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Abstract

Background: Many studies report significant associations between PM2.5 (particulate matter ,2.5 micrometers) and hospital
admissions. These studies mostly rely on a limited number of monitors which introduces exposure error, and excludes rural
and suburban populations from locations where monitors are not available, reducing generalizability and potentially
creating selection bias.

Methods: Using prediction models developed by our group, daily PM2.5 exposure was estimated across the Mid-Atlantic
(Washington D.C., and the states of Delaware, Maryland, New Jersey, Pennsylvania, Virginia, New York and West Virginia). We
then investigated the short-term effects of PM2.5 exposures on emergency hospital admissions of the elderly in the Mid-
Atlantic region.We performed case-crossover analysis for each admission type, matching on day of the week, month and
year and defined the hazard period as lag01 (a moving average of day of admission exposure and previous day exposure).

Results: We observed associations between short-term exposure to PM2.5 and hospitalization for all outcomes examined.
For example, for every 10-mg/m3 increase in short-term PM 2.5 there was a 2.2% increase in respiratory diseases admissions
(95% CI = 1.9 to 2.6), and a 0.78% increase in cardiovascular disease (CVD) admission rate (95% CI = 0.5 to 1.0). We found
differences in risk for CVD admissions between people living in rural and urban areas. For every10-mg/m3 increase in PM 2.5

exposure in the ‘rural’ group there was a 1.0% increase (95% CI = 0.6 to 1.5), while for the ‘urban’ group the increase was
0.7% (95% CI = 0.4 to 1.0).

Conclusions: Our findings showed that PM2.5 exposure was associated with hospital admissions for all respiratory, cardio
vascular disease, stroke, ischemic heart disease and chronic obstructive pulmonary disease admissions. In addition, we
demonstrate that our AOD (Aerosol Optical Depth) based exposure models can be successfully applied to epidemiological
studies investigating the health effects of short-term exposures to PM2.5.
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Introduction

Fine Particulate Matter (PM2.5- particles with an aerodynamic

diameter#2.5 mm) is a complex mixture of particles primarily

composed of sulfate (SO4), nitrates (NO3),ammonium (NH4),

elemental carbon (EC),organiccompounds (OC),andvariousmetals

[1]. Air pollution and particularly, PM2.5 has consistently been

associated with increased hospital admissions in cities throughout the

United States and the world [2–5]. Exposure to airborne PM2.5 can

increase hospital admissions for various causes [6–8,5,9,10]. The

causes associated with short-term PM2.5 exposure include inter alia

admissions for: all respiratory causes [11,12], chronic obstructive

pulmonary disease –COPD [13–15], cardiovascular disease-CVD

[16,17], stroke [18], ischemic heart disease (IHD) [19], myocardial

infarction (MI) [3] and diabetes [2].

The majority of these epidemiologic studies have used available

PM2.5 monitors located within their study domain. Since PM2.5

concentrations vary spatially within the study domain this

introduces exposure error and likely produces a combination of

downward bias in the effect estimates and wider confidence

intervals due to a mixture of classical and Berkson error [20].

A key study conducted by Zanobetti and colleagues [6] looked

at the association between two-day mean PM2.5 and emergency

hospital admissions in 26 US communities. They estimated the

association between daily PM2.5 and emergency hospital admis-

sions for CVD, MI, congestive heart failure (CHF), respiratory
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disease, and diabetes in 26 US communities, for the years 2000–

2003. Using meta-regression, Zanobetti and colleagues examined

whether this association was modified by season and community

specific PM2.5 composition, after controlling for seasonal temper-

ature as a surrogate for ventilation. They found that for every

10 mg/m3 increase in 2-day averaged PM2.5 exposure there was an

increase of 1.9% (95% CI: 1.3 to 2.4) in CVD, 2.2% (95% CI: 1.1

to 3.4) in MI, 1.8% (95% CI: 1.3 to 2.5) in CHF, 2.7% (95% CI:

1.3 to 4.2) in diabetes, and 2.1% (95% CI: 1.2 to 2.9) in respiratory

admissions.

Belleudi and colleagues [21] investigated the impact of PM2.5

and ultrafine particles (particulate matter with a diameter of less

than 100 nanometres in diameter) on emergency hospital

admissions for cardiac and respiratory diseases. More specifically,

they evaluated the effect of PM exposures on emergency hospital

admissions in Rome between 2001–2005 on acute coronary

syndrome, heart failure, lower respiratory tract infections, and

COPD. PM data were collected daily at one central fixed monitor.

