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Abstract. Translocation of proteins across the en- 
doplasmic reticulum membrane is a GTP-dependent 
process. The signal recognition particle (SRP) and the 
SRP receptor both contain subunits with GTP binding 
domains. One GTP-dependent reaction during protein 
translocation is the SRP receptor-mediated dissocia- 
tion of SRP from the signal sequence of a nascent 
polypeptide. Here, we have assayed the SRP and the 
SRP receptor for GTP binding and hydrolysis activi- 
ties. GTP hydrolysis by SRP was not detected, so the 
maximal GTP hydrolysis rate for SRP was estimated 
to be <0.002 mol GTP hydrolyzed x mol of SRP -1 x 
min-'. The intrinsic GTP hydrolysis activity of the 
SRP receptor ranged between 0.02 and 0.04 mol GTP 
hydrolyzed × mol of SRP receptor -l x min -1. A 40- 

fold enhancement of GTP hydrolysis activity relative 
to that observed for the SRP receptor alone was ob- 
tained when complexes were formed between SRP and 
the SRP receptor. GTP hydrolysis activity was in- 
hibited by GDP, but not by ATE Extended incubation 
of the SRP or the SRP receptor with GTP resulted in 
substoichiometric quantities of protein-bound 
ribonucleotide. SRP-SRP receptor complexes engaged 
in GTP hydrolysis were found to contain a minimum 
of one bound guanine dbonucleotide per SRP-SRP 
receptor complex. We conclude that the GTP hydroly- 
sis activity described here is indicative of one of the 
GTPase cycles that occur during protein translocation 
across the endoplasmic reticulum. 

T 
He. process of protein translocation can be divided into 
a series of reaction steps that together implement the 
selective transport of a polypeptide across the RER 

membrane. Proteins that contain RER-specific signal se- 
quences are selected in an initial sorting reaction when the 
signal recognition particle (SRP)~ binds to the signal se- 
quence as it emerges from the large ribosomal subunit 
(Walter and Blobel, 1981; Walter et al., 1981). The specific- 
ity of the sorting reaction in protein translocation is ex- 
plained by the ability of SRP to discriminate between nascent 
chains that either contain or lack a RER signal sequence 
(Walter et al., 1981). The six protein subunits of SRP (72, 
68, 54, 19, 14, and 9 kD) are organized into three functional 
domains by assembly onto the SRP (7SL) RNA (Siegel and 
Walter, 1985; Siegel and Walter, 1988b; Walter and Blobel, 
1982; Walter and Blobel, 1983a). Nascent secretory chains 
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that contain photoactivatable amino acid analogues can be 
cross-linked to the 54-kD subunit ofSRP (Krieg et al., 1986; 
Kurzchalia et al., 1986). Based upon this finding, as well as 
upon experiments using subparticles derived from SRP, the 
signal sequence recognition domain of SRP was shown to 
consist of SRP54 and SRP19 (Siegel and Walter, 1988a,b). 
Targeting of the SRP-ribosome-nascent chain complex to the 
membrane is accomplished by interaction of SRP with the 
SRP receptor (Gilmore et al., 1982) or docking protein 
(Meyer et al., 1982), a heterodimeric protein consisting of 
68-kD (SRt~) and 30-kD (SRfl) subunits (Tajima et al., 
1986). The signal sequence dissociates from SRP54 when 
the SRP-ribosome complex binds to the membrane bound 
SRP receptor (Gilmore and Blobel, 1983). Upon dissocia- 
tion of the signal sequence from SRP, the nascent secretory 
polypeptide is inserted into a protein conducting channel in 
the membrane (Simon and Blobel, 1991). 

The protein sequence of SRct, determined from canine and 
human cDNA clones (Hortsch et al., 1988; Lauffer et al., 
1985), contains elements that are similar to the consensus 
motifs that comprise a GTP binding site (Connolly and Gil- 
more, 1989; Dever et al., 1987). Site-directed mutagenesis 
of SRc~ revealed that a functional GTP binding site in this 
subunit is essential for protein translocation across the en- 
doplasmic reticulum (Rapiejko and Gilmore, 1992). SRP54 
contains a GTP binding domain that is related to the 
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G-domain of SRot (Bernstein et al., 1989; R6misch et al., 
1989). Photolabeling with [ot-32p] GTP suggested that both 
SRa and SRB bind GTP in a specific manner. SRa, but not 
SRB, binds GTP when affixed to a nitrocellulose membrane 
after denaturing gel electrophoresis (Connolly and Gilmore, 
1989). Recently, sequence analysis of SRB disclosed the 
presence ofa GTP binding site (Ogg et al., 1992). Thus, the 
SRP and the SRP receptor contains three protein subunits 
(SRa, SRP54, and SRB) that belong to the GTPase super- 
family. Several lines of experimental evidence suggest that 
the GTP binding and hydrolysis cycles of SRP54 and SRct 
regulate the affinity between the signal sequence, SRP, and 
the SRP receptor. The SRP receptor-initiated dissociation of 
the signal sequence from SRP is a GTP-dependent reaction 
(Connolly and Gilmore, 1989). The nonhydrolyzable GTP 
analogue guanylyl-5'-imidodiphosphate (GMPPNP) can re- 
place GTP in the SRP-signal sequence displacement reaction 
(Connolly et al., 1991). However, SRP fails to dissociate 
from the membrane bound SRP receptor, demonstrating that 
dissociation of the SRP-SRP receptor complex requires hy- 
drolysis of protein-bound GTP (Connolly et al., 1991). The 
latter observation suggests that a GTP hydrolysis cycle regu- 
lates the affinity between SRP and the SRP receptor. 

