than by the virus itself. To assess how the
imprint evolves over the course of disease in the same patient, we
performed RNA-seq of sequential samples from a few initially
severe patients. The SCTS index was higher at the early stage of
ICU hospitalization and generally decreased with time (SI Ap-
pendix, Fig. S3C).
Focusing on cytokines produced by Tregs, IL10 was only

modestly induced, but CD70 (CD27L) and IL32 dominated
(Fig. 3E). The latter was intriguing in this context of the cytokine
storm that occurs in these severe patients, since it is mainly a
proinflammatory mediator, in positive feedback with interleukin
(IL)-6 and IL-1β (21). To answer the common question (whether
transcriptional changes reflect a shift in subset balance or are all
shared by all Tregs), we reanalyzed a single-cell RNA-seq peripheral
blood mononuclear cell (PBMC) dataset from COVID-19 patients
(22), drilling down on identifiable Treg cells (SI Appendix, Fig. S3D).
Tregs from severe patients were generally shifted in the UMAP
projection relative to HD (Fig. 3F) and displayed an up-regulation of
the SCTS (Fig. 3G and SI Appendix, Fig. S3E). IL32 was again one
of the dominant up-regulated transcripts (SI Appendix, Fig. S3F).

COVID-19 Tregs as Tumor Tregs. We then attempted to better un-
derstand the origin of the SCTS. Comparing changes in Treg and
Tconv cells showed some induction in the latter (particularly for
the inflammation-related components of M1), but overall much
less than in Tregs (SI Appendix, Fig. S3G), indicating that the
SCTS is largely Treg-specific. With regard to the cytokines, the up-
regulation of IL10 and IL32 were specific to Tregs, as was the
down-regulation of inflammatory cytokines (TNF, IL1B) (SI Ap-
pendix, Fig. S2E). Interestingly, the SCTS was associated with
changes in several TFs previously associated with differential gene
expression in activated Tregs (Fig. 3H). PRDM1 (also known as
BLIMP1) and MAF were up-regulated, while ID3, TCF7, and
BACH2 were repressed, consistent with previous reports (23–27).
More unexpected was the strong down-regulation of NR4A1,
normally an indicator of T cell receptor (TCR) signaling, which
may indicate a decoupling of TCR-delivered signals.
Gene enrichment analyses using a curated database of tran-

scriptome variation in CD4+ T cells brought forth 229 datasets with
significant overlap to the SCTS (SI Appendix, Fig. S4A). Besides the
expected interferon-related gene sets related to M2, many were
related to Tconv and Treg activation, mostly overlapping with M4
and M5. Most intriguing were overlaps with datasets from tumor-
infiltrating Tregs (TITR). Indeed, the expression of a signature that
distinguishes colorectal TITR from normal colon tissue (13) was
strikingly biased in Tregs from severe COVID-19 patients (Fig. 4A).
The same bias was found with gene sets that distinguish breast and
lung TITRs from blood Tregs (11, 12) (Fig. 4 B and C). A hypoxia-
induced gene set, a hallmark of tumors, was also enriched in Tregs
from severe COVID-19 patients (SI Appendix, Fig. S4B). Com-
puting a TITR index from the colorectal tumor gene set showed
that biased expression of tumor Treg transcripts was present in all
severe patients, particularly in those eventually deceased (Fig. 4D).

This index remained slightly perturbed after recovery, and was
highly correlated with the SCTS (SI Appendix, Fig. S4C). Con-
versely, with the exception of M1 and M6, all SCTS modules
showed biased expression in tumor Tregs relative to normal tissue
(SI Appendix, Fig. S4D), indicating widespread sharing not solely
limited to activation-related transcripts.
TITRs and tissue Tregs are transcriptionally similar, suggesting

the possibility that the SCTS simply denoted Tregs circulating en
masse from the lung tissue. This was not the case, however; when
highlighted in a direct comparison of tissue and tumor Tregs (from
ref. 13), the SCTC was clearly biased toward the tumor angle
(Fig. 4E). Furthermore, a set of transcripts shared by tissue
Tregs showed little enrichment in Tregs from severe COVID-19
patients (SI Appendix, Fig. S4E). This bidirectional matching shows
that the COVID-19 disease appears to be turning blood Tregs into
some equivalent of tumor Tregs.

