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Abstract: Coffee Leaf Rust (CLR) is a fungal epidemic disease that has been affecting coffee trees
around the world since the 1980s. The early diagnosis of CLR would contribute strategically to
minimize the impact on the crops and, therefore, protect the farmers’ profitability. In this research, a
cyber-physical data-collection system was developed, by integrating Remote Sensing and Wireless
Sensor Networks, to gather data, during the development of the CLR, on a test bench coffee-crop. The
system is capable of automatically collecting, structuring, and locally and remotely storing reliable
multi-type data from different field sensors, Red-Green-Blue (RGB) and multi-spectral cameras
(RE and RGN). In addition, a data-visualization dashboard was implemented to monitor the data-
collection routines in real-time. The operation of the data collection system allowed to create a
three-month size dataset that can be used to train CLR diagnosis machine learning models. This
result validates that the designed system can collect, store, and transfer reliable data of a test bench
coffee-crop towards CLR diagnosis.

Keywords: coffee leaf rust; cyber-physical system; internet of things; mechatronic design; technologi-
cal integration; remote sensing; wireless sensor networks

1. Introduction

Coffee, for over 1000 years and even today, has been one of the most consumed
drinks around the world with more than 400 billion cups per year [1]. Among more
than 100 existing coffee species, only two are used for the drink preparation, namely
Coffea arabica and Coffea robusta. The first one, which is used to obtain a more aromatic
and softer beverage, is best valued by the market and represents over 75% of the world
production. The drink resulting from processing the second one, which is considered to
have a stronger and more bitter flavor, represents the remaining 25% [2]. Moreover, each
species subdivides into coffee varieties, each of them having characteristics that allow the
creation of distinct aromas and tastes.

As a case study, we consider the case of Colombia, which is the third major coffee pro-
ducer of the world [3]. Colombia is located on the Bean Belt, a strip across the globe where
all coffee plants are grown [4]. The national production is concentrated on Coffea arabica,
due to the mountainous topography of the country, which offers a suited combination
of altitude, temperature, and rainfall for this species. Particularly, the most cultivated
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varieties of Coffea arabica in the country are Castillo, Colombia, Caturra, and Bourbon [5].
Depending on the selected variety and the post-harvesting process, the resulting product
is offered in two different markets. One of them is the standard coffee market, which is
guided by the international coffee price, and the other one is called the specialty coffee
market, which has a premium above the standard price.

Regarding the phytosanitary problems on coffee crops, one of the main concerns is
related to the presence of pests, such as the Coffee Borer Beetle, and diseases, such as the
Coffee Brown Eye Spot and the Coffee Leaf Rust (CLR) [6]. For the diseases, the CLR is the
most relevant one, in economic and pathological terms, at the national level. This disease
presents a vertiginous expansion on the coffee plant and its surroundings, and it can cause
massive defoliation on the whole crop [7]. As an example, in extreme cases, this disease
has led to devastating losses in some Colombian regions reaching between 70% and 80% of
the harvest [6].

It should be noted that the use of technology to support agriculture has made it possi-
ble to automate and optimize production. In this sense, sensors can be used both to monitor
the machinery required for a plantation (e.g., performing predictive maintenance [8]) and
to detect specific features of a crop and its ecosystem (e.g., non-invasive phenotyping in
plant breeding [9]). Other applications of the use of sensors in agriculture may include
precision irrigation, greenhouse instrumentation, and pest control [10].

It is noteworthy that, at the beginning of this research, the general objective was ori-
ented to the early detection of the Coffee Brown Eye Spot disease through Remote Sensing
(RS) with spectral reflectance data analysis. However, after carrying out the interviews with
the Colombian coffee experts and producers, we realized that the mentioned disease was
not as crucial or economically limiting as the CLR. The interviewees expressed that their
main concern was the CLR and most of them even reported that they have been struggling
with it over the last four years. Thus, and thanks to their recommendations, we decided
not only to diagnose the CLR instead of the Coffee Brown Eye Spot disease, but also to
integrate Wireless Sensor Networks (WSN). In that sense, the first step towards diagnosing
the disease consisted of collecting reliable data regarding its development. Thereby, once
the necessary data had been collected, it would be possible to create a diagnostic model
based on such data. Therefore, this research presents the following two contributions:
(i) The mechatronic design of a cyber-physical data collection system to collect and store
data, integrating RS and WSN; (ii) a three-month dataset for CLR detection.