The discovery of three GTP binding sites in SRP and the 
SRP receptor was unanticipated and raised questions con- 
cerning the functional role of each of these GTP binding 
sites. Speculation on this point has been hindered by a lack 
of sufficient data concerning the GTPase activity of SRP and 
the SRP receptor. To begin to address such questions, we 
have assayed purified preparations of SRP and SRP receptor 
for GTP binding and hydrolysis activities. These studies have 
established that the formation of a bimolecular complex of 
SRP and SRP receptor activates a GTP hydrolysis site. The 
GTP hydrolysis cycle that can be detected with SRP-SRP 
receptor complexes has a similar affinity for guanine 
ribonucleotides as the GTP binding site that was detected 
with in vitro protein translocation assays (Connolly and Gil- 
more, 1986; Rapiejko and Gilmore, 1992). 

Materials and Methods 

Preparation of SRP and the SRP Receptor 
The triethanolaimne buffer used for all preparative and analytical proce- 
dures was made as a 1 M stock solution, adjusted to pH 7.5 at 25°C with 
acetic acid and is abbreviated TEA. SRP and salt-extracted microsomal 
membranes (K-RM) were isolated from canine pancreas rough microsomal 
membranes using previously described methods (Walter et al., 1981). The 
concentration of the SRP was determined from the absorbance at 260 nm 
(Walter and Blobel, 1983a). SRP receptor was isolated from K-RM using 
a modification of a previous procedure (Gilmore and Blobel, 1983). Briefly, 
K-RM were adjusted to 0.25 M sucrose, 50 mM TEA, 100 mM KOAc, 1 
mM DTT, and supplemented with a protease inhibitor cocktail (2 x PIC). 
The final concentration of 2 x PIC was 0.2 #g/mi each of chymostatin, 
lcupeptin, antipain, and pepstatin and 2 #g/ml of aprotinin. The K-RM were 
then permeabilized by adjustment to 0.05% Nikkol (octaethyleneglycul- 
mono-N-dodecyl ether; Nikko Chemicals Co., Ltd., Tokyo, Japan), and 
separated from lumenal proteins by centrifugation for 1 h at 146,000 g~, in 
a Beckman Ti 50.2 rotor. The membrane pellet was resuspended in 50 mM 
TEA, 100 mM sucrose, 500 mM KOAc, 1 mM DTT, 2 x PIC and then 
sohibilized by adjustment to 1% Nikkol. Detergent high-salt insoluble mate- 
rial were removed by a 2 h eentrifugation at 146,000 g~, in a Beckman Ti 
50.2 rotor (Beckman Instruments, Inc., Fullerton, CA). The detergent ex- 
tract was adjusted to 275 mM KOAc by dilution with 50 mM TEA and ap- 
plied to a 10-ml column of Fractogel TSK DE-650 M that had been 
equilibrated with 50 mM TEA, 275 mM KOAc, 0.5% Nikkol, 1 mM DTT. 

The protein fraction that did not bind to the anion exchange column was 
adjusted to 1 M KOAc and 10 mM NaPO4, pH 6.5, and applied to a 10-ml 
hydroxylapatite column (BioGei HTP; Bio Rad, Richmond, CA) equil- 
ibrated with 10 mM NaPO4, 1 M KOAc, 0.5% Nikkol. The hydroxylapa- 
tite column was washed with 20 ml of equilibration buffer, and the SRP 
receptor was eluted with 100 mM NaPO4, 1 M KOAc, 0.5% Nikkol, 1 x 
PIe. The hydroxylapatite eluate was diluted with 9 vol of 25 mM Hepes, 
pH 7.5, 0.25% Nikkol and applied to a 2-ml column of CM-Sepharose 
equilibrated with 25 mM Hepes, pH 7.5, 0.25% Nikkol, 1 mM DTT (Buffer 
A) adjusted to 100 mM KOAc. The CM-Sepharose column was washed 
with buffer A containing 200 mM KOAc, and ehited with buffer A contain- 
ing 350 mM KOAc. The eluate of the CM-Sepharose column was concen- 
trated by chromatography on a 100 #l hydroxylapatite column as described 
above and further purified by sucrose density gradient centrifugation as de- 
scribed previously (Gilmore and Blobel, 1983). The concentration of the 
SRP receptor preparation was estimated from the Coomassie blue staining 
intensity of the 68-kD ¢z subunit on polyacrylamide gels relative to the stain- 
ing intensity of protein molecular weight markers of known concentration. 
The purity of the SRP receptor preparation obtained by this method is com- 
parable to that of the previous method (Gilmore and Blobel, 1983). 

GTP Hydrolysis Assay 
GTP hydrolysis assays were conducted at 25°C in a total volume of 10 #1 
of 50 mM TEA, 50 mM KOAc, 2.5 mM Mg(OAc)2, 0.1% Nikkol, 1 mM 
DTT (GTP hydrolysis buffer) unless otherwise noted. I~ypical assays con- 
tained l #M GTP including 2 #Ci of [¢x-32P] GTP (410 Ci/mMol). The 
concentration of SRP and SRP receptor in individual assays is specified in 
the figure legends. Aliquots (0.2-0.5 #1) were removed at 5-rain intervals 
and spotted onto polyethyleneimine (PEI) cellulose thin layer plates (J. T. 
Baker, Inc., Phillipsburg, NJ). GDP was resolved from GTP using 0.75 M 
KH2PO4, pH 3.3 as the solvent for the thin-layer chromatography (Der et 
al., 1986). The radioactivity in spots corresponding to GTP and GDP was 
quantitated using a Betagen Bioscope 630 Blot analyzer. The quantity of 
GTP hydrolyzed in a control assay lacking both SRP and SRP receptor was 
subtracted as background to determine the rate of protein-specific GTP hy- 
drolysis. GTP hydrolysis rates were calculated from the linear phase of a 
GTP hydrolysis reaction when the percentage of GTP that had been hydro- 
lyzed did not exceed 10%. 

