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Abstract

The maintenance of seedling diversity of animal-dispersed tree species is fundamental for

the structure and function of forest patches in fragmented tropical rainforests. Nonetheless,

the effects of landscape structure at different spatial scales on α- and β-diversity of tree

seedling communities are recently explored. Using a multi-scale approach, we assessed

the relative effect of landscape composition and configuration on α- and β-diversity of ani-

mal-dispersed seedlings within 16 forest patches in the Lacandona rainforest, Mexico. We

assessed these effects at 13 spatial scales (from 300 to 1500 m radius, at 100 m intervals)

for three metrics of effective number of species considering α- and β-diversity. We found

that α-diversity was largely affected by landscape composition and β-diversity by landscape

configuration. On the one hand, the amount of secondary forest influenced α-diversity. Addi-

tionally, species richness increased in landscapes with highly aggregated forest patches.

On the other hand, β-diversity was affected positively by forest fragmentation and negatively

by the edge contrast of forest patches with the surrounding matrix. Our findings indicate that

landscape configuration is a strong driver of seedling diversity in highly deforested rainfor-

ests. Promoting forest patches and secondary forests through payment for ecosystem ser-

vices’ programs, favoring matrix quality within land-sharing schemes of smallholder

agriculture and secondary forest management, and identifying restoration opportunities for

assisted or unassisted natural regeneration are urgently needed for conservation of seed-

ling diversity in human-modified tropical landscapes.

Introduction

Tropical rainforests harbor half of known animal and plant species of the planet [1], yet accel-

erated forest conversion to cattle pastures and large-scale plantations is restraining them to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0253284 July 16, 2021 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Nicasio-Arzeta S, Zermeño-Hernández IE,

Maza-Villalobos S, Benı́tez-Malvido J (2021)

Landscape structure shapes the diversity of tree

seedlings at multiple spatial scales in a fragmented

tropical rainforest. PLoS ONE 16(7): e0253284.

https://doi.org/10.1371/journal.pone.0253284

Editor: Juliana Hipólito, Instituto Nacional de

Pesquisas da Amazonia, BRAZIL

Received: February 25, 2021

Accepted: June 1, 2021

Published: July 16, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0253284

Copyright: © 2021 Nicasio-Arzeta et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data of seedling

abundance and landscape metrics have been

deposited with the Dryad Data Repository

https://orcid.org/0000-0002-1481-5660
https://doi.org/10.1371/journal.pone.0253284
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253284&domain=pdf&date_stamp=2021-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253284&domain=pdf&date_stamp=2021-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253284&domain=pdf&date_stamp=2021-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253284&domain=pdf&date_stamp=2021-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253284&domain=pdf&date_stamp=2021-07-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0253284&domain=pdf&date_stamp=2021-07-16
https://doi.org/10.1371/journal.pone.0253284
https://doi.org/10.1371/journal.pone.0253284
http://creativecommons.org/licenses/by/4.0/


forests patches embedded in a matrix of anthropogenic land covers (known as human-modi-

fied tropical landscapes, or HMTLs [2,3]). Forest patches of HMTLs are generally small (mean

size = 13–17 ha), and their number are expected to rise in the following years [4].Yet, these

patches can preserve a large number of plants and animals species [5,6], and contribute to

improve forest regeneration, landscape connectivity, metapopulation persistence, and resource

availability for native species [7,8]. These contributions are strongly influenced by patches’ tree

community, which provides of food and habitat for an important proportion of the old-growth

fauna, and drive biomass production and carbon storage [9,10]. Thus, sustaining forest regen-

eration within patches is critical to promote the long-term maintenance of biodiversity in

HMTLs [11,12].

The future composition and structure of tropical rainforests is driven by the seedling com-

munity, which makes its assessment helpful to comprehend the forthcoming regeneration of

forest patches [13–15]. Seedling communities are characterized for a high local species richness

(α-diversity) and an impressive species turnover (β-diversity), which are shaped by seed dis-

persal, environmental heterogeneity and density dependence effects [16–19]. Disruption of

these processes limit seed dispersal/germination and seedling establishment of the animal-dis-

persed species (which represents nearly 90% of tree species [20]), leading to the richness

decline and biotic homogenization of seedling communities [21–23]. As result, the regenerat-

ing forests are dominated by generalist and abiotically-dispersed tree species, supports a lower

density of saplings, show reduced recruitment of animal-dispersed species, and their composi-

tion and structure resemble to secondary forests [24–26]. Although a growing body of conser-

vation strategies have emerged in order to preserve plant diversity in the tropics [12,27,28],

none of them refer to seedling communities in HMTLs, since the effects of the types and

amount of land covers in the landscape (landscape composition), and their spatial arrange-

ment (landscape configuration) on the α- and β-diversity are poorly understood (but see

[29,30]).

