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Abstract
Purpose The incidence of head and neck squamous cell carcinomas (HNSCC) is increasing worldwide, especially
when triggered by the human papilloma virus (HPV). Radiotherapy has immune-modulatory properties, but the role
of macrophages present in HNSCC and having contact with irradiated tumor cells remains unclear. The influence of irra-
diated (2× 5Gy) HNSCC cells on the (re-)polarization and phagocytosis of human macrophages, either non-polarized or
with a more M1 or M2 phenotype, was therefore investigated.
Methods Human monocytes were differentiated with the hematopoietic growth factors M-CSF (m) or GM-CSF (g) and
additionally pre-polarized with either interleukin (IL)-4 and IL-10 or interferon (IFN)-γ and lipopolysaccharides (LPS),
respectively. Subsequently, they were added to previously irradiated (2× 5Gy) and mock-treated HPV-positive (UD-SCC-2)
and HPV-negative (Cal33) HNSCC cells including their supernatants.
Results The HNSCC cells treated with hypofractionated irradiation died via apoptosis and were strongly phagocytosed by
M0m and M2 macrophages. M0g and M1 macrophages phagocytosed the tumor cells to a lesser extent. Irradiated HNSCC
cells were better phagocytosed by M1 macrophages compared to mock-treated controls. The polarization status of the
macrophages was not significantly changed, except for the expression of CD206 on M2 macrophages, which was reduced
after phagocytosis of irradiated HPV-negative cells. Further, a significant increase in the uptake of irradiated HPV-positive
cells by M0g macrophages when compared to HPV-negative cells was observed.
Conclusion HNSCC cells treated with hypofractionated irradiation foster phagocytosis by anti-tumorigenicM1 macrophages.
The data provide the first evidence on the impact of the HPV status of HNSCC cells on the modulation of the macrophage
response to irradiated tumor cells.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is the
sixth most common cancer worldwide, with more than
890,000 new cases every year [1]. The mortality rate has
not decreased for decades, and the 5-year survival rate is
under 70% [2]. Not only the consumption of alcohol and
tobacco [3, 4] but also an infection with the human papil-
loma virus (HPV) are strongly associated with HNSCC.
The incidence of HPV-driven head and neck tumors is
rapidly increasing [5, 6]. Apart from surgery, adjuvant or
primary treatment with radiotherapy (RT) is common. Pa-
tients with solid tumors receive RT in about 60% of the
cases during the course of their disease [7]. It should be
emphasized that ionizing radiation not only has a direct in-
fluence on the irradiated tumor cells, but also has a broader
systemic effect through the induction of immunogenic cell
death, which has a modulating and stimulating effect on
the immune system, leading in the ideal case to antitumoral
immune responses [8–14].

The immune system plays a crucial role in the devel-
opment of tumors [15–18], which becomes clear in the
interaction between tumor cells and the tumor microen-
vironment (TME; [19, 20]). The latter is composed of
many different cells and molecules, such as tumor cells,
immune cells, tumor-associated fibroblasts, the vascular
network, cytokines, growth factors, chemokines, or en-
zymes. The cancer–immune cell crosstalk is a dynamic
process that is influenced by multiple factors and deter-
mines whether a pro- or anti-inflammatory environment
is established at the tumor site [21]. A major part of the
immune compartment of solid tumors comprises tumor-
associated macrophages (TAMs; [22]).