Dissociation constants for SRP-SRP receptor complexes were calculated 
from data obtained in GTP hydrolysis assays using a Scatchard analysis 
(Scatchard, 1949). The concentration of bound SRP was calculated for each 
concentration of added SRP using the following equation: (Bound SRP) = 
[(Vo-Vsa) x (SRT)]/(VsR-S~), where Vo is the observed GTP hydrolysis ac- 
tivity, Vsa is the basal GTP hydrolysis activity of the SRP receptor, SRT is 
the SRP receptor concentration, and VSR-Sae is the maximal GTP hydroly- 
sis activity of the SRP-SRP receptor complex. VsR-s~ was was estimated 
to be 0.9 mol GTP hydrolyzed × rain -I × (SR - SRP) -I. The fractional 
saturation (0) of the SRP receptor with SRP is defined as 0 = 
(SR-SRP)/(SRx), where (SR-SRP) is the concentration of the SRP-SRP 
receptor complex. 

Guanine Nucleotide Binding Assays 
The nitrocellulose filter assay for protein bound GTP was based upon 
methods used to measure [ot-32P] GTP or [35S] GTP-tS binding to G-pro- 
teins (Brandt and Ross, 1986). SRP, SRP receptor or both proteins together 
were incubated in a total volume of 100 #1 of 50 mM TEA, 50 mM KOAc, 
2.5 mM Mg(OAc)2, 0.1% Nikkoi, 1 mM DTT, and 2 #M GTP (including 
20 #Ci of [ct-32p] GTP (410 Ci/mMol). Binding of GTP was initiated by 
addition of SRP or SRP receptor. Aliquots (8 #1) were withdrawn at fre- 
quent time intervals and diluted 25-fold into ice-cold 50 mM TEA, 50 mM 
KOAc, 2.5 mM Mg(OAc)2, 20% PEG-6000. The samples were vacuum 
filtered through 25 mm BA85 nitrocellulose filters (Schleicher & Schuell, 
Inc., Keene, NH), and the filters were rapidly washed three times with 1.5 
rnl of 50 mM TEA, 50 mM KOAc, 2.5 mM Mg(OAc)2. Radioactivity 
bound to nitrocellulose filters was determined by scintillation counting in 
Optifluor (Packard Instruments, Meriden, CT). Control experiments 
demonstrated that the nitrocellulose filters retained ",,80% of a sample of 
detergent sotubilized K-RM protein after precipitation with the wash buffer 
containing 20% PEG-6000. 

Protein bound GTP was also detected after gel filtration chromatography. 
SRP and the SRP receptor were incubated alone or in combination at 25°C 
in a total volume of 10-30 #1 of 50 mM TEA, 50 mM KOAc, 2.5 mM 
Mg(OAc)2, 0.1% Nikkol, 1 mM DTT, and 1 #M [ct-32P] GTP (410 
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Ci/mMol). After a 10-30-rain incubation, the samples were chilled on ice 
and applied to 1.0 ml Sephadex G-50 columns equilibrated in 50 mM TEA, 
50 mM KOAc, 2.5 mM Mg(OAc)2, 0.1% Nikkol, 1 mM DTT, 1 /zg/ml of 
BSA. Fractions of 100 #1 were collected into scintillation vials, and the 
amount of [ot-32P] GTP in each fraction was quantitated by scintillation 
counting in Optifluor. Protein-bound ribonucleotides eluted in fractions 
4-6, while the peak of unbound GTP eluted in fractions 7-11. 

Results 

SRP-SRP Receptor Complexes Hydrolyze GTP 

SRP and the SRP receptor were incubated with GTP to de- 
termine whether either protein complex has an intrinsic 
GTPase activity. The GTP hydrolysis assays contained 1 #M 
[ot-32P] GTE based upon the previous observation that 
micromolar concentrations of GTP or Gpp(NH)p were 
sufficient for the guanine ribonucleotide-dependent dissocia- 
tion of SRP from the signal sequence in a protein transloca- 
tion reaction (Connolly and Gilmore, 1986; Rapiejko and 
Gilmore, 1992). As the intrinsic GTP hydrolysis rates of 
purified GTP binding proteins are often as low as 0.01 mol 
of GTP hydrolyzed x mol of protein -1 x min -~ (Bourne et 
al., 1990), the GTPase assay was designed to detect low hy- 
drolysis rates when using 1 /zM [tx-32P] GTP as the sub- 
strate. Nikkol (0.05%) is present in the SRP storage buffer 
to stabilize SRP activity (Walter and Blobel, 1980), and is 
included here to stabilize SRP and to maintain the solubility 
of the SRP receptor. The signal recognition particle did not 
hydrolyze GTP at a rate that significantly exceeded the rate 
obtained with the assay buffer alone (Fig. 1). Several differ- 
ent SRP preparations were assayed for GTP hydrolysis activ- 
ity and comparable results were obtained. The maximal 
GTP hydrolysis rate calculated from the data shown here is 
0.002 mol GTP hydrolyzed x mol of SRP -1 × min-L This 
value should be considered as a maximal estimate for the in- 
trinsic GTP hydrolysis rate for SRP. Hydrolysis of GTP by 
the SRP receptor was quite low, yet readily detectable (Fig. 
1). Several different SRP receptor preparations were as- 
sayed, and the intrinsic GTP hydrolysis rate ranged between 
0.02 and 0.04 mol of GTP hydrolyzed x mol of SRP 
receptor -t x min -~. The low intrinsic GTPase activity of 
the SRP and the SRP receptor suggest that the hydrolysis 
reactions catalyzed by these two GTPases are controlled by 
accessory factors. 

High affinity SRP-SRP receptor complexes are formed by 
coincubation of the two proteins with Gpp(NH)p, but not 
GTP or GDP, suggesting that a GTPase cycle is initiated 
upon contact between SRP and the SRP receptor (Connolly 
et al., 1991). A significant enhancement of GTP hydrolysis 
activity was observed in an assay that contained 60 nM SRP 
and 15 nM SRP receptor (Fig. 1). Because SRP was present 
in a fourfold excess relative to the receptor in this experi- 
ment, the GTP hydrolysis activity was arbitrarily expressed 
with respect to the SRP receptor concentration. 