Evidence suggests that seedling α-diversity is affected by landscape composition, while β-

diversity is more influenced by landscape configuration. Recent studies have shown that

reduction of α-diversity in seed and sapling assemblages by forest loss and dominance of open

matrices (landscape composition) is associated with limitations in local seed sources, seed dis-

persal and sapling establishment of animal-dispersed species [10,30,31]. Additionally, seedling

α-diversity may also be influenced by seed sources from nearby secondary forests [31–33].

Finally, the effects of landscape configuration on α-diversity were negligible [30]. On the con-

trary, seedling β-diversity within patches may be linked to forest fragmentation and edge

effects (landscape configuration). Firstly, β-diversity is promoted when habitat is spread out in

several patches than within a single large patch, whether by random sampling (similar patches

sample different species from a regional pool) or by greater environmental variations among

disaggregated patches [34,35]. Secondly, edge effects are known to limit the establishment of

animal-dispersed seedlings commonly found in old-growth forests [13,36], contributing to β-

diversity loss of tree assemblages [25]. Moreover, edge contrast can indirectly affect β-diversity

by influencing the presence of terrestrial mammals within patches [6,37], which shape the

composition of seedling communities [22–24]. These effects are expected to be stronger in

highly deforested regions, particularly with <30% of forest cover (fragmentation threshold

hypothesis) [38].

Assessing landscape effects on tree seedling diversity is challenging, because these effects

vary on the spatial scale at which landscape composition and configuration are analyzed

[39,40]. The extent of the area relevant on particular biological responses (i.e. the scale of effect

[41]) varies greatly among the landscape compositional and configurational patterns measured

[42,43]. In addition, the scale of effect also differs by the type of biological response assessed,
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since each response is influenced at different spatial and temporal scales [39,42]. For example,

it is hypothesized that biological variables shaped by species colonization and extinction

dynamics (i.e. species occurrence) should have larger scales of effect than those affected by

local drivers (i.e. species abundance) [43]. Thus, the scale of effect is expected to be larger for

lower-density populations (rare species) than for higher-density populations (typical or domi-

nant species) [42]. This is particularly important in tropical rainforests, where a high number

of species coexist at very low-density populations, making seedling communities highly α- and

β-diverse in space [17,44].

Multi-scale approaches are a hierarchical approach useful to increase the possibility to

detect the scale of effect of landscape structure on biological responses [45,46]. In these

approaches, it is necessary the use of a wide range of scales, as assessments performed using

very few scales within narrow ranges overlook the scale of effect [41,45]. To our knowledge,

studies that have employed multi-scale analysis on plant communities in the tropics are scant

[30,47], and none of them have assessed the effect of landscape structure on seedling commu-

nities in HMTLs (but see [30]). In this study, we employed a multi-scale approach to assess the

contribution of landscape composition and configuration on tree seedling α- and β-diversity

within rainforest patches. We particularly focused on the following question: Which compo-

nents of landscape structure are influencing seedling α- and β-diversity and at which spatial

scales?

Furthermore, we tested the following predictions: (1) α-diversity will increase in landscapes

with high forest cover and β-diversity will increase in fragmented landscapes with low edge

contrast; and (2) there should be larger scales of effect for richness-based metrics than for

abundance-based metrics of seedling α- and β-diversity (i.e. dominant < typical< all species).

Material and methods

Study site

We conducted the study at the Marqués de Comillas region in the Lacandona rainforest in

southeastern Mexico (Fig 1A). The monthly temperature oscillates between 24 and 26˚C, and

the annual precipitation ranges from 2500 to 3500 mm [48]. This region encompasses the larg-

est rainforest of the Mesoamerican biodiversity hotspot and the Montes Azules and Lacantún

Biosphere Reserves, which protect 393,000 ha of old-growth forest [49–51]. Land-cover change

to cattle pastures has reduced its forest cover outside the reserve by more than 50% of its origi-

nal extension [51,52]. Despite deforestation in the last 40 years, large mammals, birds, and pri-

mate species are still present in forest patches [6,53,54]. We selected 16 old-growth forest

patches, ranging from 1 ha to 63 ha (Fig 1B). We only considered only patches located in

floodplains to keep adult tree species composition, soil type and abiotic factors relatively con-

stant. The land tenure of the Marqués de Comillas region is private, and land property is dis-

tributed among the inhabitants [51,52]. Therefore, we conducted our study only in those

forest patches where permission was granted by the owners.

