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AbstrAct
Previously reported prognostic signatures for predicting the prognoses of 

postsurgical hepatocellular carcinoma (HCC) patients are commonly based on 
predefined risk scores, which are hardly applicable to samples measured by different 
laboratories. To solve this problem, using gene expression profiles of 170 stage 
I/II HCC samples, we identified a prognostic signature consisting of 20 gene pairs 
whose within‑sample relative expression orderings (REOs) could robustly predict the 
disease‑free survival and overall survival of HCC patients. This REOs‑based prognostic 
signature was validated in two independent datasets. Functional enrichment analysis 
showed that the patients with high‑risk of recurrence were characterized by the 
activations of pathways related to cell proliferation and tumor microenvironment, 
whereas the low‑risk patients were characterized by the activations of various 
metabolism pathways. We further investigated the distinct epigenomic and genomic 
characteristics of the two prognostic groups using The Cancer Genome Atlas 
samples with multi‑omics data. Epigenetic analysis showed that the transcriptional 
differences between the two prognostic groups were significantly concordant with 
DNA methylation alternations. The signaling network analysis identified several 
key genes (e.g. TP53, MYC) with epigenomic or genomic alternations driving poor 
prognoses of HCC patients. These results help us understand the multi‑omics 
mechanisms determining the outcomes of HCC patients.

IntroductIon

Liver cancer is the third‑leading cause of death 
from cancer and over 90% of primary liver cancers 
are hepatocellular carcinoma (HCC) [1]. The first‑line 
treatment option for HCC patients with well preserved 
liver function is resection but approximately 60%–70% 
patients will suffer from recurrence in 5 years [2–4], due 
to either intrahepatic metastases or the development of de 
novo tumors [4]. Recurrence is the main causative factor 
for the poor prognosis of HCC patients [5]. However, 
the currently used clinical and pathologic features for 
recurrence risk prediction, such as TNM stage, hepatitis 

B virus or hepatitis C virus and cirrhosis, are incapable 
to provide accurate evaluation. Therefore, it is urgent to 
develop an accurate molecular signature for predicting 
postsurgical patients with high risk of recurrence.

 Many researchers have tried to establish 
prognostic signatures based on gene expression profiles 
for HCC patients [6–12]. However, all the previously 
reported prognostic signatures were based on predefined 
risk threshold values summarized from expression 
measurements of the signature genes in the training datasets. 
Such signatures cannot be directly applied to independent 
datasets because gene expression profiles are vulnerable 
to systematic measurement biases due to the notorious 
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experimental batch effects [13, 14]. Although many data 
normalization methods have been proposed to correct such 
biases, they can hardly achieve the goal and even distort the 
real biological signals [15, 16]. Besides, data normalization 
requires collection of samples beforehand and the risk 
stratification of patients depends on the heterogeneous 
risk composition of the samples adopted for normalization 
together [16, 17]. This could produce substantial uncertainty 
for patient risk stratification and be impractical for clinical 
applications [16, 17]. An efficient solution would be to take 
full advantage of the within‑sample relative expression 
orderings (REOs) of genes, which are robust to batch effects 
and resistant to monotonic data transformation [14, 18, 19]. 
As demonstrated in our previous studies for breast cancer 
[19, 20] and lung cancer [21], prognostic signatures based 
on within‑sample REOs can directly and robustly analyze 
individual disease samples, in a one‑by‑one manner, 
measured by different laboratories. Another problem of 
previously reported prognostic signatures of HCC is that 
many of them are generated in patients with advanced 
stage [10, 12, 22] or regardless of stage [8, 9], which 
might be less relevant to the prognosis of resectable HCC. 
Therefore, it is worthy employing the REOs‑based method 
to identify robust prognostic signatures for early stage HCC.

In this study, using three datasets of gene expression 
profiles for HCC patients, we developed and validated a 
REOs‑based prognostic signature consisting of 20 gene 
pairs. In the validation dataset of the HCC samples 
from The Cancer Genome Atlas (TCGA) [23], we used 
the TCGA multi‑omics data to analyze the distinct 
epigenomic and genomic characteristics of two prognostic 
groups. Moreover, the signaling network analysis further 
revealed several key genes with epigenomic or genomic 
alternations determining the outcomes of HCC patients.