Macrophages develop and differentiate from monocytes
via the hematopoietic growth factors macrophage-stimu-
lating factor (M-CSF; [23]) and granulocyte macrophage-
stimulating factor (GM-CSF; [24]) and can be catego-
rized as CD11b-positive cells [25]. The differentiated M0
macrophages (M0-MΦ) are able to polarize into two key
phenotypes depending on the existing microenvironment
and signal molecules surrounding them [26]. The pro-
inflammatory M1 macrophages (M1-MΦ), called “clas-
sically activated macrophages” [27–32], are polarized by
lipopolysaccharide (LPS) and interferon gamma (IFN-γ;
[33–36]) and are characterized by a high expression of the
MHC (class II) cell surface receptor HLA-DR [25] and the
co-stimulatory activation marker CD80 [37, 38]. The anti-
inflammatory M2 macrophages (M2-MΦ), called “alter-
natively activated macrophages”, can be polarized by the
cytokines IL-4 and IL-10 [32, 38–41] and are characterized
by a high expression of the scavenger receptor CD163 [38,
40, 42] and the mannose receptor CD206 [25, 38, 43–45].
They are considered as immunosuppressive macrophages

[18, 27–29, 46–51]. Nevertheless, macrophages have a high
plasticity, being able to switch from one phenotype to an-
other, which means they have the ability to re-polarize
depending on the microenvironment and on specific stimuli
they are exposed to [29, 52–54]. Furthermore, fully polar-
ized M1- and M2-MΦ are the extremes of a continuum of
functional states.

Tumor-associated macrophages can act in pro- or anti-
inflammatory ways [22, 55, 56], but are predominantly con-
sidered as protumoral M2-like macrophages and play a key
role in regulating inflammation, angiogenesis, cancer cell
migration, tissue remodeling, and tumor progression [22,
57–60]. The mutual interaction between macrophages and
HNSCC cells triggers a polarization of TAMs toward M2-
MΦ as well as tumor invasion and angiogenesis [61]. Fur-
thermore, one of the primary functions of macrophages and
central mechanisms by which TAMs can affect cancer pro-
gression is through phagocytosis of pathogens and abnor-
mal cells including tumor cells [22, 62–64]. Phagocytosis is
essential for maintaining normal homeostasis and healthy
tissue, and it is a therapeutic target for a wide range of
clinical applications [65–67].

According to Okubo et al. [68], RT leads to vascular
damage and hypoxia of the tumor, which in turn leads to
migration of CD11b-positive cells, polarizing into M2-MΦ
[69]. There is a well-known correlation between a high infil-
tration of M2-MΦ and tumor progression of HNSCC, lead-
ing to an overall poorer prognosis [46, 57, 70]. In addition, it
should be emphasized that HPV-positive patients generally
show better responses to RT, and thus have a better prog-
nosis and overall survival than HPV-negative patients [5, 6,
71–74]. This is most likely due to immune responses trig-
gered by HPV infections, which may be further enhanced
by RT [75].

Considering that TAMs contribute to the formation of an
immunosuppressed state within the TME, one of the thera-
peutic strategies targeting TAMs is reeducating TAMs to an
antitumor phenotype, such as promoting the phagocytosis
ability of macrophages [22, 76].

Our objectives were therefore to investigate the influence
of irradiated HNSCC cells on the (re-)polarization and the
phagocytosis of human macrophages, either being non-po-
larized or having a more M1 or M2 phenotype, by bringing
them into direct cell-to-cell contact with each other. One
HPV-positive and one HPV-negative HNSCC cell line was
used for the examinations.
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Materials andmethods

Cell lines and cell culture

The head and neck tumor cell lines Cal33 (cal33; HPV-
negative) and UD-SCC-2 (UD2; HPV-positive) were cul-
tured in DMEM medium (Pan Biotech) containing 10%
fetal bovine serum (FBS, Sigma-Aldrich) and 1% peni-
cillin/streptomycin (PenStrep, GIBCO Life Technologies,
Thermo Fisher Scientific, Waltham, MA, USA). Mono-
cytes from healthy human donors (isolation procedure
described below) were cultured in RPMI1640 medium
(Sigma-Aldrich, St. Louis, MO, USA) containing 10% FBS
and 1% PenStrep. All cells were incubated under standard
conditions at 37°C, 5% CO2, and 95% humidity (Incubator
RBP 6220, Hereus Instruments, Hanau, Germany).