GTP hydrolysis, but not GTP3,S binding, by the heterotri- 
meric G protein G, is inhibited when the nonionic detergent 
Lubrol is present in assays at concentrations above the criti- 
cal micelle concentration (Brandt et al., 1983; Brandt and 
Ross, 1985). In the case of G,, the detergent inhibition of 
the GTPase activity was alleviated when the detergent con- 
centration was reduced (Brandt and Ross, 1985). To deter- 
mine whether the GTP hydrolysis rates determined here for 
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Figure 1. GTP hydrolysis by SRP and the SRP receptor. GTP hy- 
drolysis was assayed in a total volume of 10 t*l of GTP hydrolysis 
buffer (50 mM TEA, 50 mM KOAc, 2.5 mM Mg(OAc)2, 0.1% 
Nikkol, 1 mM DTT) containing 1 /zM GTP (including 2 #Ci of 
c~-32P GTP). Individual assays contained (A) 60 nM SRP, (o) 
15 nM SRP receptor, or (I) 60 nM SRP plus 15 nM SRP recep- 
tor. Ribonucleotides were resolved on polyethyleneimine (PED cel- 
lulose thin-layer plates as described in Materials and Methods. The 
fraction of GTP hydrolyzed at each time point was quantitated with 
a Betagen Bioscope 630 Blot Analyzer (Betagen, Waltham, MA). 
The GTP hydrolysis rate is expressed as mole GDP formed/mole 
of protein. 

SRP and SRP receptor were artificially low due to detergent 
inhibition, we reduced the concentration of Nikkol in the 
GTP hydrolysis assay. The critical micelle concentration for 
Nikkol is 7.1 x 10 -~ M (0.0038%). The GTP hydrolysis 
rate for SRP was not enhanced when the Nikkol concentra- 
tion was reduced to 0.002 %, a value that is almost twofold 
below the critical micelle concentration. Likewise, the GTP 
hydrolysis rate for the SRP receptor was not enhanced when 
the Nikkol concentration was reduced to 0.005%. Based 
upon these results, we conclude that the low intrinsic rates 
of GTP hydrolysis for SRP and SRP receptor are not caused 
by detergent inhibition. However, we did observe a 5-10% 
increase in the hydrolysis rate when assays containing 60 nM 
SRP plus 10 nM SRP receptor contained 0.01% Nikkol in- 
stead of 0.1% Nikkol (data not shown). A further twofold 
reduction in the Nikkol concentration was accompanied by 
a reduction in GTP hydrolysis activity. 

The validity of expressing the data with respect to the SRP 
receptor content was explored in more detail. The concen- 
tration dependence of SRP stimulation of the hydrolysis ac- 
tivity was determined in assays containing 15 nM SRP recep- 
tor (Fig. 2 A). The SRP concentration required for maximal 
stimulation of the GTP hydrolysis activity was dependent 
upon the SRP receptor concentration used for the experi- 
ment (data not shown). A saturation curve like that shown 
here is consistent with activation of a GTP hydrolysis site 
upon formation of a complex between SRP and the SRP 
receptor. The data in Fig. 2 A was analyzed as an equilibrium 
between uncomplexed SRP and SRP receptor and a hydrolyt- 
ically active SRP-SRP receptor complex using the method 
of Scatchard (Scatchard, 1949). The experimental data 
could be adequately fit using a Kd of 15 nM for the forma- 
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Figure 2. GTP hydrolysis by SRP-SRP 
receptor complexes. (A) GTP hydrolysis ac- 
tivity was assayed as in Fig. 1. Individual 
assays contained 15 nM SRP receptor plus 
the indicated concentration of SRP. Ali- 
quots were removed from the hydrolysis as- 
says at 5-min intervals during a 15-min time 
course to calculate hydrolysis rate as de- 
scribed in Fig. 1. (B) The data shown in A 
was analyzed using the method of Scatchard 
(Scatchard, 1949). The concentration of 
free and bound SRP was estimated as de- 
scribed in Materials and Methods. The Ks 
for SRP-SRP receptor complexes was cal- 
culated to be 15 nM. 

tion of the SRP-SRP receptor complex and a hydrolysis rate 
of 0.90 mol o fGTP hydrolyzed x mol of SRP-SRP receptor 
complex-' × min-' (Fig. 2 B). The total number of binding 
sites detected (17 nM) was in reasonable agreement with the 
SRP receptor concentration (15 nM) suggesting that a 1:1 
complex of SRP and the SRP receptor is responsible for the 
observed GTP hydrolysis activity. 

The GTP hydrolysis assays described in the preceding ex- 
periments were conducted under low ionic strength condi- 
tions (50 mM KOAc), to favor the formation of SRP-SRP 
receptor complexes (Connolly et al., 1991; Walter and 
Blobel, 1983b). The GTP hydrolysis activity decreased 
markedly as the KOAc concentration was raised (Fig. 3 A). 
A 2.5-fold lower GTP hydrolysis activity was obtained when 
the monovalent cation concentration was raised to a value 
that mimics physiological ionic strength (150 mM KOAc). 
Inhibition of the hydrolysis activity by increased ionic 
strength could be due to a direct effect upon the GTPase or 
it could be due to inhibition of SRP-SRP receptor complex 
formation. These alternative explanations were tested by de- 
termining whether the hydrolysis reaction was dependent 
upon the concentration of SRP when the ionic strength of the 
assay was increased (Fig. 3 B). The concentration of SRP 
required to achieve comparable levels of GTP hydrolysis was 
substantially higher when the assays were conducted at phys- 

iological ionic strength. Analysis of these data using a 
Lineweaver-Burke plot or an Eadie-Hofstee plot yielded a 
hydrolysis rate of 0.85 mol GTP hydrolyzed x mol of 
SRP-SRP receptor complex-' × min-',  and Ks of 126 nM 
for the SRP-SRP receptor complex. The calculated GTP hy- 
drolysis rate for SRP-SRP receptor complexes at physiologi- 
cal ionic strength was in good agreement with the value cal- 
culated from the data presented in Fig. 2 B. A Hill plot of 
the data (insert in Fig. 3 B) indicated that a simple binding 
equilibrium between SRP and SRP receptor was operative. 
Likewise, the concentration of binding sites for SRP as de- 
tected by Scatchard analysis (14.7 nM) was in good agree- 
ment with the SRP receptor concentration (data not shown). 
These results demonstrate that the primary cause for the 
ionic strength dependence of the GTP hydrolysis activity was 
the altered affinity between SRP and the SRP receptor. 