results

development and validation of the reos‑based 
prognostic signature

Our general flowchart was described in Figure 1. 
Using the gene expression profile of 170 HCC samples 
measured by the GPL3921 platform (Table 1), denoted 
as HCC170, we found 32 genes whose expression 
levels were significantly correlated with the disease‑free 
survival (DFS) of HCC patients (univariate Cox 
proportional‑hazards regression model, pFDR < 20%). For 
every two of the 32 prognosis‑associated genes, according 

Figure 1: The workflow for construction and validation of the prognostic signature. The workflow showed four major 
analysis steps: the development (step 1) and validation (step 2) of the gene pairs signature; multi‑omics characteristics analyses of distinct 
prognostic groups (step 3) and the SIGNOR network analysis for HCC prognostic genes (step 4).
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to their REOs in each sample, we classified all samples into 
two subgroups and evaluated whether the two subgroups 
of samples had significantly different DFS. Totally 192 
prognosis‑associated gene pairs were identified (univariate 
Cox regression model, pFDR < 10%). The 20 gene pairs 
with the highest C‑index values (C‑index = 0.71) were 
selected as the final prognostic signature (Table 2) and 
patients were classified into the high‑risk group when at 
least ten gene pairs suggested that this patient was at high 
risk (see Materials and Methods and Figure 1). According 
to this rule, the 170 samples in the training dataset were 
stratified into a low‑risk group with 101 samples and a 
high‑risk group with 69 samples, and the former group 
had significantly better DFS (HR = 5.97, 95% CI: 
3.78–9.44, p < 2.2 × 10–16, C‑index = 0.71, Figure 2A) and 
overall survival (OS) (HR = 7.64, 95% CI: 3.99–14.58, 
p = 4.70 × 10–13, C‑index = 0.73, Figure 2B) than the latter 
group. A multivariate COX regression analysis showed 

that the 20‑gene‑pair prognostic signature remained 
significantly associated with patients’ DFS after adjusting 
for TNM stage, hepatitis B virus infection, liver cirrhosis 
and α‑fetoprotein, as shown in Table 3.

 In the first validation dataset with 60 samples 
from two different laboratories but measured by the same 
platform GPL571, denoted as HCC60, 8 and 52 samples 
were classified into the high‑ and low‑risk groups, 
respectively. The low‑risk group had significantly better 
DFS (HR = 4.13, 95% CI: 1.85–9.24, p = 1.92 × 10–4, 
C‑index = 0.58, Figure 2C) and OS (HR = 3.13, 95% 
CI:1.27–7.75, p = 9.27 × 10–3, C‑index = 0.59, Figure 2D) 
than the high‑risk group. The second validation dataset 
was composed of 314 TCGA samples of patients with 
just OS data but no DFS data, denoted as HCC314. The 
significant correlations between DFS and OS have been 
reported for gastric cancer [24], colorectal cancer [25], 
breast cancer [26] and renal cell carcinoma [27]. Here, 

table 1: description of the datasets used in this study
Hcc170 Hcc60 Hcc314

Accession GSE14520 GSE14520 E‑TABM‑36 TCGA
Platform GPL3921 GPL571 IlluminaHiseq‑RNAseqV2
sample size 170 21 39 314
Age 51.5 (21–77) 47 (33–76) 68 (18–79) 61 (18–90)
Median follow‑up period(month) 53.4 (3.3–67.4) 34.4 (1.8–63.8) 35 (3–60) 10.93 (0–122.5)
Gender

Male 143 (84%) 20 (95%) 31 (79%) 219 (70%)
Female 27 (16%) 1 (5%) 8 (21%) 95 (30%)