Data were analyzed with a case-crossover analysis using a time-

stratified approach. Belleudi and colleagues reported an immedi-

ate impact of same-day to exposure to PM2.5 on hospitalizations

for acute coronary syndrome of 2.3% (95% CI: 0.5% to 4.2%) and

an increase of 2.4% for heart failure (95% CI: 0.3% to 4.5%). The

effect on lower respiratory tract infections showed an increase of

2.8% (95% CI: 0.5% to 5.2%) for a 2-day lag.

Most previous studies have been limited by the lack of high

spatial and temporal resolution of daily exposure data. For many

of the previous US studies PM2.5 data was available only for one in

three or one in six days. In addition, all these studies were limited

to populations living close to monitoring stations and thus did not

include individuals living in suburban and rural areas where no

monitoring stations were available. Further, geographic differences

in the daily variability of exposure were usually not captured.

We have recently presented a new method of assessing

temporally- and spatially-resolved PM2.5 exposures for epidemio-

logical studies, and applied it to data from the Mid-Atlantic region

of the U.S. [22]. A recent paper published by our group, which is

an extension of our previous published models [23], allows us to

estimate spatially resolved PM2.5 on a daily basis throughout the

Mid-Atlantic states. In this paper, we use our model generated

predictions to study the association between short-term PM2.5

exposure and emergency hospital admissions among elderly (aged

65 and older) included in the Medicare program across the Mid-

Atlantic region. Medicare is a national social insurance program,

administered by the U.S. federal government since 1966,that

guarantees access to health insurance for Americans aged 65 and

older. We take advantage of our geographic resolution to examine

the effect of space dependent modifiers such as poverty or

education, as well as effect estimate differences between more and

less urbanized settings. In addition, our study investigates the

entire population of a region, rather than selected locations near

monitoring sites as commonly done in previous studies.

Methods

This study was approved by the institutional review boards of

the Harvard School of Public Health. The US Medicare data is

previously collected administrative data and does not require

individual patient consent. All Hospital admittance records were

anonym zed.

Study Domain
The presented study’s spatial domain included the Mid-Atlantic

region comprising of Washington D.C., and the states of

Delaware, Maryland, New Jersey, Pennsylvania, Virginia, New

York and West Virginia (Figure 1).

Figure 1. Map of the study area showing the MEDICARE population within and outside 20 km of a PM2.5 monitor.
doi:10.1371/journal.pone.0088578.g001
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The data cover an area of 495,486 km2 with a population of

57,999,568. The average size of population in the Mid-Atlantic zip

codes for the general population is 9095 and 1246 for people 65

and over. The median zip code population is 2818 for the general

population and 420 for people 65 and over. Around 36.2% of the

Medicare population in our analysis (4,531,059) live within 30 km

of a monitor station (more ‘urban’ areas) while 63.8% (7,998,329)

live farther then 30 km from a monitoring station (more ‘rural’

areas). In general the ‘rural’ population is poorer with lower

median income levels of $37,327 compared to $49,928 in the

‘urban’ areas and lower levels of education, with only 13.9% of

people holding bachelor level degrees compared to 23.0% in the

‘urban’ areas. Figure 1 shows the population areas that are within

and further than 30 km of a monitor.

Data
Exposure data. PM2.5 exposures for the years 2000–2006

were assessed using our recently developed prediction models [22]

that incorporate satellite AOD (Aerosol Optical Depth) data. The

Mid-Atlantic exposure dataset encompasses daily PM2.5 predic-

tions at a 10610 km spatial resolution across the study area

(Figure 2) during the entire study period.

We used ground PM2.5 measurements from 161 monitoring

sites from the EPA (Environmental Protection Agency) and

IMPROVE (Interagency Monitoring of Protected Visual Envi-

ronments) monitoring networks and AOD data from the Moderate

Resolution Imaging Spectroradiometer (MODIS) satellites. We

also incorporated land use regression (elevation, distance to major

roads, percent of open space, point emissions and area emissions)