This paper is structured as follows: Section 2 explains some key concepts and describes
related work by different authors, Section 3 presents the conceptual and detailed design of
the data collection system, Section 4 shows the building and integration of the mechani-
cal, electronic, and computing components and, finally, Section 5 states the conclusions,
recommendations, and future work.

2. State of the Art

Different studies have been carried out involving technical methods and strategies for
obtaining nutritional information of different types of crops [11], diagnosing diseases [12],
and detecting pests [13]. Recently, an important concept has emerged called Precision Agri-
culture (PA). PA refers to an agricultural management concept that uses information and
communications technology to observe, measure, and respond to specific crop variabilities.
PA includes applying the correct treatment method at the right time according to the needs
of the plants [14].

In PA, one of the current methods used to evaluate the features of different crops
is called RS. RS relies on the interaction between materials and their electromagnetic
radiation. It includes receiving radiation reflected from soil or plants to obtain valuable
information, such as chlorophyll content, water stress, weed density, crop nutrients, and
disease presence. These measurements can be made using airplanes, portable sensors,
satellites, tractors, and drones [15].



Sensors 2021, 21, 5474 3 of 15

Several authors [16–18] pointed out the importance of using high-quality portable
devices to detect and control diseases in hard-to-reach sites. For example, Goel et al. [16] an-
alyzed the detection of variations in the spectral response of corn (Zea mays) due to nitrogen
application rate and weed control. For this reason, a hyperspectral sensor called Compact
Airborne Spectrographic Imager is used to analyze the reflectance values of 72 bands in the
range of 409 nm to 947 nm. These bands include visible light and external Near-Infrared
(NIR) from the radiation spectrum. Their research demonstrated the potential of using
hyperspectral sensors to detect weed infestation and nitrogen stress. Specifically, the most
suitable wavelength bands for detection are found to be the wavelength regions around
498 nm and 671 nm, respectively.

In addition, a crop classification method employing the infrared and visible portions of
the electromagnetic spectrum and low-cost cameras in a multi-rotor aircraft was proposed
by Bolaños et al. [17]. This study is based on the identification of Normalized Difference
Vegetation Index to assess health status and moisture content. Similarly, Chemura et al. [18]
presented a method for predicting the presence of diseases and pest infestations early in
coffee trees due to imperceptible water pressure. To this end, a handheld multi-spectral
scanner with the visible and near-infrared regions is placed in an Unmanned Aerial Vehicle.
Chemura et al. research is also related to irrigation planning based on the specific water
needs of plants.

In addition to RS, based on smart farming techniques and the Internet of Things (IoT),
which refers to the use of intelligently connected devices and systems leveraging data
acquired by embedded sensors and actuators in machines and other physical objects [19],
there is another popularly used method named WSN. WSN is responsible for real-time
monitoring of different agricultural characteristics. It consists of multiple integrated,
unattended devices called sensor nodes, which collect data at the site and wirelessly
transmit it to a centralized processing station (called a base station). This station can store,
process, and transmit data to the Internet, where a final user can analyze and transform it
into relevant information and knowledge [20].

In this regard, Chaudary et al. highlighted the importance of WSN in the PA field by
controlling and sensing the most relevant variables of a greenhouse using a microcontroller
technology named Programmable System on Chip. This research examined the integration
of wireless sensor nodes with high-bandwidth spectrum telecommunications technology,
which proved helpful in determining the optimal irrigation strategy that meets crops’
specific needs. Moreover, the study recommended using reliable low-current consumption
hardware for WSN applications because it improves farmers’ confidence to incorporate
them into their crops [21]. Additionally, Piamonte et al. implemented a WSN prototype
for monitoring an African Oil Palm disease called the Bud Rot. By using humidity, pH,
light, and temperature sensors, their prototype measured climate change and soil factors to
identify the presence of disease-causing fungi indirectly. This research concluded that the
measurement results for the aforementioned non-biological factors had changed slightly,
which, according to the researchers, indicates the possibility of detecting the Bud Rot [22].

The presented state of the art shows that RS and WSN are two widely used methods
within PA due to their capacity to monitor different crop features and detect the presence
of various anomalies.