tnM stage
I 93 3 0 154
II 77 1 0 71
III 0 2 0 65
IV 0 0 0 4
NA 0 15 39 20

HbV
AVR‑CC 46 2 0 0
CC 119 4 0 0
NA 5 15 39 314

cirrhosis
yes 153 20 0 6
no 17 1 0 3
NA 0 0 39 305

AFP
> 300 ng/mL 66 10 0 56
< = 300 ng/mL 101 10 0 178
NA 3 1 39 80

Abbreviations: NA, not available; AVR‑CC, active viral replication chronic carrier; CC, chronic carrier.
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we also assessed the correlation between DFS and OS in 
HCC using datasets HCC170 and HCC60. The Pearson’s 
linear correlation coefficients between DFS and OS were 
0.78 (95% CI:0.71–0.83) and 0.82 in the two datasets, 
respectively. The results suggested DFS can be a valid 
surrogate for OS in HCC. Therefore, for the dataset 
HCC314, we shifted survival analysis from DFS to OS, 
which is the golden standard for judging the success of 
a particular treatment [28]. The low‑risk group of 170 
patients had a significantly better OS than the high‑risk 
group of 144 patients (HR = 1.95, 95% CI:1.21–3.14, 
p = 5.09 × 10–3, C‑index = 0.59, Figure 2E). Due to 
the lack of clinical parameters for many patients in the 
two validation datasets, we only analyzed whether the 
20‑gene‑pair prognostic signature was independent of 
TNM stage for dataset HCC314. Multivariate COX 
regression analysis showed that the 20‑gene‑pair 
prognostic signature remained significantly associated 
with patients’ OS after adjusting for TNM stage in dataset 
HCC314 (Table 3).

 Further, we were able to provide evidence that the 
20‑gene‑pair prognostic signature was independent of stage. 
From the HCC170 dataset, we detected 1, 212 and 1, 074 

differentially expressed genes (DEGs) (Student’s t‑test, 
FDR < 10%) between the high‑ and low‑risk groups for 
stage I and II patients, respectively. The two DEGs lists 
shared 287 genes and they all displayed with the same 
over‑/under‑expression directions in the high‑risk samples 
compared with the low‑risk samples, which was highly 
unlikely to occur by chance (binomial distribution test, 
P < 2.2 × 10–16, see Materials and Methods). Similarly, 
for the HCC314 dataset, genes shared between any two 
DEGs lists of the prognostic groups for stage I, II and III 
were also highly consistent (binomial distribution test, all 
P < 2.2 × 10–16) (Supplementary Table S1). These results 
supported that the 20‑gene‑pair prognostic signature was 
independent of stage. In the following text, we analyzed 
samples in the same dataset together despite of stage.

distinct transcriptional and functional 
characteristics of the prognostic subtypes

Using Student’s t‑test with 1% FDR control, we 
detected 1, 197 DEGs between the high‑ and low‑risk 
prognostic groups recognized from the training dataset 
HCC170. Similarly, 5, 026 DEGs were detected between 

table 2: the 20‑gene‑pair prognostic signature
signature Gene A Gene b c‑index beta pFdr