Monocyte isolation

Peripheral blood mononuclear cells (PBMC) were isolated
from leukoreduction system chambers (LRSC) of healthy,
anonymous donors having undergone a strict health check
by the Transfusion Medicine and Hemostaseology Depart-
ment of the Universitätsklinikum Erlangen, Germany. The
permission to use this LRSC was given by the ethics com-
mittee of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (ethical approval no. 180_13 B and 48_19 B)
according to the rules of the Declaration of Helsinki in its
current form. All PBMC were isolated by density gradient
centrifugation and subsequently monocytes were separated
by CD14+ selection using magnetic cell sorting (MACS;
Miltenyi Biotec, Bergisch Gladbach, Germany) follow-
ing the manufacturer’s instructions. The selected naive
monocytes were seeded in six-well plates with a density
of 1.5× 106 cells per well in RPMI1640 medium (Sigma-
Aldrich) containing 10% FBS and 1% PenStrep.

Macrophage differentiation and pre-polarization

Monocytes were differentiated to macrophages by adding
either M-CSF (100µg/ml, Miltenyi Biotec, Peprotech) for
M0m-MΦ or GM-CSF (40µg/ml, Miltenyi Biotec) for
M0g-MΦ to the monocyte culture on day 0, 2, and 5. On
day 5, cells were washed and fresh medium was added. All
M0g-MΦ were additionally polarized to M1-MΦ by adding
IFN-γ (1mg/ml, R&D Systems, Minneapolis, MN, USA)
and LPS (5mg/ml, Sigma-Aldrich). M0m-MΦ were addi-
tionally polarized to M2-MΦ by adding IL-4 (recombinant,
human, 50µg/ml, Miltenyi Biotec) and IL-10 (recombinant,
human, 100µg/ml, Miltenyi Biotec).

Tumor cell irradiation

Head and neck tumor cells were treated with hypofraction-
ated RT (HFX-RT) with 5Gy of X-rays using an X-ray tube
in a lead shielding chamber (X-Ray generator Isovolt Ti-
tan, GE Inspection Technologies, Hürth, Germany) 24 and
48h after seeding or they were left untreated functioning as
mock-treated controls.

Cell death analysis

Cell death was analyzed 24h after the last irradiation
of the tumor cells by FITC-labeled AnnexinA5 (AxV,
Geneart, Life Technologies) and propidium iodide (PI,
Sigma-Aldrich) staining. Analyses were performed with
the CytoFLEX S flow cytometer (Beckmann Coulter, Brea,
CA, USA) and the Kaluza software. AxV-, PI- cells were
defined as viable, AxV+, PI- as apoptotic, and AxV+, PI+ as
necrotic cells.

Phagocytosis assay

Previously irradiated and non-irradiated tumor cells were
stained with the cytoplasmic membrane dye CellBrite (Bi-
otium, Hayward, CA, USA), following the instructions ob-
tained by the producer. After the staining, the tumor cells
were resuspended in their own corresponding supernatant,
in which they had been incubated and treated for the pre-
vious 3 days. Then the stained tumor cells were added to
the differentiated and pre-polarized macrophages at a ratio
of 3:1 (6× 105 tumor cells per 2× 105 macrophages) and
incubated at 37°C for 2h. As a negative control, cells were
additionally stored at 4°C immediately after the addition of
the tumor cells to the macrophages.

Subsequently, 2h after the addition, all (living and dead)
cells were harvested by using a cell scraper, scraping off the
adherent cells from the bottom of the wells and rinsing them
with PBS (4°C). For the analyses of the phagocytosis abil-
ity, the cells were stained with the viability dye Zombie NIR
(BioLegend, Koblenz, Germany) and anti-human CD11b
(BV635, BioLegend) to distinguish macrophages from tu-
mor cells. Analyses were performed with the CytoFlex S
flow cytometer and the Kaluza software. The gating strategy
is displayed in Fig. 3b.