Tree seedling sampling

Patches were sampled by 1-ha blocks placed at the center of each forest patch from February to

June of 2014 (Fig 1C). Each block contained ten 1-m2 plots randomly arranged in groups of

two or three plots along five equidistant transects (20 m apart; Fig 1D). For 1-ha forest patches,

we never positioned plots at the edge in order to have a 20-m buffer zone of vegetation that

protect them from edge effects as much as possible (Fig 1D) [13,15]. Within each 1-m2 plot we

counted and identified all tree seedlings (10–100 cm height) to the lowest possible taxonomic

level with the help of a local parataxonomist and field guides [56,57]. When field identification
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was not possible, we took samples for identification at several herbariums (MEXU,

ECO-SC-H). We determined the dispersal syndrome of each species, based on their fruits and

seed morphology [58,59]. This study did not involve the extraction or damage of endangered

species. We based our analyses on animal-dispersed tree species only because they comprise

up to 90% of the seed rain in rainforests [20,60]. In our case, 94% of the seedling species were

animal-dispersed (see Results). Plant nomenclature followed the Missouri Botanical Garden

database Tropicos [61].

Diversity estimation

We assessed the sampling completeness with the sample coverage estimator of Chao and Shen

[62]. We combined the data of the 10 sampling plots within each patch. Then, we estimated

the proportion of the total number of individuals that belong to the species represented in the

sample [63]. The sample coverage among patches was high (91.07 ± 7.47%; mean ± SD), indi-

cating that our sampling effort was adequate for estimating seedling species diversity [64]. We

then estimated the effective number of species for seedlings using the diversity decomposition

Fig 1. Study site and sampling design of tree seedlings. The figure shows the location of the study area (A) and the 16 study patches (black) in the Marqués de Comillas

region (B). The 13 buffer sizes around the geographic center of the sampling block (C). Sampling method of tree seedlings (see material and methods), and the source of γ-

diversity (species located in the 1-ha block), α-diversity (the average number of species per 1-m2 plot) and β-diversity (the effective number of completely distinct

assemblages within each 1-ha block) (D). Reprinted from [55] under a CC BY license, with permission from Sergio Nicasio-Arzeta, original copyright 2019.

https://doi.org/10.1371/journal.pone.0253284.g001
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of effective numbers of species (the Hill numbers [65,66]). This method assesses the relative

importance of species occurrence and abundance on α- and β-diversity [65,67]. Assessing

these diversity metrics is important in the tropics because most tree species have small popula-

tions, and the scale of effect of landscape structure is expected to differ among species with

varying abundances [60,68]. Consequently, diversity metrics that account for species abun-

dance are expected to have smaller scales of effect than those measured by species occurrence

only (presence-absence) [42,43]. Hill numbers (qD) are in units of species, which permit the

characterization of species abundance distribution of a community and provide complete

information about the community diversity [66,67]. We first calculated the patch gamma (γ)

diversity of order q as follows:

qDg ¼ ð
XS

i¼1
�pqi Þ

1
ð1� qÞ

where �pi denotes the mean relative abundance of the ith species in the N 1-m2 plots [65,69],

and q is a parameter that determines the sensitivity of the measure to the relative abundances.

Since this measure is undefined for q = 1, the γ-diversity of order one can be estimated with

the following formula:

1Dg ¼ expð�
XS

i¼1
�pilog�piÞ

The 0D represents the species richness (hereafter called all species), which is not sensitive to

individual abundances [65,69]. The 1D (equivalent to the exponential of Shannon’s entropy

index) weights each species according to its abundance in the community, and could be inter-

preted as the number of equally common species which does not favor rare nor abundant spe-

cies (hereafter called typical species) [65]. Finally, the 2D (equivalent to the inverse Simpson

index) gives a high weight to abundant species and could be understood as the effective num-

ber of the most abundant species (hereafter called dominant species) [67,70]. We then consid-

ered the 1-m2 plots to calculate the alpha (α) diversity with the formula:

qDa ¼
1

N

XS

i¼1
pqi1 þ

1

N

XS

i¼1
pqi2 þ � � �

� � 1
ð1� qÞ

Where pi denotes the relative abundance of the ith species in each of the N 1-m2 plots. We

estimated α-diversity when q = 1 as:

1Da ¼ exp �
1

N

XS

i¼1
ðpqi1lnp

q
i1Þ þ

XS

i¼1
ðpqi2lnp

q
i2Þ þ � � �

� �� �

Afterward, we used the resulting αplot- and γpatch-diversity to calculate the “effective num-

ber of completely distinct assemblages” within each patch (β-diversity) as follows [65]:

qbplot ¼

qgpatch
qaplot

This β-diversity ranges between one (when the assemblages of all 1-m2 plots are identical)

and N (when the assemblages of the N 1-m2 plots are completely different from each other).

We used the package vegan in R [71].

Landscape metrics and multi-scale assessment

We employed a multispectral SPOT-5 satellite image of 10 × 10 m pixel resolution recorded in

March 2013 to carry out a supervised classification using the GRASS GIS software [72]. We
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used sampling points representing seven land-cover classes, including the following: 1) old-

growth forest (undisturbed rainforest), 2) secondary forest (rainforest regrowth), 3) flood-

plains (swamp forests of bamboo and palm trees subjected to periodic flooding), 4) arboreal

crops (oil-palm plantations), 5) cattle pasture (induced grassland for cattle raising), 6) anthro-

pogenic cover (roads and urban settlements), and 7) water bodies (rivers and permanently

flooded areas). The overall classification accuracy was 79%.