Pair1 CAT EBAG9 0.6581 1.19 4.31 × 10–06

Pair2 RNF208 MTMR10 0.6121 0.96 9.20 × 10–05

Pair3 TUBA8 MTMR10 0.6069 0.92 1.01 × 10–03

Pair4 RNF208 GULP1 0.5886 0.79 5.25 × 10–04

Pair5 ST18 ADAMTS3 0.5714 0.61 6.10 × 10–03

Pair6 OSBPL10 NPM3 0.5679 0.74 2.81 × 10–03

Pair7 TUBA8 NPM3 0.5583 0.60 2.06 × 10–02

Pair8 TRIM26 TRMT12 0.5565 1.20 2.17 × 10–04

Pair9 RNF208 OSBPL10 0.5562 1.33 8.85 × 10–03

Pair10 TUBA8 PF4V1 0.5502 1.29 1.68 × 10–04

Pair11 ST18 NTS 0.5469 0.49 4.97 × 10–02

Pair12 CAT TRMT12 0.5431 1.74 8.87 × 10–05

Pair13 RNF208 SLC52A2 0.5362 1.22 2.82 × 10–02

Pair14 SORBS2 HSF1 0.5359 1.34 1.26 × 10–03

Pair15 RNF208 HSF1 0.5342 1.97 3.55 × 10–02

Pair16 SORBS2 SLC52A2 0.5337 1.82 1.31 × 10–04

Pair17 PYGL EIF3H 0.5333 1.97 3.56 × 10–02

Pair18 CAT NOLC1 0.5326 2.35 3.84 × 10–05

Pair19 RNF208 SLC2A1 0.5269 0.70 7.22 × 10–02

Pair20 EYA1 PF4V1 0.5264 1.13 7.67 × 10–03

Note: Beta the parameters calculated by the univariate Cox regression model. Beta represents the risk coefficient of  
within‑sample REO of gene pair (A, B), where Beta > 0 indicates that Ea < Eb is a risk factor, and vice versa. pFDR, the 
adjusted P‑value by storey.
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Figure 2: the Kaplan‑Meier curves of disease‑free survival and overall survival for prognostic groups predicted by the 
20-gene-pair in the training and validation datasets. Kaplan‑Meier curves of disease‑free survival (A) and overall survival (b) for 
the training dataset HCC170; Kaplan‑Meier curves of disease‑free survival (c) and overall survival (d) for the validation dataset HCC60; 
Kaplan‑Meier curves of overall survival (e) for the validation dataset HCC314. A sample was classified into the high‑risk group (red line) 
if and only if at least 10 of the 20 prognostic gene pairs voted for high‑risk; otherwise, the low‑risk group (blue line).
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the high‑ and low‑risk prognostic groups recognized from 
the validation dataset HCC314. These two lists of DEGs 
had 684 overlapped genes and the concordance score was 
98.10% (binomial distribution test, P < 2.2 × 10–16, see 
Materials and Methods). In the validation dataset HCC60 
including samples from two different laboratories, 
we detected 2, 192 DEGs between the two prognostic 
groups (FDR < 1%) using the Rank Product algorithm 
which was insensitive to batch effects. This list of DEGs 
overlapped with 443 of the 1, 197 DEGs detected from 
the training dataset and the concordance score was 
86.46%, which was also unlikely to occur by chance 
(binomial distribution test, P < 2.2 × 10–16). These results 
suggested that the distinct transcriptional characteristics 
of two prognostic groups recognized from different 
datasets were highly consistent. The signature genes 
differentially expressed between the high‑risk group and 
the low‑risk group in the three datasets were shown in 
Supplementary Table S2.

 Functional analysis for the 5026 DEGs detected 
from the HCC314 dataset showed that the genes 
overexpressed in the high‑risk group were significantly 
enriched in pathways related to cell proliferation and 
tumor microenvironment, such as cell cycle, NF‑kappa B 
signaling pathway and focal adhesion pathway, whereas 
the underexpressed genes were significantly enriched in 
metabolic pathways (hypergeometric distribution model, 
FDR < 5%, Supplementary Table S3). Thus, compared 
with the low‑risk patients, the high‑risk patients might 

have faster growth and aberrant metabolism associated 
with poor outcome [23, 29].

distinct epigenomic and genomic characteristics 
of prognostic subtypes

In the HCC314 dataset for TCGA samples, 
314 samples had DNA methylation data, which were 
predicted into 144 high‑risk samples and 170 low‑risk 
samples by the 20‑gene‑pair transcriptional signature, 
respectively. We identified 855 hypermethylated and 
537 hypomethylated genes in the high‑risk group 
compared with the low‑risk group (Wilcoxon rank‑sum 
test, FDR < 1%), respectively. Among the 855 
hypermethylated genes, 318 were overlapped with the 
5, 026 DEGs between the high‑ and low‑risk groups 
and the concordance score between hypermethylation 
and underexpression of these overlapped genes was 
76.10%, which was unlikely to occur by chance (binomial 
distribution test, P < 2.2 × 10–16). Similarly, among 
the 537 hypomethylated genes, 203 were overlapped 
with DEGs between the high‑ and low‑risk groups. 
The concordance score between hypomethylation and 
overexpression of these overlapped genes was 81.77%, 
which was also highly unlikely to occur by chance 
(binomial distribution test, P < 2.2 × 10–16). These results 
suggested that epigenetic differences of gene promoters 
may play an important role in inducing transcriptional 
difference between the high‑ and low‑risk groups.

table 3: univariate and multivariate cox regression analyses for the 20‑gene‑pair signature

Variables
univariate model Multivariate model

Hr (95% cI) P Hr (95% cI) P
Hcc170
Predictive signature
(high vs. low) 5.97 (3.78–9.44) < 2.2 × 10–16 5.92 (3.68–9.53) 2.43 × 10–13

Stage
(II vs. I) 2.03 (1.32–3.11) 9.64 × 10–4 1.62 (1.03–2.54) 3.66 × 10–2

HBV
(AVR‑CC vs. CC) 1.41 (0.89–2.22) 0.14 1.14 (0.88–1.81) 0.58

Cirrhosis
(yes vs. no) 2.14 (0.87–5.28) 0.09 1.60 (0.63–4.05) 0.32

AFP
(> 300 ng/mL vs. < = 300 ng/mL) 0.92 (0.59–1.44) 0.73 0.73 (0.46–1.14) 0.17

Hcc314
Predictive signature
(high vs. low) 1.94 (1.21–3.14) 5.09 × 10–3 1.87 (1.12–3.11) 1.58 × 10–2