and meteorological variables (temperature, wind speed, relative

humidity and visibility). In stage 1 of the model, we calibrate the

AOD grid-level observations to the PM2.5 monitoring data

collected within 10 km of an AOD reading. The first stage of

the model consists of a mixed model for observed PM2.5

(containing both fixed and day-specific random effects for the

intercept), the AOD slopes, and the temperature slopes. We then

incorporate the additional spatial, temporal (daily), and spatio-

temporal covariates as predictors in the PM2.5 model. To

accommodate the fact that daily AOD data missingness is not

random, the first stage model incorporates inverse probability

weighting (IPW) to potentially prevent bias in the regression

coefficient estimates and thus in the resulting estimations. To

accommodate the fact that the PM-AOD calibration factors can

vary spatially between large regions, we divided the Mid Atlantic

area into regions. The intercept, AOD, and temperature random

effects in the model are nested within regions of the study. In stage

2 of the model, we estimate PM2.5 concentrations in grid cells

without monitors but with available AOD measurements using the

stage 1 fit. Finally, in stage 3 of the model, we estimated daily

PM2.5 concentration levels for all grid cells in the study domain for

days when AOD data were unavailable. Using the PM2.5

predictions obtained from the first stage of the model as the

response, we fit a model containing a smooth function of latitude

and longitude (of the grid cell centroid) and a random intercept for

each cell. This is similar to universal kriging, extended to include

the mean of the PM2.5 monitors on that day (the average PM2.5

concentrations measured at all the available PM2.5 monitors in the

region on each day) and random cell-specific slope. To allow for

temporal variations in the spatial correlation, a separate spatial

surface was fit for each two-month period of each year. Using this

method provides additional information about the concentration

in the missing grid cells that simple kriging would not. To validate

our model, we repeatedly divided the data randomly into 90% and

10% splits. Predictions for the held-out 10% of the data were

made from the model fit of the remaining 90% of the data. This

‘‘out of sample’’ process was repeated ten times, and cross-

validated (CV) R2 values were computed. Even for location-day

combinations without AOD data our model performance was still

excellent (mean out-of-sample R2 = 0.81). Both the stage 1 and

stage 3 models yielded very small predictions errors (RMSPE -

Root of the mean squared prediction errors) 21.1 mg/m3 and

1.4 mg/m3 respectively, indicating a strong model performance.

Further, CV results revealed no bias in the predicted concentra-

tions (Slope of observed vs. predicted = 0.97–1.01).

Figure 2. Map of the study area showing the residential location of admission cases by zipcode (the centroids of the zipcodes)
juxtaposed over a sample PM2.5 10610 km pollution grid for 01/06/2001.
doi:10.1371/journal.pone.0088578.g002
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PM2.5 exposure estimates were generated by our prediction

models. These PM2.5 daily predictions were matched to zip codes

using ArcGIS and SAS based on spatial location and date. For

more detailed information on the prediction model please refer to

Kloog et al [22].

Hospital Admittance data. Individual hospital admittance

records were obtained from MEDICARE and cover hospitaliza-

tion for all residents of age 65 and older, for all available years

(2000–2006). We defined cases as those with an emergency

admission and a primary discharge diagnosis using ICD-9

(International classification of diseases, ninth revision) for all

respiratory (ICD 9 460–519), CVD (ICD 9 390–459), IHD (ICD 9

410–414),COPD (ICD 9 490–496) and stroke (ICD 9 434) related

admissions. These records included information such as age, sex,

date of admission, race/ethnicity, and zip code of residence.

We choose broader areas for the leading admission causes

(CVD and all respiratory, at a cost of loss of specificity) since one

would expect the broader admission data to produce less noisy

estimates for two reasons. First, the counts are higher and

therefore there is more power to examine CVD admissions.

Secondly, studies of misdiagnosis in hospital administrative records

show that the broader the categories, the less the amount of

misclassification. We also were interested in specifically looking at

the COPD and stroke admissions sub category associations with

PM2.5 to compare to previous studies [21]. The US Medicare data

is previously collected administrative data and does not require

individual patient consent.

Covariates. Temperature data were obtained through the

National Climatic Data Center (NCDC) [24]. Only continuous

operating stations with daily data running from 2000–2006 were

used. For meteorological variables zip codes were matched to the

closest weather station. All Socioeconomic variables were obtained

through the US Census Bureau from the 2000 social, economic

and housing characteristics datasets [25]. Socioeconomic variables

used included the following zip code level information: Percent of

minorities, age, education (people with no high school education)

and median income.