Polarization analysis

To analyze the phenotype of the macrophages, the stained
irradiated and mock-treated tumor cells (described above)
including their corresponding supernatants were addi-
tionally added to the differentiated and pre-polarized
macrophages at the same ratio of 3:1 (6× 105 tumor cells per
2× 105 macrophages) and were incubated at 37°C for 24h.
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As a negative control, macrophages of each condition were
left without the addition of any tumor cells (referred to as
“w/o”).

All cells were harvested 24h after the addition, as de-
scribed above. The following dyes and antibodies conju-
gated to the indicated fluorochromeswere used for the stain-
ings: Zombie NIR (BioLegend), CD11b (BV635, BioLe-
gend); CD80 (PE-Cy7, BioLegend); HLA-DR (KO, Beck-
man Coulter); CD163 (PE-Dazzle, BioLegend); and CD206
(APC, BioLegend). In addition, cells were only stained with
Zombie NIR and CD11b. Analyses were performedwith the
CytoFlex S flow cytometer and the Kaluza software. Back-
ground correction was carried out by subtracting the me-
dian fluorescence intensity of the Zombie NIR and CD11b
staining from the complete staining.

Statistical analysis

Statistical analyses were performed with the GraphPad
Prism 8 software. Unless indicated otherwise,
a Kruskal–Wallis test was calculated to compare all treat-
ment groups against the negative control with Dunn’s
correction for multiple testing and a Mann–Whitney U test
to compare two treatment groups. Significance is indicated
as follows: *p< 0.05, **p< 0.01, ***p<0.001.

Results

In vitro differentiated and (pre-)polarized
macrophages show characteristic M1 andM2marker
expression

To investigate the phagocytosis and subsequent (re-)polar-
ization of differentiated and pre-polarized macrophages in
vitro, human monocytes were differentiated for 7 days with
the hematopoietic growth factors M-CSF or GM-CSF and
pre-polarized during the 48h with either IL-4 and IL-10 or
IFN-γ and LPS, respectively (Fig. 1a). The differentiation
and (pre-)polarization resulted in four different phenotypes
of macrophages that were consecutively used for the exam-
inations: M0m-, M0g-, M1-, and M2-MΦ. These were sub-
sequently analyzed for their expression of HLA-DR, CD80,
CD163, and CD206 (Fig. 1b–i).

The M1-marker HLA-DR (Fig. 1b and c) was expressed
on all four phenotypes, but was expressed significantly
higher on M1- compared to M0m- and M2-MΦ. The ex-
pression of the activation marker CD80 (Fig. 1d and e)
was not only significantly higher on M1-, but also on M2-
MΦ compared to M0g-MΦ, and it was also slightly up-
regulated on M0m-MΦ. M2-MΦ expressed the highest lev-
els of the typical M2-markers CD163 (Fig. 1f and g) and
CD206 (Fig. 1h and i). CD206 showed significantly higher

expression on M2-MΦ compared to M1- and M0m-MΦ.
Whereas CD163 was absent on all GM-CSF-differentiated
cells, CD206 was up-regulated on M0g-MΦ too. These re-
sults confirm that macrophages of high plasticity and the
key immune phenotypes were available for the subsequent
analyses.

Hypofractionated irradiation of HNSCC cells induces
predominantly apoptotic tumor cell death

Irradiation with 2× 5 Gy significantly increased apoptosis in
the HPV-negative HNSCC cell line cal33 and in the HPV-
positive HNSCC cell line UD2 as early as 24h after the
last irradiation (Fig. 2b and c). By contrast, necrosis was
not significantly altered by hypofractionated irradiation of
the examined HNSCC tumor cells at the early time point
analyzed.