Ribonucleotide Dependence of  the Hydrolysis Reaction 

Several criteria must be met to establish that the GTP hydro- 
lysis activity of the SRP-SRP receptor complex is of rele- 
vance to the GTP-dependent step in the protein translocation 
reaction. Previous studies have shown that GTP cannot be 
replaced by ATP to allow nascent chain insertion into the ER 
(Connolly and Gilmore, 1986; Hoffman and Gilmore, 
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Figure 3. The ionic strength dependence of 
GTP hydrolysis. (A) GTP hydrolysis assays 
containing 60 nM SRP and 10 nM SRP 
receptor were conducted as in Fig. 1 except 
that the KOAc concentration of the GTP hy- 
drolysis buffer was adjusted to 50--400 mM 
as indicated. (B) GTP hydrolysis assays 
containing 15 nM SRP receptor plus the in- 
dicated concentration of SRP were con- 
ducted as in Fig. 1 except that the GTP hy- 
drolysis buffer was adjusted to 150 mM 
KOAc (m). Aliquots of the hydrolysis reac- 
tions were removed at 5-min intervals dur- 
ing a 15-min assay to determine GTP hy- 
drolysis rates. The experimental data in 
Fig. 2 A has been replotted for comparison 
(A). The inset in B is a Hill plot for 
saturation of SRP receptor with SRP, and 
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Figure 4. Nucleotide dependence of the GTP hydrolysis reaction. 
(A) GTP hydrolysis assays of 37.5 nM SRP receptor (&) or 15 nM 
SRP receptor plus 75 nM SRP (m) were conducted as in Fig. 1 ex- 
cept that the GTP concentration was varied between 0.2 and 5 #M. 
The GTP hydrolysis activity for SRP-SRP receptor complexes was 
calculated from a 15-min time point and is expressed as mol GDP 
× SR -1 × min -~. GTP hydrolysis rates for the SRP receptor were 
calculated from samples removed at 10-min intervals during a 40- 
min time course and these hydrolysis rates are expressed as mol 
GDP × mol SR -1 × 10 min-L (B) Standard GTP hydrolysis as- 
says containing 60 nM SRP, 15 nM SRP receptor, and 1 #M GTP 
were further supplemented with 0-10 #M GDP (In) or 0-25 #M 
ATP (e). The GTP hydrolysis activity of assays that did not contain 
competing ribonucleotide have been plotted at 0.02 t~M. This value 
accurately reflects the 2 % contamination of a GTP stock with GDP, 
but is an overestimate of the ATP contamination of the GTP stock. 

1988). SRP and the SRP receptor were inactive in ATP hy- 
drolysis when assayed either alone or in combination (data 
not shown). Secondly, the K,  for GTP in the hydrolysis as- 
say should be similar to the concentration of GTP that is re- 
quired for half maximal stimulation of the GTP-dependent 
protein translocation reaction. The K.  for GTP hydrolysis 
was determined for the SRP receptor and for the SRP-SRP 
receptor complex (Fig. 4 A). The Km for GTP in the hydro- 
lysis reaction was 3 #M in the presence of SRP and ,,o15/~M 
in the absence of SRP. Half-maximal stimulation of the GTP- 
dependent translocation reaction was estimated to occur at 
1-2/~M GTP (Rapiejko and Gilmore, 1992). The latter de- 
termination is subject to greater experimental error due to 

the presence of other GTPases in the membrane preparation 
used for protein translocation assays. The similarity between 
these two values suggests that the GTP hydrolysis assay mon- 
itors a GTPase cycle that is of direct relevance to the protein 
translocation reaction. The turnover number (k,t) for the 
SRP receptor was estimated to be 0.16 mol of GTP hydro- 
lyzed × mol of SRP receptor -1 × min -~. The turnover 
number (1~,) for the SRP-SRP receptor complex was 2.1 
mol of GTP hydrolyzed × mol of SRP-SRP receptor 
complex -~ x min -~. 

GDP was found to be a potent inhibitor of the GTP hydro- 
lysis assay with an apparent K~ of 0.25 #M (Fig. 4 B). In 
contrast, ATP was not inhibitory when present in a 25-fold 
molar excess relative to GTP. Inhibition of the GTP hydroly- 
sis assay by GDP is anticipated given that GTP binding pro- 
teins have affinity for both GDP and GTP (Bourne et al., 
1990; Brandt and Ross, 1985). Previously, we had reported 
that GDP was a competitive inhibitor of the GTP-dependent 
insertion of nascent chains into the endoplasmic reticulum 
(Connolly and Gilmore, 1986). Half-maximal inhibition of 
the Gpp(NH)p-dependent insertion of a nascent polypeptide 
occurred at a GDP concentration of ,,ol #M when the 
Gpp(NH)p concentration was 10/~M. Together these results 
indicate that the GTP binding site detected in the GTP hy- 
drolysis assay has a similar affinity for guanine ribonucleo- 
tides as the GTP binding site that was detected in the protein 
translocation reaction. 