We then calculated six landscape metrics (Table 1) considered as drivers of seed and seed-

ling community diversity [47,60]. The composition metrics included the percentages of old-

growth forest (FC) and secondary forest (SF) covers, whereas the configuration metrics were

the number of forest patches per landscape area (patch density; PD), the adjacency among for-

est patches (aggregation index; AI), the mean distance among forest patches (patch isolation;

PI), and the edge contrast index (EC). We calculated the EC using quality values for matrix

covers that describe both their capacity to reduce edge effects and the permeability for terres-

trial mammals’ movement. These values were based on the assumption that edge effects

increase and mammals’ presence declines along a gradient of habitat loss and relates the per-

centage of each land-cover type within the landscape matrix to its relative quality [2,6]. We

ranked the relative quality of each land-cover type based on the suitability of vegetation struc-

ture for regulating edge microclimate and for mammal feeding, movement and/or habitat on a

seven-point scale, including the following: 1 (water bodies, with the lowest suitability); 2

(anthropogenic cover); 3 (cattle pasture); 4 (arboreal crops); 5 (floodplains); 6 (secondary for-

est); and 7 (old-growth forest, representing the highest suitability). To obtain a more robust

and realistic representation of landscape structure effects, we estimated the area-weighted

mean of the EC index [73].

We neither considered patch size nor patch shape because both variables were highly corre-

lated (r = 0.81), and none of them had significant effects on any of the α- and β-diversity met-

rics (Table A in S1 Text).

We followed the recommendation about the landscape radius that best predicts biological

responses, which is 0.3–0.5 times the maximum dispersal distance of seed dispersers and herbi-

vore mammals foraging behavior [41,45]. The maximum dispersal distance of arboreal seed

dispersers and terrestrial mammals in the study region ranges between 500 and 4000 m

[54,80–82].Thus, we estimated six landscape metrics within 13 circular buffers (300 to 1500 m

Table 1. Description, metric type and ecological relevance of the landscape metrics measured at class level employed in the study.

Metric Description Metric type Ecological relevance References

Forest cover

(FC)

Percentage of landscape area covered by old-

growth forest

Composition Indicator of the landscape-scale habitat amount. It is positively

associated with availability of propagules and seed dispersal

[31,60]

Secondary forest

(SF)

Percentage of landscape area covered by

secondary forest (regrowth of �15 years)

Composition Measurement related to impacts on the dynamics and trajectories of

floristic change within forest patches

[32,74]

Patch density

(PD)

Number of forest patches per landscape area (n/

ha)

Configuration Fragmentation metric associated with increasing edge effects, the

number of seed sources in the landscape and with landscape

connectivity of seed dispersers in the tropics

[47,75]

Aggregation

index (AI)

Percentage of like-adjacencies between forest

patches. Maximum aggregation indicates a

single, compact patch

Configuration Aggregated patches facilitate the inter-patch movement, promoting

dispersal at smaller spatial scales. These conditions allow the

persistence of species in highly fragmented landscapes through

complementation/supplementation dynamics

[8,76,77]

Patch isolation

(PI)

Mean distance between forest patches within

the landscape

Configuration Metric employed to estimate connectivity on seed dispersal, altering

seed abundance/richness and floristic differentiation among patches

[31,78]

Edge contrast

index (EC)

Average degree of edge contrast between forest

patches and their immediate neighborhoods

Configuration High percentages of contrasting edges reduce the connectivity of

vertebrate seed dispersers and terrestrial mammals in tropical

forests

[6,79]

https://doi.org/10.1371/journal.pone.0253284.t001
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radius, at 100 m intervals) from the center of each focal patch (Fig 1C). We only found correla-

tions between AI and FC between the 900–1500 m radius (Table C in S1 Text). The distance

among sampling sites was of 3602.56 ± 1932.21 m (mean ± standard deviation), and were ran-

domly aggregated (Clark-Evans R = 1.02; p = 0.86) [83]. The overlapping between buffers of

nearby sampling points increased with buffer sizes (Table D in S1 Text). However, we did not

find spatial autocorrelation between the distance of sampling sites and the diversity metrics

(Table E in S1 Text), nor between the distance of sampling sites and the landscape metrics

across the 13 buffer sizes (Table F in S1 Text).