Only M1macrophages show increased phagocytosis
of irradiated HNSCC cells compared tomock-treated
ones

To examine whether the different macrophage subsets take-
up HNSCC cells differently dependent on their previous
irradiation and HPV-status, the macrophages were brought
together in direct cell-to-cell contact with the differently
treated head and neck tumor cells and their corresponding
supernatants for 2h and phagocytosis was determined by
flow cytometry (Fig. 3a and b). Macrophages that were dif-
ferentiated with M-CSF (M0m- and M2-MΦ) were charac-
terized by significantly higher phagocytosis rates compared
to GM-CSF-differentiated ones (M0g- and M1-MΦ; Fig. 3c
and d). However, no differences in the uptake of irradiated
tumor cells compared to mock-treated ones were observed.
By contrast, M1-MΦ took up irradiated HNSCC tumor cells
irrespectively of their HPV status better than non-irradiated
mock-treated ones (Fig. 3c and d). The irradiated HPV-pos-
itive tumor cells (Fig. 3d) were taken up significantly better
by M0g0MΦ than the irradiated HPV-negative tumor cells
(Fig. 3c).

Polarization of macrophages is hardly affected by
addition of HNSCC cells including their SN regardless
of previous treatment and HPV status

The analysis of the polarization and re-polarization of the
macrophages after the addition of mock-treated and irradi-
ated tumor cells, respectively, is shown in Fig. 4. To include
the stimulus of the tumor cells themselves as well as po-
tential soluble factors, the tumor cells were added to the
macrophages resuspended in the SN collected after the re-
spective treatment.
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Fig. 1 Human in vitro differentiated macrophages show the characteristic M1 and M2 marker expression after polarization with respective cy-
tokines. a Timeline shows the different treatment schedules of the naive human monocytes, differentiating and (pre-)polarizing into the four
phenotypes of the macrophages M0m-, M0g-, M1-, and M2-MΦ, which were used in the experiments. On day 0, PBMCs were isolated from con-
centrated human blood by density gradient centrifugation and monocytes were isolated by CD14+ MACS separation. On day 0, 2, and 5 the growth
factors M-CSF for M0m- and M2-MΦ and GM-CSF for M0g- and M1-MΦ were added to the medium. On day 5 the medium was renewed and the
cytokines IFN-γ and LPS for M1-MΦ and IL-4 and IL-10 for M2-MΦ were additionally added. For the polarization analysis of the macrophages,
all cells were stained with the viability stain Zombie NIR and the antibodies CD11b, CD80, HLA-DR, CD163, and CD206 (b–i). Background
correction for the respective marker expression was performed by subtracting the median fluorescence intensity of the Zombie NIR and CD11b
staining from the complete staining. Background corrected (ΔMFI) expression data for HLA-DR (b), CD80 (d), CD163 (f), and CD206 (h) are
presented as median with interquartile range and additionally representative data for each marker (c, e, g, i) are depicted. Statistical analysis was
performed with the Kruskal–Wallis test and Dunn’s correction for multiple testing comparing all four conditions with each other. Significance is
indicated as: * p< 0.05, ** p< 0.01, ***p< 0.001
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Fig. 2 Hypofractionated irradiation induces predominantly apoptosis in HNSCC cells. a Timeline shows the treatment of the HNSCC cells starting
on day 3 by seeding the cells and incubating them for the following 3 days at standard culture conditions. The tumor cells were irradiated with 5Gy
on day 4 and 5 (2× 5Gy). The control group (mock-treated) was left untreated (0Gy). On day 6, 24h after the last irradiation, cell death analysis
of the tumor cells was performed by FITC-labeled AnnexinA5 (AxV) and propidium iodide (PI) staining. Cell death is represented by the necrotic
and apoptotic cell population of the HPV-negative HNSCC cell line cal33 (b) and the HPV-positive HNSCC cell line UD2 (c). Necrotic cells were
defined as PI+, apoptotic cells as AxV+ and PI–. Statistical analysis was carried out with the Mann–Whitney U test. Significance is indicated as:
* p< 0.05. Data are presented as mean with SD