Stage
(IV/III vs. II/I) 1.62 (0.91–2.89) 0.10 1.53 (0.85–2.75) 0.16

NOTE: Bold indicates significant P values.
Abbreviations: HBV, hepatitis B virus; AVR‑CC, active viral replication chronic carrier; CC, chronic carrier.
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In the HCC314 dataset, 309 samples had copy 
number alteration data, which were stratified into 140 
high‑risk samples and 169 low‑risk samples, respectively. 
In the high‑risk samples, the frequencies of copy number 
gain at 8q13.3, 8q24.21 were 30.10% and 33.66%, 
respectively, which were significantly higher than the 
corresponding frequencies of 25.57% and 29.13% in 
the low‑risk patients (Fisher’s exact test, FDR < 10%). 
Among the 209 genes located in the two amplified regions, 
70 genes were included in the list of DEGs between the 
high‑risk group and low‑risk group, and all of them 
were overexpressed in the high‑risk group. This was 
unlikely to occur by chance (binomial distribution test, 
P < 2.2 × 10–16). These 70 amplified genes all located 
at 8q24, supporting previously reported results [30, 31]. 
12.30% and 27.18% of the high‑risk patients showed copy 
number loss at 3p13 and 17p11.2, respectively, which 
were also significantly higher than the corresponding 
frequencies of 7.12% and 23.31% in the low‑risk patients 
(Fisher’s exact test, FDR < 10%). However, the four genes 
located in the two deleted regions were not included in the 
list of DEGs between the high‑ and low‑risk groups.

 The 162 samples with somatic mutation data in the 
HCC314 dataset were stratified into 80 high‑risk samples 
and 82 low‑risk samples, respectively. We detected 193 
genes whose mutation frequencies tended to be different 
between the two prognostic groups (Fisher’s exact test, 
P < 0.05). Impressively, 190 of the 193 genes had higher 
mutation frequencies in the high‑risk group compared 
with the low‑risk group, significantly was unlikely to 
be observed by chance (binomial test, P < 2.2 × 10–16). 
Functional enrichment analysis showed that these 190 
mutation genes tended to be enriched in HIF‑1 and 
PI3K‑Akt signaling pathways (hypergeometric distribution 
model, P < 0.05) (Supplementary Table S4), suggesting 
that mutation‑induced disturbances of these pathways 
might increase patients’ survival risk.

network analysis of prognosis‑associated genes 
with multi‑omic characteristics

We defined “drivers” of the disease prognosis 
as those genes which had epigenomic and/or genomic 
alternations with concordant transcriptional changes in 
the high‑risk prognostic group compared with low‑risk 
prognostic group, including 242 hypermethylated 
and overexpressed genes, 166 hypomethylated and 
underexpressed genes, 70 amplified and overexpressed 
genes and 193 mutated genes. Then, based on the 
activating or inhibitory relations among proteins 
documented in the SIGnaling Network Open Resource 
(SIGNOR) [32] database, we constructed a directed 
network by linking the drivers mapped to SIGNOR with 
other DEGs which had direct activating or inhibitory 

links with the drivers. The network included 75 drivers 
(18 hypermethylated and overexpressed genes, 37 
hypomethylated and underexpressed genes, 6 amplified 
and overexpressed genes and 14 mutated genes) and 133 
DEGs directly linked to them (Supplementary Table S5). 
208 genes were significantly enriched in 21 biological 
pathways, including cell cycle, focal adhesion and 
PI3K‑Akt signaling pathway (hypergeometric distribution 
model, FDR < 10%). The largest connected component 
(or sub‑network) of this network, as shown in Figure 3, 
included 13 hypermethylated genes, 20 hypomethylated 
genes, 4 amplified genes and 10 mutated genes in the 
high‑risk group. In the following text, we focused on 
analyzing six hub genes (TP53, SMAD2, MYC, PTK2, 
PTEN and BCL2) with the largest degrees (all ≥ 7) in this 
sub‑network.