Statistical analyses

Firstly, we estimated the scale of effect of each landscape metric using linear models. We fitted

a diversity metric with a single landscape metric. We repeated this process on each buffer size

and obtained 13 linear models of the same landscape metric. We verified variable normality

with a Shapiro-Wilk test [84]. Then, we assessed the predictive power of each model using a

leave-two-out cross-validation. This analysis splits the dataset in two sections; the first split

contains the diversity data from 14 patches as calibration data and fits a linear model which is

employed to predict the diversity values of the second split, which contains the two remaining

values (validation data). We calculated the sums of squares between the estimated and

observed diversity values employed as validation data. We repeated this procedure for each

possible split of the data set and calculated the average sum of squares ( �SScv). Next, we

employed the �SScv to calculate the proportion of the variation that can be predicted by the

model using the leave-two-out coefficient of determination (R2CV) as follows:

R2

CV ¼ 1 �
�SScv

1

n

Pn
i¼1
ðyi � �yÞ2

where �SScv is the average sum of squares obtained from the leave-two-out cross-validation, yi is
the diversity value for the ith patch, �y is the mean value of a given diversity metric, and n is the

number of patches. The R2CV ranges between -1 (indicating the model has a worse prediction

power than the null model) and one (indicating the model predicts the validation data per-

fectly), and can be used to compare between response variables and scales of measurement

[85–87]. Finally, we plotted the resulting 13 R2CV values and selected the one with the strongest

response as the scale of effect for that landscape metric (Figs A and B in S1 Text [45]). We

repeated this procedure for each diversity and landscape metric (N = 468 models).

Flawed study design, such as selecting a narrow range of spatial extents (smallest to largest)

or by establishing wide distances among the analyzed extents, can lead to inaccurate estima-

tions of the scale of effect [41,43]. Therefore, we estimated the uncertainty around the selected

scale of effect through bootstrapping [88]. We randomly resampled the data from n patches,

with resampling, from the set of 16 patches 1000 times. Then, we estimated the scale of effect

for each resampled data set as described above and summed the number of times (out of 1000)

that each buffer size was selected as the scale of effect. Although the uncertainty around the

selected scale of effect varied among landscape- and diversity-metrics, the most frequently

selected scale of effect based on the bootstrapped analysis matched with the scale of effect that

we selected based on the highest R2CV value (Figs C and D in S1 Text). Additionally, we

employed the data from the bootstrapped analysis to assess if the scale of effect differed among

α- and β-diversity metrics and among landscape metrics. We only employed the data from the

selected landscape metrics in the previous step.

Thereafter, we evaluated the effects of landscape metrics on diversity metrics through mul-

tiple linear models with a normal distribution. We constructed a global model for each of the
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α- and β-diversity metrics using only the landscape metrics at the scale of effect identified in

the previous step (Table 2). All models were additive due to our limited sample size of 16 forest

patches.

We did not find spatial autocorrelation between the distance of sampling sites and the model

residuals of the selected landscape metrics (Table G in S1 Text). Therefore, we assured samples

independency because spatial autocorrelation of model residuals–an indicator of pseudoreplica-

tion–is associated with the proximity between sampling sites [89,90]. We estimated the variance

inflation factor (VIF) of landscape metrics beforehand with the car package [91]. Since we did

not find significant collinearity (VIF� 4) between the explanatory variables [92], we employed

the dredge function of theMuMIn package [93] to create all possible combinations of explana-

tory variables plus the null model (only the intercept). We ranked the models using the Akaike’s

information criterion corrected for small samples (AICc) and selected those models with a

AICc difference lower than two (ΔAICc< 2) as the best supported by the data [94].

Finally, we assessed the importance and the relative effect of each landscape metric mea-

sured at the scale of effect on each diversity value using an information theory approach and

multimodel inference [94]. For this, we selected the subset of models that had 95% probability

of containing the best model using the summed Akaike weights (wi) of ranked models until

∑wi� 0.95. We employed the wi of the model’s subset to calculate the relative importance and

the model-averaged parameter estimates of each explanatory variable. We considered as influ-

ential variable those for which the unconditional standard error (USE) did not include zero in

the averaged parameters. We carried out all statistical analysis in the R 3.5.2 statistical comput-

ing environment [95].

Results

We recorded a total of 1334 tree seedlings from 29 families, 51 genera and 72 species in 160 m2

(Table H in S1 Text). Most seedlings were animal-dispersed species (1258 individuals; 94.3%),

belonging to 24 families, 42 genera and 58 species. Mean species density of the animal-dispersed

seedlings were 11.37 ± 2.96 species/10 m2 (range 6–16 species; mean ± standard error), mean

seedling density was 78.62 ± 34.03 individuals/10 m2 (range 10–129 individuals). The most

abundant species was Inga punctata,—an early successional and disturbance tolerant tree species

-, which represented 33% of all individuals sampled, followed by the late-successional tree species

Ampelocera hottlei (13%) and Brosimum alicastrum (11%). Less than half of the species (ca. 31%)

were restricted to one patch. We found that α- and β-diversity metrics were significantly higher

than the other metrics when species abundances were not considered (Fig E in S1 Text).