3. System Design

Previous research was helpful to design a cyber-physical data collection system that
could integrate both methods towards the CLR diagnosis. Applying the concepts and
following the recommendations found in the state-of-the-art, it is possible to create a system
capable of acquiring and remotely storing reliable data from diverse sources. The goal
of such cyber-physical systems (CPS) is the characterization of a test bench coffee-crop
regarding the changes induced by the disease at hand. The cyber-physical data collection
system was designed following the Pahl and Beitz methodology [23]. The mechatronic
design of the data collection system is presented in this section.
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For the development of the system, requirements were elicited with the participation
of Colombian Coffee Agricultures Association (CENICAFÉ) and University EAFIT. From
EAFIT, the design team was composed by the Mechanical, Informatics and Electronic
Engineers, as well as Biologists. The fulfillment of those requirements, which included,
among others, building a test bench coffee-crop, emulating different agronomic conditions,
and allowing the data acquisition, storage, and transfer, was the guideline for the design of
the system. In that sense, this section describes, in a stepwise fashion, the use of the Pahl
and Beitz methodology for achieving a data collection system that integrates RS and WSN
towards the CLR diagnosis.

3.1. Main Requirements

First, all requirements were formalized, structured, and classified according to their
characteristics and priority through the employment of the Product Design Specification [24].
The main requirement was measuring physicochemical features of the plants as well as
capturing Red-Green-Blue (RGB) and multi-spectral images of the test bench coffee-crop
for storing all this data locally and remotely. Other requirements were related to plants’
separation and irrigation, coffee variety to be used, construction materials, database type, and
communication protocol with the field sensors.

3.2. Black Box Definition

The following step is to design a black box [25], which represents the primary function
of the system to be developed. This primary function is to collect a set of inputs, transform
them, and produce a set of outputs. As shown in Figure 1, the inputs and outputs are
divided into three major flows: namely matter, energy, and signal. Regarding the inputs, the
matter flow was composed by CLR, coffee plants, organic matter, fertilizer/fungicide, and
wind; the energy flow was divided into electrical energy, human force, and photovoltaic
energy; and the signal flow consisted of input information and expert information. At the
output, the adequate experimental coffee crop dissipated energy as well as field sensors and
general data records were obtained. These output data correspond to the main objective of
this research, which is to create a system capable of collecting, storing, and transferring
reliable data of a test bench coffee-crop towards the CLR diagnosis.

Figure 1. Black box representation of the cyber-physical data collection system.

3.3. Functional Structure

After defining the Black box, the functional structure [26] was specified, breaking
down the presented inputs and outputs and establishing, with a detailed understanding,
the sub-functions required, and the pathway created by these. As a way of example, one of
these sub-functions consisted of merging human force with the coffee plants to arrange the
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latter in the test bench coffee-crop, which impacts the posterior incorporation of the field
sensors. The general pathway of the overall functional structure is described as follows.

The coffee plants were divided into four lots, where half of them were inoculated
with Hemileia vastatrix [27], the fungus that causes CLR. For their agronomic management,
fertilizer and fungicide were distributed and incorporated into all four lots. Then, each lot
was isolated from the others to make them independent and, finally, the whole crop was
integrated with the rain and wind emulation systems. Rainfall and wind speed were both
monitored and regulated for the entire crop.

Furthermore, employing sensors in each lot, soil moisture/temperature, pH, illumi-
nance, and environmental humidity/temperature were acquired. In addition, RGB and
multi-spectral images were captured. To finish the data collection process, data were stored
locally, pre-processed for cleaning purposes, and then sent to a remote server over the
Internet. In addition, the collection process was monitored in real time through an IoT
web platform.

3.4. Morphological Matrix and Candidate Concepts

Once the main function and the corresponding sub-functions were specified, the mor-
phological matrix [28] was developed. Such a matrix illustrates different solution proposals
for the implementation of each of the sub-functions exposed in the functional structure.
The output of the morphological matrix consisted of two candidate concepts, Concept 1
and Concept 2, each made up of a different combination of the solution proposals. The
concepts indicated two possible ways of building the data collection system, and they were
elaborated with the purpose of evaluating them under different aspects and deciding which
was the most appropriate for the objective at hand. The most relevant features for Concept
1 and Concept 2 included: (i) holes in tubes or sprinklers to emulate rain, (ii) a stepper
motor or a servomotor to position the multi-spectral cameras over the lots, (iii) using
normal pressure from the aqueduct or a pump to transport the water for irrigation, and (iv)
a rotary arm or a single rail to capture images from multispectral cameras, respectively (see
Table S1 from supplementary material uploaded at MDPI platform and at provided link in
Supplementary Materials section). The resulting candidate concepts were then evaluated
by using a scoring system, which calculates a weighted average of a set of pre-selected
evaluation criteria. These weights were established according to the previously defined
PDS and the design team expertise. As a result, the final concept is selected. As shown in
Table 1, Concept 1 resulted as the selected concept, with an approval of 78% against 74%
of Concept 2. The cyber-physical data collection system was built based on the winning
concept. CPS are a new class of engineered systems which offer close interaction between
cyber and physical components [29]. It should also be noted that the chosen concept was
slightly modified following some improvements proposed by CENICAFÉ and the design
team to better fulfill the initial requirements.