 Three of the six genes, TP53, MYC and SMAD2, 
were included in the cell cycle pathway. TP53, a tumor 
suppressor interacting with 41 DEGs in the sub‑network, 
exhibited mutations in 42.50% of the high‑risk patients. 
The mutation of TP53 is correlated with the aggressiveness 
and poor prognosis of HCC [33, 34]. MYC, interacting 
with eight DEGs in the sub‑network, was overexpressed 
in the high‑risk patients. 74.29% of the high‑risk patients 
carried MYC amplification which can lead to poor 
prognosis via enhancing cell cycle and proliferation of 
cancer cell [35]. Besides, MYC had a direct link with 
SMAD2 which was hypomethylated and overexpressed 
in the high‑risk patients and interacted with 15 DEGs in 
the sub‑network. It is known that the overexpression of 
SMAD2, a regulator of cell proliferation, apoptosis and 
differentiation, is correlated with poor survival of gastric 
carcinoma [36], gliomas [37] and non‑small cell lung 
cancer [38]. Additionally, the overexpression of SMAD2 
could be induced by the suppressed activity of PTEN [39], 
which was hypermethylated and underexpressed in the 
high‑risk patients. It is well known that reduced expression 
of PTEN is correlated with tumor progression and poor 
prognosis in HCC patients [40, 41]. As PTEN functions 
in the focal adhesion pathway, this result suggested a 
functional interplay between focal adhesion and cell cycle 
pathways. Another important gene functioning in the focal 
adhesion pathway, PTK2, was overexpressed in the 
high‑risk patients and amplified together with MYC in 
74.29% of the high‑risk patients. It has been reported that 
overexpression of PTK2 is associated with shorter overall 
survival and higher recurrence rates of HCC [42, 43].

Moreover, the hypomethylated BCL2 in the 
PI3K‑Akt signaling pathway exhibited overexpression 
in the high‑risk patients, which was consistent with the 
previously reported result [44]. Notably, the perturbed 
signaling network was closely intertwined, implying that 
genes involved in different pathways may contribute to 
poor prognosis of HCC through functional cross‑talks. For 
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example, both TP53 mutation and BCL2 overexpression 
may bring about the development of HCC due to the 
imbalance between cell proliferation and apoptosis [45].

The above analyses indicated that six hub genes 
with epigenomic or genomic alternations might play 
key roles in driving poor prognoses of HCC patients. As 
only a few genes could be mapped to the sub‑network, 
many prognosis‑related pathways were not represented 

in the sub‑network. We will further discuss those 
prognosis‑related pathways in the Discussion section.

dIscussIon

In this study, we developed a transcriptional 
prognostic signature based on within‑sample REOs 
of 20 gene pairs for early stage (I–II) primary HCC 

Figure 3: The SIGNOR sub-network for HCC prognosis “drivers”. This sub‑network included prognosis “drivers”, which have 
distinct epigenomic and/or genomic alternations with concordant expression changes in the high‑risk patients, and other “non‑drivers” 
prognosis‑associated DEGs directly linked to the drivers. Circle nodes represent “non‑drivers” and the other nodes represent various 
types of drivers. Rectangle, amplified genes with concordant overexpressions in the high‑risk group; Diamond, hypermethylated (or 
hypomethylated) genes with underexpression (or overexpression) in the high‑risk group; Triangle, genes with frequently mutated in the 
high‑risk group; Hexagon, overexpressed genes with hypomethylation and mutation in the high‑risk group. The node colors indicate genes’ 
overexpression (Red) or underexpression (Blue) states in the high‑risk group.
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tissues. Different from previously reported signatures 
based on predefined risk scores, the REOs‑based 
prognostic signature is robust against experimental 
batch effects and data normalization, and can be easily 
applied at the individual level to samples profiled in 
different laboratories. Therefore, the REOs‑based 
prognostic signature is a promising type of signature for 
successfully predicting the DFS and OS in HCC patients 
after resection. The integrated analyses further revealed 
the distinct epigenetic and genomic characteristics of 
the two prognostic groups. The network analysis of 
prognosis‑associated genes with distinct epigenomic 
or genomic characteristics provides insights into the 
underlying mechanisms of HCC prognoses.