GTP Binding Activity of  the SRP and the 
SRP Receptor 

The preceding experiments indicate that formation of an 
equimolar complex between SRP and the SRP receptor is a 
prerequisite for an active GTP hydrolysis cycle. Activation 
of a GTP hydrolysis cycle could occur either by increasing 
the hydrolysis rate of protein bound GTP or by increasing the 
rate of guanine nucleotide exchange (Bourne et al., 1990). 
We sought to determine whether either SRP or the SRP 
receptor binds GTP under the experimental conditions used 
for the GTP hydrolysis assay. Aliquots from a GTP hydroly- 
sis assay containing [ot-32P] GTP were collected on nitro- 
cellulose filters and washed by vacuum filtration to remove 
unbound guanine ribonucleotide. When the SRP receptor 
was tested for GTP binding, we detected 5 frnol of bound 
guanine ribonucleotide per 150 fmol of SRP receptor after 
a 50-min incubation (Fig. 5). Substoichiometric quantities 
of bound GTP were also detected when SRP was assayed for 
GTP binding. After a 50-rain incubation with GTP, 24 fmol 
of [c~-32P] GTP were bound per 700 fmol of SRP. Two 
different explanations for substoichiometric binding of 
[o~-32p] GTP to SRP and the SRP receptor were consid- 
ered. The dissociation rate for GTP may be rapid enough to 
permit ribonucleotide dissociation during the time required 
to wash the nitrocellulose filters. Alternatively, SRP and the 
SRP receptor may not readily bind GTP in the absence of 
guanine nucleotide exchange proteins. 

Hydrolysis reactions containing both SRP and SRP recep- 
tor were assayed to determine the rate and stoichiometry of 
nucleotide binding to SRP-SRP receptor complexes (Fig. 5). 
The quantity of bound guanine ribonucleotide increased rap- 
idly during the first three min of a GTP hydrolysis reaction. 
A first order rate constant of 0.62 min -1 for binding of gua- 
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Figure 5. Quantitation of bound guanine ribonucleotide to SRP and 
the SRP receptor by filtration through nitrocellulose filters. Gua- 
nine ribonucleotide binding assays were conducted at 25°C in 50 
mM TEA, 50 mM KOAc, 2.5 mM Mg(OAc)2, 0.1% Nikkol, 1 
mM DTT, 2/~M GTP (including 0.5/~M ct-32P GTP). The three 
time courses contained either 70 nM SRP (A), 15 nM SRP recep- 
tor (e), or 70 nM SRP plus 15 nM SRP receptor (I). Aliquots 
were removed at frequent time intervals and the quantity of protein- 
bound guanine ribonucleotide in 10/~1 of the reaction was deter- 
mined as described in Materials and Methods. Note the compres- 
sion of the abscissa after 10 rain of the reaction. 

nine ribonucleotide to the SRP-SRP receptor complex was 
calculated from the data shown in Fig. 5. We would expect 
to see occupation of all functional GTP hydrolysis sites dur- 
ing the first two minutes of incubation based upon a hydroly- 
sis rate of 0.85 mol of GTP hydrolyzed x mol of SRP-SRP 
receptor complex -~ × min-L The kinetics of ribonucleotide 
binding are in good agreement with the time course of GTP 
hydrolysis. Based upon the data presented in Figs. 2 and 3, 
SRP-SRP receptor complexes account for 90% of the 150 
fmol of SRP receptor present in each sample. Hence, the pla- 
teau value of 135 fmol of bound ribonucleotide in each sam- 
ple applied to the nitrocellulose filter is consistent with the 
detection of a single bound guanine ribonucleotide for each 
SRP-SRP receptor complex. Taken together these data sug- 
gest that the increase in GTP hydrolysis that occurs upon 
complex formation is due to an increase in the guanine 
ribonucleotide exchange reaction, rather than an increase in 
the rate at which protein bound GTP is hydrolyzed. 

One possible explanation for the substoichiometric bind- 
ing of GTP to SRP or the SRP receptor might be a lack of 
retention of one or both of these proteins by the nitrocellulose 
filter. As an alternative GTP binding assay, Sephadex G-50 
gel filtration columns were used to separate protein bound 
ribonucleotide from free [ct-32P] GTP or GDP (Fig. 6). 
Protein bound ribonucleotide eluted in the void volume of 
the gel filtration column and was well resolved from un- 
bound ribonucleotide (data not shown). Neither SRP nor the 
SRP receptor bound significant quantities of ribonucleotide 
when incubated with [ot-32P] GTP. In each case, the 
stoichiometry of bound ribonucleotide did not exceed the 
amount detected by the nitrocellulose filtration assay. Protein 
bound ribonucleotide was detected when GTP hydrolysis as- 
says containing both SRP and the SRP receptor were applied 
to the G-50 gel filtration column. The elution of radiolabel 
with the protein was guanine nucleotide specific, as the addi- 
tion of a 25-fold molar excess of unlabeled GTP, but not ATE 

Figure 6. Quantitation of protein bound ribonucleotide by gel filtra- 
tion chromatography. (A) GTP hydrolysis assays were conducted as 
in Fig. 1. The individual assays contained (a) no additions, (b) 60 
nM SRP, (c) 7.5 nM SRP receptor, (d-f) 60 nM SRP and 7.5 nM 
SRP receptor. After 10 rain at 25°C, samples e andfwere adjusted 
to 25/~M ATP (e) or 25 t~M GTP (f). After a total incubation of 
20 rain, the assays were chilled on ice and protein bound 
ribonucleotides were separated from unbound ribonucleotides by 
gel filtration chromatography at 4°C (see Materials and Methods). 
Protein bound ribonucleotide was quantitated by scintillation 
counting. (B) The load and selected eluate fractions from a gel 
filtration column were analyzed by thin layer chromatography on 
PEI cellulose plates. Aliquots were removed from GTP hydrolysis 
assays containing (lane a) no additions or (lane b) 60 nM SRP and 
7.5 nM SRP receptor after 10 rain at 25°C. The remainder of the 
assay in lane b was chilled on ice, and protein bound ribonucleo- 
tides (lane c) were separated from unbound ribonucleotides (lane 
d) by gel filtration chromatography. 

significantly reduced the quantity of radiolabeled protein- 
bound guanine ribonucleotide. Thin layer chromatographic 
analysis of the protein bound radioactivity demonstrated that 
the bound ribonucleotide was primarily [ot-32P] GDP (Fig. 
6 B). Based upon results obtained in three separate experi- 
ments, the quantity of bound ribonucleotide detected by gel 
filtration chromatography was 0.5 mol of bound ribonu- 
cleotide per mol of SRP-SRP receptor complex. The lower 
binding stoichiometry obtained using this procedure may be 
due to dissociation of the ribonucleotide during chromatog- 
raphy, or incomplete recovery of the SRP-SRP receptor 
complex in the excluded volume fractions. 