The addition of both HNSCC cell lines including their
corresponding SNs, irrespective of their treatment (0Gy-
vs. 2× 5Gy-irradiation), did not affect the polarization of
the macrophages (Fig. 4a–c, e–g), except for the expression
of CD206. Its expression tended to be lower after contact
of M2-MΦ with both mock-treated and irradiated HNSCC
cells (Fig. 4d and h). In the case of the HPV-negative cell
line (cal33), the expression of CD206 was even significantly
decreased after contact with irradiated tumor cells (Fig. 4d).

Discussion

Macrophages are major components of the TME in many
solid tumors, such as HNSCC. Considering that TAMs
contribute to the formation of an immunosuppressed state
within the TME, one of the therapeutic strategies target-
ing TAMs is reeducating TAMs to an antitumor phenotype,
such as promoting the primary function of macrophages:
their phagocytosis ability [22, 76]. Therefore, macrophages
represent promising targets for anticancer therapy in hu-
mans. Surgery, RT, or both, have been used for decades
to achieve locoregional control. Considering that approxi-
mately 60% of patients with solid tumors such as HNSCC
receive RT in the course of their disease [7], it is manda-
tory to have a better understanding of how RT treatment

affects the function and phenotype of macrophages being
in contact with irradiated HNSCC cells.

In our in vitro study we succeeded in establishing four
stable macrophage phenotypes by differentiating and pre-
polarizing them out of monocytes of healthy human donors
(Fig. 1a). The MHC-II-complex HLA-DR was found to be
the most applicable one for identifying M1-MΦ (Fig. 1b
and c), whereas the scavenger receptor CD163 (Fig. 1f
and g) and the mannose receptor CD206 (Fig. 1h and i)
both proved to be suitable forM2-MΦ. With those estab-
lished phenotypes it was possible to set up phagocytosis
assays and analyses of re-polarization after bringing those
macrophages in direct cell-to-cell contact with the HNSCC
cells and their SN.

Considering that not only the consumption of alcohol
and tobacco, but also an infection with HPV is strongly as-
sociated with HNSCC [1] and that HPV-associated HNSCC
have split off as an independent subgroup in recent years
[77], both an HPV-negative and an HPV-positive HNSCC
cell line was included in the examinations. Approximately
20–25% of affected patients are HPV-positive and among
them the HPV subtype 16 is the most common [78].