Scale of effect and importance of landscape structure on seedling diversity

We observed that scale of effect of landscape composition and configuration was similar for all

α-diversity metrics (Fig 2A–2C). The bootstrapped data showed the scale of effect of α-

Table 2. Global model of each diversity metric employed for the model selection assessment.

α-diversity β-diversity

αall~AI600+PI1200+SF600 βall~EC800+PD1400

αtypical~AI600+PI1200+SF600 βtypical~PD500+SF1300

αdominant~AI600+PI1200+SF600 βdominant~AI500+PD500

The landscape metrics are the aggregation index (AI), the edge contrast index (EC), patch isolation (PI), and the percentage of secondary forest (SF). The subscript

numbers indicate the scale of effect (radius meters) of each landscape metric.

https://doi.org/10.1371/journal.pone.0253284.t002
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diversity was the same for typical (807.52 ± 140.03 m; mean ± standard error) and dominant

species (801.73 ± 132.57 m), whereas the scale of effect for all species was slightly lower

(764.27 ± 144.06 m). The best-fitting models showed a positive effect of patch aggregation, and

a negative effect of patch isolation and secondary forest cover (Table I in S1 Text). When

assessing the importance and relative effect of these landscape metrics, we found that second-

ary forest was strongly associated (∑wi> 0.75; Fig 3A) to α-diversity loss, regardless diversity

metrics (Fig 3C). We also found an important contribution of patch aggregation in species

richness (Fig 3C).

In contrast, we found that scale of effect varied among β-diversity metrics (Fig 2D–2F).

The bootstrapped data indicated that the scale of effect decreased in the predicted order

(i.e. dominant < typical < all), where the scale of effect was higher for β-diversity of all

species (1021.07 ± 133.74 m) than for typical (826.54 ± 84.72 m) and dominant species

(577.91 ±101.79 m). The three β-diversity metrics were positively associated with patch

Fig 2. Scale of effect of landscape metrics on seedling diversity within forest patches in a fragmented tropical rainforest in southern Mexico. (A-C) Scale of effect

on α-diversity. (D-F) Scale of effect on β-diversity. The landscape radius in meters and the associated landscape metrics are within each buffer. The landscape metrics

are the aggregation index (AI), the edge contrast index (EC), the patch density (PD), patch isolation (PI), and the percentage of secondary forest (SF).

https://doi.org/10.1371/journal.pone.0253284.g002
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density, and negatively affected by secondary forest cover, patch aggregation, and edge

contrast (Table I in S1 Text). The Akaike weighted values showed that landscape configu-

ration was important for β-diversity (Fig 3B). Patch density was particularly relevant for

β-diversity of typical and dominant species, while edge contrast was more important for

β-diversity of all species (Fig 3D).

Fig 3. Importance and relative effects of the landscape metrics on seedling diversity within forest patches in a fragmented tropical rainforest in southern

Mexico. We included the 95% confidence set of models for (A and C) α- and (B and D) β-diversity. The importance of each variable is represented by the sum of the

Akaike weights (∑wi). The effects of each covariate were estimated through a model-averaged parameter estimate of information-theoretic-based model selection and

multimodel inference. The whiskers represent the unconditional standard error (USE) and the asterisks indicate the influential variables (those for which the USE did

not include zero). The landscape metrics are the aggregation index (AI), the edge contrast index (EC), the patch density (PD), patch isolation (PI), and the percentage

of secondary forest (SF). The subscript numbers indicate the scale of effect of each variable.

https://doi.org/10.1371/journal.pone.0253284.g003
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Discussion

Landscape effects on seedling diversity

This is the first study to assess the effects of landscape structure on the α- and β-diversity of the

animal-dispersed tree seedling community at multiple spatial scales (but see [30]). As expected,

we found that landscape composition affected α-diversity whereas β-diversity was influenced

by landscape configuration. We also observed that the scale of effect varied among β-diversity

metrics in the predicted order.

Effects on α-diversity. We found a decrease of α-diversity in forest patches surrounded

by secondary forests, which are documented to exert a significant influence in the composition

of tree communities within forest patches [32,33,96]. Altered microclimate and the opening of

canopy gaps in small patches promote the proliferation of early-successional tree species while

reducing the richness and abundance of old-growth species [74,97]. The arrival of early-suc-

cessional species is driven by short-distance dispersal of generalist seed dispersers [98–100].

This may explain the high abundance of I. punctata seedlings, a species from seasonally

flooded rainforests that is commonly found in secondary forests and as isolated trees in pas-

tures [101–103]. Additionally, secondary forests restrict the arrival of some forest-specialist

seed dispersers to forest patches at similar landscape sizes (100-ha or 564-m radius) [53,104]

than the observed scale of effect of secondary forest on α-diversity (600-m radius). Thus, our

findings support the contribution of the surrounding matrix on tree diversity within forest

patches [32,33]. This results should be taken cautiously, because secondary forests are funda-

mental for forest regeneration and restoration in HMTLs [105,106], whether by increasing

habitat amount, attracting pollinators and seed dispersers, buffering edge effects, and by pro-

viding seed sources that maximize the large-scale regeneration of disturbed abandoned fields

[107,108]. Thus, conservation strategies in HMTLs should preferably promote secondary for-

ests than agricultural fields in the surrounding matrix of forest patches [105,109].