 The genes overexpressed in the high‑risk patients 
were mainly enriched in two groups of pathways. One 
group was cell proliferation‑related pathways, including 
cell cycle and PI3K‑Akt signaling pathway, which were 
both correlated with poor prognosis of HCC [46–49]. 
Especially, the cell cycle pathway harbors two key genes 
(MYC and SMAD2) and the PI3K‑Akt signaling pathway 
includes one key gene (BCL2) which were overexpressed 
with concordant epigenomic or genomic alternations in 
the high‑risk samples. These results strongly indicated that 
the high‑risk patients’ tumors had higher growth ability 
than the low‑risk patients. Another group of pathways 
was mainly related to tumor microenvironment, such 
as focal adhesion and chemokine signaling pathways. 
Apart from the hub gene PTK2, Osteopontin (OPN) in 
the focal adhesion pathway, which was overexpressed 
and hyopmethylated in the high‑risk patients, can 
enhance cell proliferation and metastasis [50] and may be 
associated with the high recurrence rate and poor survival 
of HCC after resection [51]. MAPK3 in the chemokine 
signaling pathway was overexpressed in the high‑risk 
patients. It has been reported that the activation of MAPK3 
correlates with poor survival of HCC patients [44]. These 
results suggested that tumor microenvironment played 
an important role in the prognosis of HCC patients. A 
better understanding of the interactions between tumor 
microenvironment and tumor cells may be helpful for 
us to identify additional effective treatment targets. 
For example, sorafenib, a most successful medication 
of targeted treatment for advanced HCC, can benefit 
patients’ survival through disrupting the interaction 
between tumor cells and stromal cells [52, 53].

 The genes underexpressed in the high‑risk patients 
were largely enriched in metabolic pathways, including 
retinol metabolism, carbon metabolism and drug 
metabolism ‑ cytochrome P450. While it is well known 
that metabolic pathways are the most frequently disturbed 
pathways in HCC [53, 54], our results indicated that 
metabolism functional impairment of liver could induce 
poor outcome [9, 55, 56]. Besides, HCC is mainly resulted 
from exposure to external environmental factors which 
can result in epigenetic changes [29] and consequently 

would cause changes in gene expression and metabolism 
[57–59]. The alternation of liver metabolism requires 
further investigation which may help us better understand 
the epigenetic processes determining HCC prognoses.

 In conclusion, we developed a 20‑gene‑pair 
prognostic signature to robustly predict the DFS and OS 
of postsurgical HCC patients. Further, the multi‑omics 
analyses and the network analysis provided hints on the 
underlying mechanisms determining the prognoses of 
HCC patients.

MAterIAls And MetHods

data sources and data preprocessing

Three datasets of HCC used in this study were 
downloaded from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) [60], ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress/) [61] and TCGA 
(http://cancergenome.nih.gov/). From these datasets, we 
extracted samples with DFS or OS data for analyses, 
as summarized in Table 1. The GSE14520 [7] dataset 
included two batches of samples, we used the 170 stage 
I/II samples from the larger batch to train a prognostic 
signature. The 21 samples from the smaller batch, together 
with the 39 samples from the E‑TABM‑36 [22] dataset, 
were used as the first validation dataset. The second 
validation dataset was composed of 314 TCGA samples 
of patients with only OS data, denoted as HCC314. All 
samples included in the three datasets were for patients 
treated with surgery only.

 The raw mRNA expression data (.CEL files) for the 
HCC170 and HCC60 datasets were preprocessed using the 
Robust Multi‑array Average algorithm [62]. Probe‑set IDs 
were mapped to Entrez gene IDs with the corresponding 
custom CDF files. If multiple probesets were mapped to a 
gene, the expression value of the gene was defined as the 
arithmetic mean of the values of the multiple probesets (on 
the log2 scale).

 For the HCC314 dataset, integrative data including 
level 3 mRNA‑seq profiles and DNA methylation profiles 
and level 2 gene mutation profiles were obtained from 
TCGA portal. For DNA methylation profiles, we only 
analyzed the 25, 978 CpG sites located at the promoter 
regions of genes. Probes that had any “NA”‑masked data 
points and that were designed for sequences on X and Y 
chromosomes were removed [63]. Probe IDs were mapped 
to Entrez gene IDs with the corresponding platform file. 
Totally, 19, 890 CpG sites mapped to 13, 453 genes 
were analyzed in this study. For gene mutation data, 
only the non‑synonymous mutations were included and 
a discrete mutation profile including 19, 669 genes were 
analyzed. Copy number data of level 4 were downloaded 
from Firehose (https://confluence.broadinstitute.org/ 
display/GDAC/Download). Using the significant regions 
of gain or loss identified by GISTIC 2.0 [64], we assigned 
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a discrete copy number alteration status to each gene in 
each sample.