3.5. Final Concept

Figure 2a shows a sketch of the final concept for building the physical part of the
system. This concept is composed of four raised wooden beds representing the lots and
separated by four plastic curtains, a rotary arm holding the multi-spectral cameras, a rain
system which irrigates the lots, and a circuit box with the necessary elements to interact
with the electronic components. Figure 2b shows a sketch of the cybernetics part of the
design, which includes a data collector for joining the data coming from the test bench
coffee-crop and a data organizer, which structures and saves it on the local storage for its
posterior transfer to a remote server located at EAFIT University.
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Table 1. Concept Scoring. a Value scale (score between 0–4); 0 = Not satisfied, 1 = Acceptable,
2 = Sufficient, 3 = Good, 4 = Totally satisfied.

N◦ Evaluation Criteria Relevance (%) Solutions a

Concept 1 Concept 2

1 Functionality 11 4 3
2 Simplicity 5 3 4
3 Fulfilment of requirements 10 3 2
4 Robustness 3 4 3
5 Fabrication 7 3 3
6 Assembly 6 3 2
7 Reliability 9 3 3
8 Low cost 7 3 3
9 Expert criteria 6 3 3
10 Crop management 7 3 3
11 Maintainability 3 2 3
12 Performance 8 2 3
13 Usability 5 3 3
14 Testability 3 3 2
15 Availability 10 4 4

Weighted average 3.13 2.96
Total score 100 78% 74%

(a)

(b)
Figure 2. Final concept sketch for the data collection system: (a) of the physical part; (b) of the
cybernetic part.
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3.6. Mechanical Design

The mechanical design considered four identical crop lots, each one housing four
coffee plants under different development stages of the disease. Each lot had specific struc-
tures designated to place the sensors for pH, illuminance, soil moisture, soil temperature,
environmental humidity, and environmental temperature. In addition to the sensors, a
rotary platform, holding a rack-pinion mechanism and containing a slider extension, three
micro-switches, a mini-DC motor, and a digital servo, was also designed for each lot aiming
at driving an RGB camera close to each plant for capturing images from the bottom of the
leaves. In addition, each lot had a filtering point, which directed the residual water into a
container where the pH-meter was placed.

Furthermore, a rotary arm was designed to place two multi-spectral cameras and to
be able to move them above the four crop lots for capturing images from the upper side
of the leaves. One of the cameras had an RGN filter (Red-850 nm, Green-660 nm, Near
Infrared-550 nm), whereas the other one had a RE filter (Red Edge-735 nm). Both filters
were suitable for assessing the presence of plagues and diseases (in particular the CLR) in
crops [30,31]. Moreover, since the coffee plants needed a suitable environment to grow, a
rain system was also designed for irrigation purposes. This system was controlled through
an open/close command that could change the state of a corresponding solenoid valve
according to a pre-defined rain schedule.

3.7. Electronic Design

To collect data from each crop lot using field sensors, an electronic design of the
system was required. Sensors, actuators, interfaces, power supplies, two (2) Arduino Mega
microcontrollers, one (1) Raspberry Pi microcomputer, and an electrical cabinet composed
this electronic design. These electronic components were connected and integrated to
support the cybernetic part of the data collection system. In what follows, each component
is described.

3.7.1. Arduino Mega Microcontrollers

One of the Arduino Mega microcontrollers (named Arduino 1) collected lot data. Thus,
four pH-meters, four illuminance sensors, four soil moisture sensors, four soil temperature
sensors, and one environmental humidity/temperature sensor were connected to it. In
addition, the Arduino controlled the movements of the central rotary platform. For its part,
the other Arduino Mega (named Arduino 2) was considered for the general data collection,
having the tasks of activating/deactivating the rain system, communicating with the flow
and wind sensors, as well as moving the rotatory arm over the lots. Both Arduino Mega
microcontrollers were communicated with the Raspberry Pi via USB.