It has been shown that HPV-positive HNSCC cells are
more radiosensitive with regard to their clonogenicity, be-
cause of an increased incidence of DNA double-strand
breaks and simultaneously a defective DNA repair [79].
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Fig. 3 Irradiated HNSCC cells are better taken up by M1 macrophages compared to mock-treated ones. a Timeline shows the simultaneous
treatment of the HNSCC cells and the monocytes/macrophages. On day 6 the tumor cells were first stained with the cytoplasmic membrane dye
CellBrite and subsequently added to the differentiated and pre-polarized macrophages at a ratio of 3:1 (6× 105 tumor cells per 2× 105 macrophages)
and incubated at 37°C in the corresponding supernatants (SN) in which the tumor cells were treated for the previous 3 days. After 2h, all cells were
harvested and stained with the viability stain Zombie NIR and CD11b to distinguish between the two cell types. As a control group, macrophages
and tumor cells were incubated at 4°C. The gating strategy of the phagocytosis analysis is shown in b. After pre-gating on singlets (FSC-A/FSC-
H) and viable cells based on morphological properties (FSC-A/SSC-A) and live/dead stain (Zombie NIR), macrophages were identified by CD11b
expression. The phagocytosis rate was determined by the percentage of CellBrite-positive macrophages. Data for the uptake of the 2× 5Gy-
irradiated and mock-treated (0Gy) HPV-negative HNSCC cell line cal33 (c) and the HPV-positive HNSCC cell line UD2 (d) are presented
as median with interquartile range. Statistical analysis was performed with the Kruskal–Wallis test and Dunn’s correction for multiple testing
comparing all “0Gy” and all “2× 5Gy” of all four phenotypes with each other, and with the Mann–Whitney U test comparing “0Gy” with
“2× 5Gy” within each phenotype. Additionally, the Mann–Whitney U test was used to compare the influence of the HPV status on the uptake of
tumor cells through the respective macrophage subtypes and treatment modalities (# p< 0.01). Significance is indicated as: * p< 0.05, ** p< 0.01,
*** p< 0.001
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Fig. 4 Macrophages are not (re-)polarized upon the uptake of HPV-positive or HPV-negative HNSCC cells including their supernatants, but
CD206 is downregulated on M2 macrophages. For the analysis of the (re-)polarization of the macrophages after the addition of irradiated (2× 5Gy)
and mock-treated (0Gy) HPV-negative (cal33; a–d) and HPV-positive (UD2; e–h) HNSCC cells, after 24h macrophages were stained with the
viability stain Zombie NIR and the antibodies for CD11b, HLA-DR, CD80, CD163, and CD206. Macrophages without the addition of any tumor
cells are referred to as “w/o,” and used as control groups. Background correction for the respective marker expression was performed by subtracting
the median fluorescence intensity of the Zombie NIR and CD11b staining from the complete staining. The fold change in expression of the markers
HLA-DR (a, e), CD80 (b, f), CD163 (c, g), and CD206 (d, h) is presented in relation to the “w/o” control. Statistical analysis was performed with
the Kruskal–Wallis test and Dunn’s correction for multiple testing comparing “w/o,” “0Gy,” and “2× 5Gy” with each other within each phenotype.
Significance is indicated as: * p< 0.05

Kimple et al. postulated the enhanced induction of apop-
tosis as an explanation for the increased radiosensitivity of
the HPV-driven HNSCC cells [80]. We observed that at
clinically relevant early time points after RT, in both the
HPV-negative and the HPV-positive tumor cells increased
apoptosis was present, while necrotic tumor cells were not
induced (Fig. 2b and c). Cell death behavior is directly
related to phagocytosis since it is the task of phagocytosing
cells to distinguish dying/dead cells from living ones and
to eliminate them [81]. The so-called clearance of dying
cells is generally regulated by a group of “eat me” signals,
facilitating the cellular uptake by binding to phagocytic
receptors on immune cells [82–85]. Living (tumor) cells,
on the other hand, prevent phagocytotic clearance through
the sustained presentation of “don’t eat me” surface signals,
such as CD47 [86, 87]. Since one of the primary functions
of macrophages and central mechanisms by which TAMs
can affect cancer progression is through phagocytosis of
pathogens and abnormal and dead cells including tumor

cells [22, 62–64], phagocytosis is a therapeutic target for
a wide range of clinical applications [65–67]. Similar to
our study, Gardner et al. very recently developed an in vitro
phagocytosis assay of M-CSF-differentiated macrophages
and irradiated brain tumor cells. They demonstrated that
the phagocytosis of irradiated tumor cells was enhanced
in a dose-dependent manner [88]. We now show for the
first time that HNSCC cells are phagocytosed very well by
M-CFS-generated macrophages including the M2 pheno-
type, irrespective of the treatment and HPV status. (Fig. 3c
and d). By contrast, GM-CSF-generated macrophages had
lower phagocytosis rates. However, a significant increase
in the uptake of irradiated HPV-positive cells by M0g
macrophages when compared to HPV-negative cells was
observed. This, together with the observation of decreased
CD206 expression on M2 macrophages after contact with
irradiated HPV-negative cells, provides the first indications
of the impact of HPV status of HNSCC cells in the mod-
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ulation of the macrophage response to irradiated tumor
cells.