IL-6 and IL-18 as Inducers of the Treg COVID-19 Phenotype. We next
set out to identify the signals that might be responsible for these
Treg perturbations. Given the similarities between TITRs and Tregs
from severe COVID-19 patients, we centered the search on factors
that Tregs might encounter in both tumors and SARS-CoV2 in-
fection. Hypoxia was one such factor, as it is a hallmark of tumors
and an important factor in severe COVID-19 (28), and can pro-
mote Treg suppressive function (29). Correspondingly, high levels
of lactic acid are present in tumors, where they have been reported
to affect Tregs (30), and in COVID-19 patients (31). Several in-
flammatory cytokines and chemokines are also present at elevated
levels in both tumors and blood from COVID-19 patients (32–36).
To test these candidates, we cultured PBMCs from HDs for 24 h

with each of the short-listed mediators and conditions, assessing
the effects on FoxP3 levels by flow cytometry, or as a deviation of
SCTS transcripts in RNA-seq. A few led to Treg cell loss (IL-32,
Nicotinamide) (SI Appendix, Fig. S5), some decreased FOXP3
expression (IL32, CXCL22) (Fig. 5A and SI Appendix, Fig. S5),
but IL-6 stood out in eliciting a modest but reproducible increase
in FoxP3 MFI (Fig. 5A and SI Appendix, Fig. S5) that reproduced
the situation in severe patients in Fig. 1D. Titrating IL-6, or adding
it in combination with other cytokines, did not enhance this effect.
To ask if IL-6 affected Tregs directly—or indirectly by stimulating,
for example, myeloid cells in these cultures—we repeated the ex-
periment with purified CD25+CD127lo Tregs. The same increase in
FoxP3 fluorescence intensity was observed, demonstrating a direct
effect of IL-6 on Treg cells (Fig. 5B).
RNA-seq was then performed on Treg cells purified from two

independent sets of cultures. We applied a principal component
analysis (PCA) to identify the axes of variance and identify those
that correlate with the SCTS. Tregs subjected to hypoxia showed
the most divergence from control, essentially accounting alone
for the first component of variance (Fig. 5C). Changes induced by
hypoxia did not, however, corelate with the SCTS. On the other
hand, the SCTS index correlated with the third PC, to which IL-
18–treated Tregs contributed the most, closely followed by IL-6
and CCL20 (Fig. 5C). IL-18–treated Tregs also had the strongest
correlation to the SCTS, (color-coded in Fig. 5C), while an anti-
correlation was seen for IL-32. Further parsing of the IL-18 effect
on individual modules of Fig. 3D revealed an induction of two up-
regulated modules (M5 and M2, the effector and ISG modules,
respectively) (Fig. 5 D and E). Conversely, the modules down-
regulated in COVID patients (M6 and M7, principally) were
also repressed by IL-18 (Fig. 5D). These results suggest that the
Treg perturbations of COVID-19 patients are effected in a com-
plementary manner by several mediators with partial effects: these
include IL-6’s up-regulation of FoxP3, and IL-18 inducing the
broader signature.
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Discussion
Treg cells in severe COVD-19 patients present a striking Treg
phenotype, which associates an up-regulation of FoxP3 expres-
sion with a distinctive transcriptional signature that bears much
similarity to tumor Tregs. Two flow cytometric studies also re-
cently noted increased Treg proportions and activation status
correlating with COVID-19 severity (37, 38). The overall tran-
scriptional signature we observe is a broad one, with an induction
of ISGs (not unexpected in a context of viral infection), but also
of cell proliferation, and of heightened effector functions (ENTPD1,
LAG3, LRRC32). Several tumor necrosis factor (TNF) receptor
family members, which have important roles in Treg function
and homeostasis, are among the induced SCTS transcripts. Also,
consistently up-regulated is CXCR3, the receptor for CXCL10,
one of the soluble mediators most induced in severe COVID-19
blood (39).
These observations raise two key questions. First, how do the

perturbations arise? They are not due to viral infection of the Tregs
(no viral RNA reads to speak of in these datasets). They seem
unconnected to therapy, as none of the therapies administered
to these patients correlate with the Treg traits. More likely, the
phenotype is induced by the immunologic milieu in these patients,
and this uniquely in Tregs since Tconvs are far less branded. TCR-
mediated stimulation seems unlikely, given the widespread effect
on Tregs in the single-cell data, which likely transcends clonotypic
specificity, and the strong loss of Nur77 (NR4A1). Our results
suggest that a combination of factors is at play, foremost IL-6 and
IL-18 (but other factors may contribute as well), each contributing
a particular aspect of the perturbed Treg phenotype. The impact
of IL-6 in this context is paradoxical at first, as it is generally
deemed a Treg antagonist, in particular because it blocks FoxP3
induction by TGF-β/IL-2 in culture (40). More recent studies have
painted a more nuanced picture of IL-6 in relation to Treg cells: it
is required for the differentiation of the RORγ+ Treg subpopu-
lation (41, 42) and can increase their suppressive capabilities (43).
Transgenic mice with constitutively high-serum IL-6 have slightly
increased levels of Treg cells with good suppressive function (44).