Discussion 

Previous research from this laboratory demonstrated that 
GTP was required for the SRP receptor-mediated dissocia- 
tion of SRP from the signal sequence of a nascent polypep- 
tide (Connolly and Gilmore, 1989). Here, we have assayed 
SRP and the SRP receptor for GTP hydrolysis activity to 
gain insight into the functional significance of the GTP bind- 
ing sites that have been detected in SRP54 and SRoL by pro- 
tein sequence comparisons (Bernstein et al., 1989; Connolly 
and Gilmore, 1989; R~Smisch et al., 1989). Several sig- 
nificant results were obtained from this analysis. Neither 
SRP nor the SRP receptor displayed robust GTP hydrolysis 
activities when assayed separately. Our maximal estimate for 
the intrinsic hydrolysis rate of the SRP (<0.002 min -t) is 
comparable to the extremely low hydrolysis rates reported 
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for the Sec4 protein (Kabcenell et al., 1990) and the ras p21 
protein (Gibbs et al., 1984). The intrinsic hydrolysis rate for 
the SRP receptor (0.02 min -~) was lower than the value of 
0.4 min -1 reported for Gs (Brandt and Ross, 1985), but 
comparable to rates reported for Gi (Sunyer et al., 1984) 
and Gp (Tamir et al., 1990). We were not able to detect a 
significant amount of protein bound ribonucleotide when the 
SRP receptor was incubated with GTP. For this reason, we 
cannot be certain that the GTPase activity displayed by our 
SRP receptor preparation was not due to a subpopulation of 
altered receptors or a protein contaminant. However, it 
should be noted that the low apparent Km for GTP (15/zM) 
in the GTP hydrolysis assay may preclude detection of bound 
ribonucleotide to the SRP receptor using the nitrocellulose 
filtration method. 

GTP binding proteins cycle between an active GTP-bound 
conformation and an inactive GDP-bound conformation 
(Milburn et al., 1990). The hydrolysis rate of GTP binding 
proteins is controlled by accessory proteins that catalyze 
guanine nucleotide exchange reactions or accelerate the hy- 
drolysis of protein bound GTP (Bourne et al., 1990). Hence, 
the low hydrolytic activity of the SRP and the SRP receptor 
was not unexpected. Catalysis of the guanine ribonucleotide 
exchange reaction is the mechanism by which membrane 
bound hormone receptors accelerate the hydrolysis rate of 
signal transducing G-proteins (Gilman, 1987). The GTPase 
activating protein (GAP) preferentially interacts with the 
GTP-bound form of the r a s  p21 protein to stimulate hydroly- 
sis of the protein bound GTP (Trahey and McCormick, 
1987; Vogel et al., 1988). Accessory factors analogous to 
those identified for other GTP binding proteins are presum- 
ably required to initiate the GTP hydrolysis cycle for SRP 
and the SRP receptor. The observation that neither the SRP 
nor the SRP receptor bind stoichiometric quantities of GTP 
when tested separately suggests that the nucleotide binding 
sites in both proteins is either unoccupied, or is in the GDP- 
bound form in the absence of a guanine nucleotide exchange 
or release factor (GNRP). Based upon analogies to other 
GTP binding proteins, we propose that the GTP hydrolysis 
reactions catalyzed by SRP and SRP receptor are limited, at 
least in part, by the conditional binding of GTP to the gua- 
nine nucleotide binding sites. The initiation of a hydrolysis 
cycle upon combination of the two proteins strongly suggests 
that the conditional binding of GTP to at least one site is ini- 
tiated upon formation of the SRP-SRP receptor complex. 
Hence, one of these proteins acts as a guanine nucleotide ex- 
change factor for the other protein. 

When SRP was added to hydrolysis assays containing SRP 
receptor, a saturable stimulation of GTP hydrolysis was ob- 
served. The hydrolysis activity was GTP specific as shown 
by the ability of GDP, but not ATP to act as a competitive 
inhibitor of the hydrolysis reaction. The results of the GTP 
hydrolysis assays were entirely consistent with the formation 
of a hydrolytically active bimolecular complex between SRP 
and SRP receptor. The ionic strength dependence of the hy- 
drolysis assay matched the ionic strength dependence of the 
association between SRP and the membrane bound SRP 
receptor (Connolly et al., 1991; Walter and Blobel, 1983b). 
The reduced GTPase activity observed at physiological ionic 
strength should minimize nontranslocation associated GTP 
hydrolysis activity by SRP and SRP receptor within the cell. 

Ribonucleotide binding assays detected a single bound 

guanine nucleotide per SRP-SRP receptor complex during 
a GTP hydrolysis assay. However, the filter binding assays 
may underestimate the quantity of protein-bound ribonu- 
cleotide if dissociation of protein bound GTP or GDP occurs 
during washing of the nitrocellulose filter. These findings 
demonstrate that a minimum of one GTP binding site is 
hydrolytically active when the SRP-SRP receptor complex 
is formed. The experiments described in this manuscript do 
not allow us to determine which protein subunit (SRot, SR~, 
or SRP54) contains the GTP binding site that is active during 
the GTP hydrolysis reaction. However, the minimal proteins 
required for the GTP hydrolysis activity of the SRP-SRP 
receptor complex can be defined by combining partially 
reconstituted ribonucleoproteins derived from the SRP with 
the SRP receptor. This experimental strategy has revealed 
that SRP54 plus the 7S RNA comprise the minimal RNP that 
can form a hydrolytically active complex when combined 
with the SRP receptor (Poritz et al., 1990; Miller et al., 
1993). 