Of particular interest is that M1-MΦ phagocytosed irra-
diated HNSCC cells significantly better than non-irradiated
ones. This might positively affect antitumor immune re-
sponses to RT-treated HNSCC as non-irradiated tumor cells
should be quickly removed by M2-MΦ, whereas some of
the irradiated ones could be phagocytosed by M1-MΦ. The
latter are capable of initiating antitumor immune responses
[89]. This could be mechanistically similar to the shift in the
uptake of irradiated tumor cells from immune-suppressive
macrophages to dendritic cells [90].

Although the prognostic relevance of macrophage po-
larization for tumor outcome is still debated [91, 92], it
is, nevertheless, already extensively verified that there is
a strong correlation of M2-MΦ with an increased tumor
progression and a poorer overall prognosis for patients with
HNSCC [46, 57, 70, 91, 93]. Because TAMs are considered
as M2-like macrophages [58–60] and are therefore able to
dampen antitumor immune responses by inducing an im-
munosuppressive environment, new strategies that directly
target TAM polarization or re-polarization toward the M1
phenotype in TME represent an active area of research to
improve antitumor therapies [94]. Several lines of evidence
indicate the capability of macrophages to re-polarize from
one phenotype to another depending on the microenviron-
ment and on specific immunological mediators they are ex-
posed to [95–98]. Porcheray et al., for example, demon-
strated that macrophages stimulated toward a specific phe-
notype have the ability to return to a rather calm state after
signal arrest, or to switch their activation phenotype rapidly
upon counter stimulation [53]. However, in contrast to in-
vestigating the effect of changing the cytokine milieu sur-
rounding the macrophages, in the present work the specific
stimuli that the macrophages were exposed to were not only
soluble factors of the SN, but additionally the tumor cells
themselves.

Converting TAMs to a pro-inflammatory M1-like phe-
notype has become an attractive strategy for antitumor im-
munotherapy [99]. We now show for the first time that
M1-MΦ are very stable in their phenotype irrespective of
being in contact with non-irradiated or irradiated HPV-neg-
ative or HPV-positive HNSCC cells (Fig. 4a, b, e, f). Re-
garding the M2 phenotype, the incubation of macrophages
with M-CSF leads to an increase in the expression of the
hemoglobin scavenger receptor CD163, which can be re-
garded as the best marker for M2-MΦ [40, 42, 48, 100], and
by adding IL-10 its expression could be even more upregu-
lated (Fig. 1f and g). Nevertheless, no changes in the CD163
expression were detected after adding the tumor cells to the
macrophages, regardless of whether those cells were previ-
ously irradiated or left untreated (Fig. 4c and g). Due to the
rather pro-tumoral TME in HNSCC [101], one could have

suspected an increase in the expression of the M2 markers
CD163 and CD206 after adding the tumor cells plus their
corresponding SN to the unpolarized macrophages. On the
contrary, a significant downregulation of the expression of
the mannose receptor CD206 after the addition of irradiated
HPV-negative (cal33) tumor cells was observed (Fig. 4d).
This could contribute to reduced malignant progression in
HNSCC [102] and should be examined in more detail ac-
cording to the distinct radiation schedules for HNSCC in
the future.

The development of ex vivo phagocytosis assays with
macrophages of differing phenotypes, as they are present
in vivo, is vital for preclinical screening of treatments of
tumor cells in order to obtain evidence on the effects of
the anticancer therapies [88]. We succeeded in developing
such protocols for HNSCC and showed for the first time that
HNSCC cells treated with hypofractionated irradiation have
a better up-take by M1–MΦ, reduce CD206 on M2–MΦ
compared to non-irradiated ones, and that HPV-positive
irradiated cells are taken up better by M0g macrophages
when compared to HPV-negative cells. Macrophage repro-
gramming will also need to be followed up more clini-
cally in the future to provide more detailed information on
the immunogenic effect of specific irradiation protocols in
HNSCC.
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