Contrary to our predictions, we observed that α-diversity was also affected by landscape

configuration, supporting the fragmentation threshold hypothesis [38]. The positive effect of

patches aggregation on seedling richness suggests that seed sources and seed dispersal can be

sustained where patches are highly aggregated. Previous studies predicted that dispersal dis-

tance of species may be limited in highly deforested landscapes, favoring species response to

local characteristics, such as patches aggregation across the landscape [110,111]. In our study,

the selected landscapes presented a low percentage of forest cover across the 13 buffer sizes

(19.01±5.1%; mean ± standard deviation). The aggregation of forest patches facilitates the

inter-patch movement of forest-dependent species in landscapes with low forest cover, where

the distribution of species home range comprises several patches [77,112]. For example, frugi-

vore birds can adjust their movement behavior according to landscape configuration, flying

larger distances and visiting more forest patches in landscapes with decreasing forest cover

[113]. These changes in the spatial configuration of forest patches also affect species foraging–

which relies in resources from nearby patches (i.e. landscape supplementation dynamics [7])–

and therefore, seed dispersal patterns. Some studies indicate that fruit removal increased and

dispersal distance decreased where plants aggregation is high [114]. Thus, colonization of tree

species in highly disturbed landscapes may be operating at smaller spatial scales [42].

Effects on β-diversity. Landscape configuration affected β-diversity, but seedling

responses varied among diversity metrics. The β-diversity of all species was negatively associ-

ated with edge contrast of old-growth forests in the 800-m radius landscapes. The loss of β-

diversity by edge contrast indicates an homogenization of seedling assemblages by edge effects,

as well as by a limited heterogeneity of microclimate conditions, a processes observed in

HMTLs with low forest cover [18,115]. Additionally, edge contrast can influence the presence
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of herbivorous mammals within patches [6], which promote β-diversity of tree seedlings

through secondary seed dispersal, and seedling herbivory and trampling [22,23]. Accordingly,

the association between seedling β-diversity and edge contrast suggests that low exposure to

edge effects, a more heterogeneous microclimate and the presence of density-independent fac-

tors (i.e., terrestrial herbivores) promotes a broader species coexistence [35].

The overall increment of β-diversity for the typical and dominant species by patch density

is not surprising. According to the “biotic differentiation hypothesis”, the limited exchange of

seeds and differences in disturbance regimes across forest patches promote floristic differentia-

tion in highly deforested landscapes [68,96]. Spatial patterns that limit the species exchange

influence β-diversity in the tropics [17,116]. These effects are intensified in fragmented rain-

forests, where differences in forest cover amount, disturbance source (i.e., slash-and-burn

practices or tree removal by machinery), degree of fragmentation and connectivity, lead to

contrasting regeneration dynamics within patches [96,117]. Consequently, the establishment

of a wider array of species is facilitated by landscape configuration and a less evenly distributed

number of individuals among dominant species [34,77]. These conditions can prevent com-

petitive exclusion (i.e. excluding strong competitors that are weak dispersers), spread the risk

of simultaneous extinctions and increase landscape complementation, favoring β-diversity

[8,68]. This is consistent with the mechanisms involved in β-diversity increase through the col-

onization of different opportunistic species and the extinction of shared species among sites

[118]. Thus, fragmentation is having positive effects on seedling diversity by facilitating the

arrival and establishment of species otherwise poorly represented in old-growth forests [8].

Scale of landscape effect on diversity metrics

Our results did not support the predicted order of the scale of effect (dominant < typical < all)

for α-diversity metrics, which also showed a substantial uncertainty in the selected scale of

effect (Fig C in S1 Text). These variations reinforce the findings that scale of effect does not

vary in a predictable order among response variables [43,88]. The inconsistencies observed on

α-diversity metrics may be associated to the temporal scale and landscape composition and

configuration variables assessed [88]. Temporal scale variations regarding tree phenology and

movement/foraging patterns of seed dispersers in fragmented HMTLs [54,119] may be

obscuring the expected differences in the scale of effect. A study in the same region found that

scale of effect of landscape composition on seed rain followed the predicted order [31,60]. The

sampling period however, comprised a whole year in order to control for the temporal varia-

tion in the seed rain [60]. Additionally, the scale of effect was possibly influenced by the low

forest cover of the study area (<25%), which can reduce the expected scale of effect to local fac-

tors, such as patch size [42]. However, comparative studies in HMTLs have found non-signifi-

cant differences in the scale of effect among regions with contrasting disturbance levels

[54,60]. Further studies including comparative assessments among regions are needed to fully

understand the importance of regional context in landscape metrics and the scale of effect.