A recent study described Treg perturbations in rheumatoid ar-
thritis joints (45) that are reminiscent of those described here (in
particular with elevated FoxP3 MFI), an interesting parallel since
the arthritic joint is high in IL-6. It would have been valuable to
assess Tregs from the lungs of COVID-19 patients directly, but
such samples were not available to us.
IL-18 has been shown to promote Treg reparative function via

amphiregulin (20), and IL-18 signaling from epithelial cells to
Tregs is required for protection against colitis in the RAG transfer
model (46). It was recently proposed that IL-18 signaling is an
intermediate of the control of proreparative functions in Tregs by
Notch4 (47). The IL-18 receptor is preferentially expressed on a
subfraction of aTregs, which have preferential thymus-homing
capability (48). Our results suggest a broader impact of IL-18 on
Treg cells, not only on proreparative pathways, but involving the
wider segment of Treg effector functions represented in module
M5 (typical Treg transcripts, such as TNFRSF18 or LRRC32). In
addition, circulating Tregs from severe COVID-19 patients actu-
ally show reduced amphiregulin expression (Fig. 2D), indicating
that some aspects of IL-18 effects may be counteracted by other
components of the COVID-19 cytokine storm.
Second, do these aberrant Tregs contribute to COVID-19

physiopathology? Patients with fewer Tregs, lower FoxP3, and less
intense SCTS do better, raising the usual issue of inferring causality
from correlation. On the one hand, these Tregs might be beneficial,
controlling a cytokine storm that would have been worse without
their unusual contribution. Unfortunately, inadequate cell numbers
prevented the direct assessment of their suppressive capabilities.
On the other hand, their overexpression of FoxP3 and of Treg
effector molecules, and their similarity with dominantly suppressive
tumor Tregs, suggest that COVID-19 Tregs may overly dampen the
antiviral response during the cytokine storm phase (all samples
from severe patients profiled were collected in that period), con-
tributing to the secondary re-expansion of disease. Lending cre-
dence to this hypothesis, a parallel study of CD8+ T cells from the
same patients uncovered a dearth of SARS-CoV2 reactive cells in
the blood during the acute period (49). There are precedents for
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rogue Tregs, which acquire proinflammatory characteristics (50), if
in opposite conditions of FoxP3 attrition.
In summary, adding a key element to the multifaceted COVID-19

immune response, we identify a unique Treg deviation in COVID-19
patients, which results from the effects of several components of the
proinflammatory storm and might impact on COVID-19 pathogeny
as it does in tumors.

Materials and Methods
Patients Samples and Clinical Data Collection. Peripheral blood samples from
57 adults infected with SARS-CoV-2 prospectively collected in Massachusetts
General Hospital (MGH) were included in this study (Dataset S1). Samples
from 11 adult HD were also collected. COVID-19 patients were split into

three different groups, depending on the disease severity or the time-course
postinfection. All participants provided written informed consent in accor-
dance with protocols approved by the Partners Institutional Review Board
and the MGH Human Subjects Institutional Review Board. De-identified Treg
analysis was performed per approved Human Subjects Institutional Review
Board protocol 15-0504-04.

PBMC Isolation. Five to 10 mL of whole blood was collected in K2 EDTA tubes
and processed within a few hours. An equal volume of buffer (2 mM EDTA in
PBS) and blood was mixed and carefully layered over 5 mL Ficoll Hypaque
solution (GE Healthcare). After centrifugation for 20 min at 900 × g (with no
break) at 25 °C, the mononuclear cell layer was washed twice with excess
buffer (three times the volume of the mononuclear cells layer), and centri-
fuged for 5 min at 400 × g. To remove platelets, the cell suspension was then
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layered over 3 mL FBS, centrifuged for 10 min at 300 × g. The pellet was
resuspended in 90% FBS-10% DMSO, 5 million cells/mL, and cells stored in
liquid nitrogen.

Treg and Tconv Magnetic Isolation. Frozen PBMCs samples were processed in
batches of 4 to 10 samples, with at least one HD by batch, with strict attention
to processing time to avoid cell aggregation, which was otherwise pervasive
with samples from severe COVID-19 patients. Five to 10 × 105 PBMCs were
resuspended into PBS with 2% FBS and 1 mM EDTA. CD4+CD25hiCD127low

(Treg) were isolated by positive and negative magnetic selection, CD4+CD25-

(Tconv) by negative selection only. EasySep Human CD4+CD127lowCD25+

Regulatory T Cell Isolation Kit (StemCell, #18063) was used following the
manufacturer’s instructions. Ten percent of the final isolated fraction was
stained with anti-CD4, anti-CD8, anti-CD14, anti-CD19, and live/dead for
15 min at 4 °C, fixed in 1% PFA for 10 min at room temperature, and
analyzed by flow cytometry to determine purity and yield (antibodies
references below). The remaining 90% of the samples were resuspended
in lysis buffer (TCL Buffer [Qiagen] supplemented with 1% 2-Mercaptoethanol)
at an average concentration of 500 to 1,500 cells per 5 μL, and stored in a
low-binding tube at −80 °C.