3.7.2. Raspberry Pi

The Raspberry Pi was responsible for orchestrating the sequence of steps during each
data collection routine, storing the gathered data locally, and transferring it to a remote
server over the Internet. For that purpose, in addition to being communicated with both
Arduino Mega microcontrollers, four RGB and two multi-spectral cameras were connected
to it via USB. Thereby, the Raspberry Pi was able to trigger the different electronic devices
and obtain the results. Finally, to send data to the remote server, an outdoor 4G LTE router
was used to facilitate remote connectivity from the Data Collection System location.

3.7.3. Electrical Cabinet

The design of an electrical cabinet was required for the distribution and organization
of all electronic components. This cabinet had an IP5 minimum environmental protection
due to the system exposure to the greenhouse’s harsh conditions. Furthermore, a current
security breaker was also included to protect the components from a peak current over
10 A, considering that the total consumption of the data collection system was about 7 A.
Additionally, protection fuses were proposed for each power supply and actuator to miti-
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gate damages, and one 9 V/1 A AC/DC adapter was considered for each microcontroller
to avoid problems related to low current values.

The Raspberry Pi and the Arduino Mega microcontrollers were connected through a
Master–Worker network architecture. The connections were implemented by a serial interface.

3.8. Software Design

The software design was essential to detail how the physical components commu-
nicated with the cybernetic part of the system to collect and transfer the data properly.
In that sense, it is essential to explain the principal functions, commands, components,
architectures, content specifications and platforms, which were thought as necessary for
managing the incoming and outgoing data flow.

3.8.1. Data Acquisition, Conditioning, and Storage Routines

Several functions regarding the acquisition, conditioning, and storage of the readings
of the electronic devices connected to Arduino 1 and Arduino 2 were defined. Arduino 1
functions were in charge of collecting, conditioning, and storing the data proceeding from
the pH, soil temperature/moisture, illuminance and environmental temperature/humidity
sensors, and controlling the servomotor angle and arm’s extension to position the RGB
camera of each lot. Arduino 2 functions included collecting, conditioning, and storing
readings from the flow rate and wind speed sensors and controlling the direction and
destination of the global rotary arm that holds the multispectral cameras. The programs of
both Arduino Mega microcontrollers were designed to respond to specific commands sent
by the Raspberry Pi.

3.8.2. Main Orchestration Program

A main, global program run by a Raspberry Pi in charge of orchestrating every step of
the data collection routines and automatically executing such a process seven times a day
was defined. Such an orchestration program was also in charge of activating/deactivating
the rain system according to a pre-set schedule. This pre-set schedule included the raining
days of year 2018. In addition, the program implemented by the Raspberry Pi was in charge
of receiving and organizing the collected data from the Arduino Mega microcontrollers,
triggering the RGB and multi-spectral cameras, storing everything locally in a structured
way and transferring it to a remote server, named Academic Data Center (ADC), over the
Internet via Secure File Transfer Protocol (SFTP). Finally, this program reported the current
state to Thingworx (IoT platform, see subsection (iii)) during each routine. The software
technologies selected for the implementation of this program were Python 3.5.3, OpenCV
3.4.1 [32], RPi.GPIO 0.6.3 [33] and MongoDB [34].

3.8.3. Thingworx

Thingworx is a complete software platform designed for the Industrial IoT [35]. It was
used to develop a dashboard, to remotely monitor the field and general data in real-time.
This software platform was installed in the ADC. The ADC is the remote server used
for remotely storing the collected data from the CPS to replicate the Raspberry Pi’s local
storage. This server is hosted by the Computer-Science Department of EAFIT University
and is composed of 72 Cores, 512 GB RAM, 4 TB Storage, 2 GPU Tesla K80, and an Ubuntu
18.04 Operating System. It can be accessed over the Internet through a Virtual Private
Network (VPN) connection.

The use of the Pahl and Beitz methodology allowed for evolving from the elicitation
of the initial requirements towards the achievement of the final and detailed design of a
data collection system that integrates RS and WSN. The final 3D Computer-aided design
(CAD) of the data collection system’s physical part is shown in Figure 3.
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Figure 3. Final 3D CAD of the data collection system’s physical part.

Figure 4 shows the final design of the data collection system’s cybernetic part, which
explains the pipeline for the execution of the data collection system.