The binding affinity of the hydrolysis site for GTP is 
roughly 10-100-fold lower than that reported for other GTP 
binding proteins including ras, Gs (Brandt and Ross, 1985) 
and Gi (Sunyer et al., 1984). The lower affinity of the hy- 
drolysis site for GTP is probably due to differences in the 
precise architecture of the GTP binding site in SRt~ or 
SRP54. The GTP binding sites in SRo~ and SRP 54 contain 
threonine instead of an asparagine in the third (NKXD) con- 
sensus element of the GTP binding site. In the H m s  p21 pro- 
tein, the primary role of the asparagine residue in the NKXD 
motif is to stabilize the nucleotide binding site by forming 
hydrogen bonds with several different elements of the 
nucleotide binding site (Pai et al., 1990). Clearly, the corre- 
sponding threonine residue within SRot or SRP54 may only 
make a subset of the hydrogen bonds ascribed to the 
asparagine residue present in more typical GTP binding pro- 
teins. Conversion of the atypical threonine residue in SRct 
to an asparagine residue by site directed mutagenesis led to 
the production of an SRP receptor with a 50-100-fold re- 
duced affinity for guanine ribonucleotides (Rapiejko and Gil- 
more, 1992). The apparent affinity of the GTP hydrolysis site 
for GDP (apparent Ki of 250 nM) was more than 10-fold 
higher than the apparent affinity for GTP (Kin of 3.2 #M). 
More importantly, the Km for GTP and Ki for GDP deter- 
mined with the GTP hydrolysis assay were in good agree- 
ment with Kd and K~ values obtained for the GTP-dependent 
insertion of nascent polypeptides into the endoplasmic retic- 
ulum (Connolly and Gilmore, 1986; Rapiejko and Gilmore, 
1992). 

The ribonucleotide hydrolysis assay developed here pre- 
sumably monitors a specific portion of the protein transloca- 
tion reaction. Most likely, the reaction phase that is observed 
is initiated upon contact between the SRP-ribosome complex 
and the membrane bound SRP receptor. Recent experimen- 
tal data indicate that SRP-dependent reactions that precede 
SRP receptor contact are not GTP-dependent (Zopf et al., 
1993; Rapiejko, P., and R. Gilmore, manuscript in prepara- 
tion). Hence, GTP hydrolysis cycles involving both SRt~ and 
SRP54 may initiate upon contact between the SRP-ribosome 
complex and the SRP receptor. As shown previously, contact 
between SRP and SRP receptor initiates a guanine nucleo- 
tide exchange reaction that ultimately results in dissociation 
of the signal sequence from SRP54 (Connolly and Gilmore, 
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1989; Connolly et al., 1991; High et al., 1991). Based upon 
the observation that point mutations in the GTP binding site 
of SR,  block signal sequence dissociation from SRP54, we 
propose that binding of GTP to SRot is a prerequisite or a 
corequisite for GTP binding to SRP54 (Rapiejko and Gil- 
more, 1992; Rapiejko, P., and R. Gilmore, manuscript in 
preparation). Guanine ribonucleotide induced alterations in 
protein tertiary structure are believed to regulate the affinity 
between GTP binding proteins and downstream effector pro- 
teins (Bourne et al., 1990). Thus, binding of GTP to the G 
domain of SRP54 presumably reduces the affinity between 
the M-domain of SRP54 and the signal sequence. Experi- 
ments using nonhydrolyzable guanine nucleotides have 
shown that SRP-SRP receptor complexes are more stable 
when one or more of the GTP binding sites in the SRP-SRP 
receptor complex is occupied by the nonhydrolyzable GTP 
analogue Gpp(NH)p (Connolly et al., 1991). Formation of 
high affinity complexes between SRP and the SRP receptor 
is dependent upon a functional GTP binding site in SRc~ 
(Rapiejko and Gilmore, 1992) and requires the G-domain of 
SRP54 (Zopf et al., 1993). Taken together, these results sug- 
gest that the cyclic formation and dissociation of the 
SRP-SRP receptor complex probably involves two inter- 
locking GTP hydrolysis cycles. In the context of a protein 
translocation reaction, GTP hydrolysis by the SRP-SRP 
receptor complex may be regulated by an auxiliary protein 
factor or GAP-like activity that monitors the successful in- 
sertion of the nascent polypeptide into the protein conduct- 
ing channel in the ER (Simon and Blobel, 1991; Simon and 
Blobel, 1992). Recently, experimental data showing that a 
synthetic signal sequence can inhibit the GTP hydrolysis ac- 
tivity of SRP-SRP receptor complexes has been obtained 
(Miller et al., 1993). 

To date, a function for the GTP binding site in the /3 
subunit of the SRP receptor has not been proposed, due to 
a lack of data concerning the role of this subunit in the pro- 
tein translocation reaction. Conceivably, the GTPase cycle 
of the/3 subunit might promote the cyclic assembly and dis- 
assembly of complexes between the SRP receptor and the 
SEC61 protein, as the latter polypeptide is believed to com- 
prise the central core of the protein conducting channel 
(Gtrlich et al., 1992). Interestingly, the stoichiometry be- 
tween membrane-bound ribosomes engaged in protein trans- 
location and the SRP receptor is roughly 5:1 (Gilmore et al., 
1982), suggesting that the SRP receptor may mediate ribo- 
some targeting to a cluster of protein translocation channels. 
Further insight into the role of the three GTPases in SRP and 
the SRP receptor will be provided by the development of as- 
say systems that incorporate additional components of the 
protein translocation machinery into reconstituted pro- 
teoliposomes. 
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