On the contrary, the scale of effect observed among β-diversity metrics did follow the pre-

dicted order. The scale of effect of edge contrast is similar to those observed for matrix contrast

on stem density of understory vegetation in los Tuxtlas, Mexico (798 m), and for matrix open-

ness in seed abundance and species richness of animal-dispersed seeds and forest generalist

saplings (798–977 m) [30,31,47]. These studies suggested that matrix contrast operates at

smaller scales, where it drives local edge effects involved in the mortality of animal-dispersed

seedling species, and favors the dispersal and establishment of wind-dispersed seeds [31,47].

This also holds true for the scale of effect of patch density in our study (500 m) and those

observed for richness of old-growth forest specialist- saplings (500 m) in the study area [30].
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Patch density is positively related to habitat heterogeneity and to the number of subpopula-

tions in the landscape, increasing community dissimilarity [8,35]. These findings suggest that

matrix contrast is limiting the dispersal and recruitment of lower-density species, whereas for-

est fragmentation is promoting the coexistence of higher-density species.

Study limitations

Our results are conservative as a larger number of landscapes are desirable to making further

inferences. Also, the lack of information related to species composition of secondary forest

trees and seed rain within forest patches limit our understanding about the contribution of

secondary forests to seedlings α-diversity [60,120]. Finally, our study did not consider a long-

term monitoring of tree seedlings to elucidate the contribution of patch microclimate, fruiting

events, foraging behavior of seed dispersers, disturbance regimes, and density-dependent mor-

tality factors, which strongly influence the composition and dynamics of seedling communities

in the tropics [16,121,122].

For seedlings β-diversity, our findings should be taken cautiously, because we inferred the

presence of mammals only through landscape metrics, regardless mammal species have differ-

ent responses to landscape structure [6]. Furthermore, herbivorous mammal effects on seed-

ling diversity vary according to the incidence, relative abundance and body mass [23,24], as

well as by population fluctuations and food quality and availability [123]. In turn, these biolog-

ical responses (i.e. abundance, richness, incidence and body size) are affected by landscape

structure at varying spatial scales [39,42]. Finally, the mechanisms of β-diversity loss are highly

sensitive to the ratio of winner-loser species and the spatial scale at which communities are

assessed [118]. Nevertheless, the use of structural equation modeling in multi-scale assess-

ments have permitted analyzing the direct and cascading effects of landscape structure on dif-

ferent biological responses in HMTLs [47]. This represents a promising approach to evaluate

the response of interactions-mediated patterns and processes to landscape composition and

configuration. Thus, further studies regarding cascading effects of landscape structure on dif-

ferent biological responses of herbivorous mammals and tree seedling communities are

needed to fill these knowledge gaps.

Conclusions and conservation implications

Contrary to studies performed in the same area [30], we found that forest fragmentation is a

strong driver of seedling diversity at smaller spatial scales in highly deforested rainforests.

Severe fragmentation of rainforests will occur in the short term [4], urging economic incen-

tives and innovations in policy and governance that favor forest regrowth, matrix quality and

patches number.

Implementation of payment for ecosystem services’ schemes and REDD+ programs can

prevent further loss of old-growth and secondary forests while promoting agroforestry man-

agement [124,125]. Favoring matrix quality and configurational patterns that increase habitat

heterogeneity are feasible in landscapes with land-sharing schemes of smallholder agriculture

[126]. In these rural landscapes, diversification of small-scale agroecosystems, intensification

of agriculture and reduction of cattle ranching promotes forest regeneration and food security

[127,128]. Additionally, enactment of programs of enrichment planting of trees with local

commercial/ecological importance, and forest management policies that permit local gover-

nance for harvesting timber and non-timber products are needed to enhance the management

and diversity of secondary forests [129]. Finally, is necessary to map and classify the biophysi-

cal and socio-ecological land use dimensions of land covers and naturally regenerated forests

to identify restoration opportunities for assisted or unassisted natural regeneration [129,130].
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Novel institutional and policy approaches in Costa Rica have proven that decreasing meat

exports while supporting payment for environmental services, agricultural intensification and

native species plantations lead to a forest transition in less than 15 years [131,132]. Incorpo-

ration of these conservation, management and restoration guidelines are urgently needed to

preserve regeneration of forest patches and future conservation value of HMTLs.
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57. Sousa M. Adiciones al género Inga para la flora Mesoamericana. Acta botánica Mex. 2009; 89: 25–41.

58. Ibarra-Manrı́quez G, Cornejo-Tenorio G. Diversidad de frutos de los árboles del bosque tropical peren-
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116. Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, et al.

Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assem-

bly. Ecol Lett. 2013; 16: 151–157. https://doi.org/10.1111/ele.12021 PMID: 23113954
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