Figure 4. Final design of the data collection system’s cybernetic part.
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4. Results

The application of the Pahl and Beitz design methodology results in the target system
solution. Precisely, the result of this research work corresponds to the solution obtained by
applying the Pahl and Beitz methodology, i.e., the target system, i.e., a cyber-physical data
acquisition system capable of obtaining a dataset suitable for use in the early detection of
CLR. Therefore, the following describes the results obtained, i.e., the system built, which
was first represented by a 3D-CAD model.

4.1. Mechanical Components

These included the installation of a set of curtains, which were planned to work
as a separation between the four crop lots. In addition, the assembly of the rotary arm
structure was carried out. Finally, a separate structure for holding the multi-spectral
cameras container was fixed.

Additionally, due to the emulated rain conditions that the prototype would be sub-
jected to, immunized wood was chosen for the construction of the coffee crop lots, since
it is resistant to moisture. At the bottom of each lot, a mesh in conjunction with a plastic
tarp was installed to contain the soil. Furthermore, a slope was built within each lot using
soil and impermeable plastic with the purpose of driving the residual water into the pH
measurement system.

Regarding the rain system, all accessories related to the main pipeline for the incoming
water source were installed over immunized wooden blocks. In addition, the whole
wooden base was buried to keep the structure fixed. In addition, five supports were also
installed on two adjacent sides of each lot for mounting a wooden L-structure over them.
That structure served as a base for three additional hoses with small perforations, which
would distribute the water within the lot producing the rain effect.

Succeeding the plants’ irrigation, the slope, which was built within each lot using soil
and impermeable plastic, was helpful to drive the residual water into the filtering point
located in one corner of each coffee crop lot. There, a hose was connected to lead the water
to the container for the pH measurement.

Concerning the assembly of the rotary platform, several acrylic pieces were cut,
including the rotary platform, rack, pinion, support for the rack, base, and protection for
the RGB camera, supports for the mini-DC motor and digital servo and mechanical end
stop for the rotary platform’s extension. To achieve the movement of the latter, a drawer
slide was installed below this extension, and, therefore, the camera displacement towards
the coffee plants could be achieved. Furthermore, before placing the rotary platforms in
the center of each lot, steel plates were assembled to the supports of the digital servos and
four levelers were screwed to the corners of each plate to put them underground for fixing
the whole structure. Lastly, each platform was placed on top of a wooden base to mitigate
the terrain’s instability.

4.2. Electronic Components and Their Integration

Following the construction of the mechanical components, the electronic integration
was executed to complete the system’s physical part. For that purpose, each sensor and
actuator were tested, calibrated, and connected to the corresponding micro-controller. In
addition, individual connectors with a thick silicon protective layer were added to each of
them to keep their metal terminals safe from the harsh conditions, which would include
high temperatures, soil, and water from the rain system on a regular basis.

Similarly, the sensors’ calibration process was carried out to ensure the correct measure-
ment and reliability of the data to be collected. Some sensors were already pre-calibrated
at the factory (e.g., ambient temperature and humidity sensors) while others required
calibration. For example, one of these sensors was the pH sensor, for which two buffer
solutions with exact pH values were used. The sensor was adjusted to the same measured
pH value as the buffer solution using the included potentiometers in the sensor’s interface.
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The calibration of the RGB cameras was carried out by manually adjusting the lens’s focus
with respect to the leaves of the coffee plant to obtain a correct image sharpness.

After verifying the proper functioning and calibration of the sensors and actuators in
the laboratory, along with the micro-controllers, they were merged into the corresponding
mechanical structures to form the integrated components, which were required for the gen-
eral operation of the cyber-physical data collection system. In addition, to protect, contain,
and distribute the completely intermediate electronic devices (Raspberry Pi, Arduino Mega
microcontrollers, USB-hubs, power supplies, and interfaces), an electrical hermetic cabinet
was employed. To this end, the cabinet was subdivided into different sections, and it was
also tailored for offering protection against dust, water, and a possible peak current. After
installing it, the sensors, actuators, and cameras were connected to their corresponding
place inside the electrical cabinet, guiding their cables through impermeable PVC pipes
coming from the lots.

4.3. Software Components

Once all electronic components were duly tested and the respective drawbacks were
successfully solved, it was possible to send commands to the Arduino Mega microcon-
trollers and trigger the cameras from the Raspberry Pi with the objective of verifying the
communication, checking that the desired actions were executed and validating the results.
Thereby, the integration of the mechanical and electronic components, along with the ability
to control the system from the Raspberry Pi, was successfully proven.