 The SIGnaling Network Open Resource (SIGNOR) 
[32] database, including 3646 proteins with 12, 285 
directed relations representing various activating or 
inhibitory effects, was downloaded and used to constructed 
a directed gene network.

survival analysis

The disease‑free survival (DFS) time was defined 
as the time from surgery to the date of tumor recurrence 
or distant metastasis, and overall survival (OS) time was 
defined as the time from surgery to death or the final 
documented date (censored). The Pearson’s linear 
correlation was used to assess the correlation between 
DFS and OS. The univariate Cox proportional‑hazards 
regression model was used to evaluate the correlation of 
expression levels of genes and REOs of gene pairs with 
patients’ DFS. The multivariate Cox regression model was 
used to evaluate the independent prognostic value of the 
signature after adjusting for clinical factors. The C‑index 
proposed by Harrell et al. [65] was used to evaluate 
the overall concordance between the predicted risk 
classification and the observed DFS or OS time. Survival 
curves of DFS and OS between distinct subgroups were 
visualized with Kaplan‑Meier plots and the p‑value for 
the difference between the survival curves was calculated 
by the log‑rank tests [66]. The Cox proportional hazards 
regression model was also used to calculate the hazard 
ratios (HRs) and their 95% confidence intervals (CIs).

Identification of prognostic gene pair signature

For a pair of genes, gene A and gene B, all 
samples were classified into two subgroups according 
to the REO (Ea > Eb or Ea < Eb) of the gene pair in 
each sample. Here, Ea and Eb represent the expression 
levels of gene A and gene B, respectively. We used the 
univariate Cox proportional‑hazards regression model 
to evaluate whether the patients in the two subgroups 
had significantly different DFS. The p‑values were 
adjusted to positive false discovery rate (pFDR) using 
the Storey procedure [67], a less stringent and more 
powerful procedure than the Benjamini and Hochberg 
FDR control procedure. The significant gene pairs 
detected with 10% pFDR control were defined as 
prognosis‑associated gene‑pairs. Then, the gene pair 
with the highest C‑index was selected as the seed and 
candidate prognosis‑associated gene pairs were added 
to the signature one at a time until the addition of one 
gene pair did not improve the C‑index. Here, a forward 
selection procedure was performed to search an optimal 
subset of the prognosis‑associated gene pairs that reached 

the highest C‑index based on the following classification 
rule: when at least a half gene pairs voting for high risk, 
a patient was assigned to the high‑risk group; otherwise, 
the low‑risk group. The optimal subset of gene pairs with 
the highest C‑index was chosen as the final prognostic 
gene pair signature. Figure 1 illustrated the flowchart 
of developing and validating the prognostic signature 
consisting of gene pairs.

Analysis of epigenomic and genomic data

The Student’s t‑test was used to select differentially 
expressed genes (DEGs) between two groups of samples. 
For the HCC60 dataset including samples from two 
different laboratories, the Rank Product algorithm [68], 
which is insensitive to batch effects, was used to select 
DEGs. The Wilcoxon rank‑sum test was used to select 
differentially methylated (DM) CpG loci between the 
high‑ and low‑risk samples in the HCC314 dataset. If 
the promoter of a gene had both hypermethylated and 
hypomethylated CpG loci, this gene was excluded from 
sub‑sequent analyses [69]. The genes with at least one DM 
CpG locus were termed DM genes. Fisher’s exact test was 
used to detect genes which had significantly different copy 
number alternation frequencies or mutation frequencies 
between two prognostic groups.

concordance scores

If two DEGs lists extracted from two independent 
datasets shared k genes, of which s genes had the 
same dysregulation directions (both overexpressed or 
underexpressed in the two DEGs lists) in the high‑risk 
group compared with the low‑risk group, the concordance 
score was calculated as s/k. This score was used to 
determine the reproducibility of DEGs detected from 
independent datasets.

 If k hypermethylated (or hypomethylated) genes 
were also differentially expressed, of which s genes were 
correspondingly underexpressed (or overexpressed), the 
concordance score was calculated as s/k. This score was 
used to determine the concordance between DEGs and 
DM genes.

 The cumulative binomial distribution model 
was used to estimate the probability of observing a 
concordance score of s/k by chance [70]:
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where pe (here, ep  = 0.5) is the probability of a 
gene having the concordant relationship between the two 
gene lists by random chance.
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Pathway enrichment analysis

Functional enrichment analysis was performed 
based on the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) [71]. The hypergeometric distribution model 
was used to determine biological pathways that were 
significantly enriched with genes of interest [72]. The 
Benjamini and Hochberg procedure [73] was used to 
calculate the False Discovery Rate (FDR). All statistical 
analyses were done by using the R software package 
version 3.0.2.
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