Cell Culture. PBMCs or flow-isolated Tregs were cultured in DMEM (Thermo
Fisher, cat# A1443001) supplemented with 5% dialyzed FBS (Thermo Fisher,
cat# A3382001), 1 mM glucose (Sigma), 0.2 mM L-glutamine (GeminiBio) and
10 ng/mL IL7 (BioLegend, cat# 581904). Cells were treated with various me-
diators for 24 h. More details can be found in SI Appendix, Supplementary
Materials and Methods.

Flow Cytometry. Cells were first incubated in 100 μL of PBS with 2 mM EDTA
for 15 min with 5 μL Fc Block (Human TruStain FcX, Biolegend, cat #422301)
and a 1:500 dilution of Zombie UV viability dye (Biolegend, cat# 423107).
They were then washed with FACS buffer (phenol red-free DMEM, 2% FBS,
2 mM EDTA, 10 mM Hepes) and stained at 4 °C for 25 min. After cell surface
staining, cells were fixed overnight at 4 °C using 100 μL of Fix/Perm buffer
(eBioscience), followed by permeabilization using 1× permeabilization buffer
(eBioscience) for 40 min at room temperature in the presence of intracellular
antibodies. Antibody details can be found in SI Appendix, Supplementary
Materials and Methods. Data were recorded on a FACSymphony flow
cytometer (BD Biosciences) and analyzed using FlowJo 10 software.

RNA-Seq. For ex vivo blood Tregs, RNA-seq was performed in two different
batches, including samples coming from two to seven different experimental
batches (different experiment dates in Dataset S1). After magnetic isolation
and using the postisolation flow cytometry data, samples with purity > 65%
and expected number of cells >800 were selected for RNA-seq. For cultured
Tregs after 24 h of treatment, cells were sorted as DAPI– CD4+CD25hiCD127lo

on a Moflo Astrios Cell Sorter (Beckman Coulter). One thousand cells were
double-sorted directly into 5 μL of lysis buffer (TCL Buffer [Qiagen] supple-
mented with 1% 2-Mercaptoethanol). RNA-seq was performed with 5 μL of
the previously described lysate following the standard ImmGen low-input

protocol (https://www.immgen.org). Further details related to data analysis
can be found in SI Appendix, Supplementary Materials and Methods.

Single-Cell RNA-Seq Reanalysis. Data deposited at data repository cellxgene
(51) were used, with the cell annotation provided by Wilk et al. (22), CD4+

and CD8+ cell clusters were extracted from the processed single-cell data.
Using the Seurat pipeline (52), PCs and UMAP coordinates were recomputed
for just the CD4+ and CD8+ T cell populations. From there, K-means clustering
was recomputed using the FindClusters function with default parameters and
the cluster with the highest average expression for a list of core Treg signature
genes [CAPG, FOXP3, TNFRSF4, IFI27L2A, TNFRSF18, FOLR4, TNFRSF9, S100A6,
APOBEC3, IKZF2, H2AFZ, CTLA4, LY6A, HOPX, SERINC3, and IL2RA (53)] was
flagged for further analysis. From this Treg cluster, cell averages were calcu-
lated across all genes of the Severe COVID-19 (SCTS) up signature, and color-
coded on the Treg UMAP space for Fig. 3H.

Statistics. Unless specified otherwise, data are presented as mean ± SD and
tests of associations for different variables between COVID-19 patients and
HD were computed 1) using the nonparametric Mann–Whitney test or 2)
using randomization test: random values were generated [nrorm() in R]
from the mean and SD of log-transformed values in HD controls, testing the
frequency of draws that led to a number of observations > 95th quantile of
HD values that was equal or greater to the number of such observations in
each patient group. Correlation coefficients were from Pearson correlation.
Significance of signature overlaps into our dataset was assessed by Fisher’s
exact test when computing one signature at a time, or by a hypergeometric
test with Benjamini–Hochberg correction when using the large curated CD4+

T cell signatures database. Analyses and plots were done using RStudio
(v1.2.5019) and GraphPad Prism (v8.4.3), heatmaps generated with Morpheus
(https://software.broadinstitute.org/morpheus).

Data Availability. The data reported in this paper have been deposited in the
Gene Expression Omnibus (GEO) database (accession no. GSE179448).
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