For its part, the cybernetic part of the data collection system began with the implemen-
tation of the communication between Raspberry Pi and Arduino microcontrollers. It was
achieved through the development of an Arduino communicator component, which estab-
lished two separate serial connections and grouped the responses of the micro-controllers
into single programming objects that could be subsequently structured and stored. More-
over, a data sub-directory creator component was developed for creating a sub-directory
within the main data directory using the timestamp at which each data collection routine
began. This component was also in charge of generating the proper internal structure for
the files, which consisted of one sub-directory for each lot and another one for the general
data. With respect to the files, different software components were also implemented to
capture the RGB and multi-spectral images of the plants and write corresponding JSON
files with the collected data and the paths to those images. Figure 5 shows an example of
some of the generated files after concluding a routine.

In addition, a data visualization dashboard was developed using Thingworx according
to the presented design for monitoring the current state during each routine. Thingworx’s
appearance was preserved, and it was accessible through a Uniform Resource Locator
(URL) with user-password authentication. Every used widget for creating the dashboard
had a unique identifier so that it was possible to target each of them separately for updating
their values.

After a routine finished, another software component, named data uploader, was
responsible for transferring the collected data to the ADC over the Internet using a Wi-Fi
connection. Consequently, the procedure to verify that the result was satisfactory consisted
of checking whether the files uploaded to the ADC were identical to those stored locally in
the Raspberry Pi.
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(a) (b)

(c) (d)
Figure 5. Example of generated files after data collection routine: (a) RGN image from lot 1; (b) RE
image from lot 1; (c) RGB image from plant 3, lot 3; (d) RGB image from plant 4, lot 3.

4.4. Global Integrated System

Finally, the integration of the mechanical, electronic, and software parts led to the con-
struction of a complete functional cyber-physical data collection system. The approximate
total cost of the system implemented with all its components was 4863 USD. The total for
the electronic and computer components were 3535 USD and for the mechanics 1328 USD.
The most expensive components, in general, were the multispectral cameras with a cost of
1318 USD. It is estimated that, by implementing this system, followed by integrating an
ML-based early CLR detection predictive model, the current harvesting losses due to this
disease (e.g., 70% to 80% in Colombia) could be halved. Regarding maintenance costs, it is
similarly estimated that these will be below 1% of net gains, which, considering estimated
savings, is entirely affordable. Finally, the system’s lifetime is estimated to be five to ten
years, which is usual in this kind of equipment and is within the standards of amortization
periods. Nevertheless, these figures should be validated for a full-scale implementation of
the system.

After completing the integration and construction of the data acquisition system
mentioned above, a final test and calibration of each system component’s operation was
performed, which is essential to ensure the system’s operation’s reliability. For example,
one part of this process included the precise adjustment of the robotic arm position with
respect to each plants’ lot for taking the multispectral photos, where each position was
stored in the program to perform the data collection routine. Having performed the final
system’s calibration, a data collection routine was executed for three months. The Data
Collection System recorded crop’s cameras and sensors information from each lot seven
times per day at different moments (with and without sunlight). It must be noted that,
although the data storage occurred seven times per day, the system was acquiring and
monitoring (Thingworx) the data in real-time, with a sampling period of 3 s. In addition to
the data collected by the system, a biologist team evaluated and labeled daily in a separate
file the current development stage of the CLR of each data collection system lot. The
output of this routine generated a dataset comprising 603 RGN files (~153 MB), 641 RE files
(~177 MB), 730 RGB files (~196 MB), and 672 sensor data (JSON) files (~1.12 MB), which
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were ready to be used for diagnosing the CLR development stage by training a Machine
Learning model.

The operation of the current data collection system allowed the creation of a three-
month size dataset. This dataset was used to train a deep learning model based on an
ensemble algorithm integrating three convolutional neural networks and a multi-layer
perceptron fed by RGB, RGN, and RE images; and Wireless Sensor Network data, corre-
spondingly. This model was used to classify the early stage of CLR of a coffee crop (from 0
to 4), obtaining an F1-score of 0.775 [36].

5. Conclusions

This paper presents the mechatronic design of a cyber-physical data collection system,
which integrates RS and WSN on a test bench coffee-crop. It is capable of automatically
collecting, structuring, and locally and remotely storing reliable multi-type data from
different field sensors (pH, soil moisture/temperature, illuminance, and environmental
humidity/temperature), RGB and multi-spectral cameras. In addition, a data visualization
dashboard was implemented to monitor the data collection routines in real time. This
result represents a first step towards the CLR diagnosis on the Caturra variety.

The correct operation of the data collection system allowed for creating a three-
month size dataset, which contains sensors and camera data required for creating a CLR
development stage model. This result validates that the designed system can collect, store,
and transfer reliable data of a test bench coffee-crop towards the CLR diagnosis.

For future work, this data collection system may be useful for measuring and recording
different characteristics from other types of crops. In addition, and regarding the CLR, the
data acquired through this system can be exploited for analyzing how the crop responds
(in physicochemical and visual terms) according to the presence of the disease. It could be
considered, for instance, to implement Artificial Intelligence techniques, such as Computer
Vision and Deep Learning, to create a model based on the collected data for effectively
diagnosing the CLR.

The current development is intended to be used as a test laboratory for plant ex-
periments, which means that the obtained results are limited to a sample of a real crop
plantation. As future work, a scalability, cost, and power consumption analysis could
be carried out to turn the test laboratory into a full-scale mobile system. No relevant
limitations are identified; however, employing drones and land robots are considered a
technological requirement. Regarding drones, multispectral cameras (RGN and RE), which
show the CLR in a distinct color from a top view of the crop, should be used. Concerning
land robots, to effectively detect the CLR, they should be equipped with RGB cameras to
monitor CLR’s yellow spots under the coffee leaves and land sensors (e.g., pH, temperature,
humidity, soil moisture, and luminance). This research work will be helpful to size the
optimal number and type of sensors required by such a full-scale implementation.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/s21165474/s1, Table S1: Morphological Matrix.

Author Contributions: Conceptualization and investigation, A.S., S.S., C.V. and D.V.; supervision,
D.V., M.T., E.M. and H.T.; validation and methodology, M.M. and B.S. All authors contributed to
the writing and reviewing of the present manuscript. All authors read and agreed to the published
version of the manuscript.

Funding: This work was supported by the University EAFIT under Grant 828-000010 and the
Colombian Science and Technology Department (Colciencias) under Grant “Jóvenes Investigadores e
Innovadores por la Paz 2017”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/ 10.3390/s21165474/s1
https://www.mdpi.com/article/ 10.3390/s21165474/s1


Sensors 2021, 21, 5474 14 of 15

Data Availability Statement: This paper has a three-month dataset generated by the CPS Data Col-
lection System, available at https://ieee-dataport.org/documents/coffee-leaf-rust-dataset (accessed
on 8 July 2021).

Acknowledgments: The authors would like to thank University EAFIT for providing the funds
for the present research. Also we would like to thank Vicomtech foundation for supporting article
processing charges.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADC Academic Data Center
CLR Coffee Leaf Rust
CPS Cyber-Physical Systems
NIR Near Infrared
IoT Internet of Things
PA Precision Agriculture
RE Red Edge
RGB Red Green Blue
RS Remote Sensing
SFTP Secure File Transfer Protocol
URL Uniform Resource Locator
VPN Virtual Private Network
WSN Wireless Sensor Networks

References
1. Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, composition, and application of coffee and its industrial

residues. Food Bioprocess Technol. 2011, 4, 661. [CrossRef]
2. Etienne, H. Somatic embryogenesis protocol: Coffee (Coffea arabica L. and C. canephora P.). In Protocol for Somatic Embryogenesis in

Woody Plants; Springer: Dordrecht, The Netherlands, 2005; pp. 167–179.
3. Coffee Total Production; Technical Report; International Coffee Organization: London, UK, 2019.
4. The Influence of Coffee around the World; National Coffee Association: New York, NY, USA, 2015.
5. Arcila, J.; Farfan, F.F.; Moreno, A.M.; Salazar, L.F.; Hincapié, E. Sistemas de Producción de Café en Colombia; Cenicafé: Chinchiná,

Colombia, 2007.
6. Rivillas, C.A.; Serna, C.A.; Cristancho, M.A.; Gaitan, A.L. La Roya del Cafeto en Colombia: Impacto Manejo y Costos del Control;

Technical Report; Cenicafé: Chinchiná, Colombia, 2011.
7. Nutman, F.J.; Roberts, F.M. Coffee leaf rust. Pans Pest Artic. News Summ. 1970, 16, 606–624. [CrossRef]
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