Statistical Methods
Zip code-specific admissions were matched with our exposure

estimates for each 10610 km grid cell. We used a case-crossover

analysis approach, which was developed as a variant of the case-

control design to study the effects of transient exposures on acute

events [26]. This design samples only cases and compares each

subject’s exposure experience in a time period just before a case-

defining event with that subject’s exposure at other times. Because

there is perfect matching on all measured or unmeasured subject

characteristics that do not vary over time, there can be no

confounding by those characteristics. If in addition, the control

days are chosen to be close to the event day, slowly varying subject

characteristics are also controlled by matching. We used this time

stratified approach in our analysis. We matched on day of the

week and defined the relevant exposure time window as the mean

exposure of the day of and day before the patient’s hospital

admission.

The data were analyzed using conditional logistic regression

(PROC PHREG, release 8.2; SAS Institute, Cary, NC). Temper-

ature with the same moving average as PM2.5 was included in the

model as a potential confounder.

Case-crossover analyses lend themselves to the analysis of effect

modification and thus we looked at several interactions. Specif-

ically, in the largest admission group (CVD) we investigated

whether the subject residence within 30 km of a monitor or farther

than 30 km from monitor modified the PM2.5 association with

admissions. In addition we examined interactions between

exposure and both income level (low vs high income groups)

and gender.

To investigate the robustness of our results, various sensitivity

analyses were run on the CVD and all respiratory admissions.

Specifically, we analyzed other averaging periods: lag02 (a moving

average of day of admittance exposure and 2-days of previous

exposure) and lag 0 (day of admittance exposure) vs. lag01 (a

moving average of day of admittance exposure and previous day

exposure). We also matched control days to be days within the

same month and year, with the same temperature (rather than the

same day of week), to control for temperature by matching rather

than modeling [27]. In that case, we used dummy variables to

control for day of the week.

Results

Descriptive statistics are presented in Table 1. The majority of

people included in our analyses who were admitted to hospitals

were white (85%–88% across all admission causes) while the

average age was 77.5–79.6 years. In total, more than 2 million

admissions were included in the study.

Table 2 contains a summary of the predicted exposures for both

the acute PM exposure (2 day moving average- lag01 for overall

area and rural/urban areas) and temperature across all grid cells

in the analysis.

Table 3 presents the estimated percent increase, and associated

95% confidence intervals, in hospital admissions for a 10 mg/m3

increase in PM2.5 by cause of admission. For example, for all

respiratory admissions, we found a 2.2 percent increase in

admissions (95% CI = 1.9 to 2. 6). For CVD admissions, we

found a 0.8 percent increase (95% CI = 0.5 to 1.0). COPD, IHD

and stroke all showed similar increase in admission rates (see

Table 3).

We found differences (albeit not significant based on the p-value

of the interaction term) in the PM2.5 associations with CVD

between people living closer to monitor areas (‘urban’ group) and

farther away (‘rural’ group), between the income level groups (high

and low) and small differences between the genders (see Table 3).

The results from the sensitivity analysis were consistent with the

primary analysis. Both for CVD and all respiratory admissions,

when using lag0 or lag02 PM2.5,we found significant associations

that were smaller in lag0 (0.7%, 95% CI = 0.4 to 0.9 and 1.89%,

95% CI 1.5 to 2.0 respectively) and very similar in lag02 compared

to the main lag01 analysis (0.8%, 95% CI 0.6 to 1.0 and 2.1%,

95% CI 1.8 to 2.5 respectively). The results from matching control

days to be days with the same temperature resulted in very similar

results to the main analysis. For CVD, we found a 1.0 percent

increase in admission rate (95% CI = 0.6 to 1.3).

Discussion

In this paper we examine associations between PM2.5 exposures

generated by our novel prediction model and increased hospital

admissions in an elderly population (aged 65 and older) in the

Mid-Atlantic States. These associations were positive for all

respiratory, CVD, COPD,IHD and stroke admission causes

tested. We also found differences in the PM2.5 associations

between people living closer to monitor areas and farther away,

between the income level groups and small differences between the

genders. The associations observed in our analysis are broadly

consistent with the associations observed in many recent case-

crossover analysis examining associations between short-term

PM2.5 exposures and hospital admissions [7,21].

Short Term Effects of PM2.5 on Hospital Admissions
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Figures 1 and 2 clearly show the large areas that commonly

have been left out of most previous analysis and now can be

included in future studies. This is especially important in areas like

the Mid-Atlantic region where a large percentage of the

population indeed lives in areas that are very far from monitoring

sites. These more ‘rural’ population tends to poorer and have

lower levels of education compared to the more ‘urban’ areas. This

ability now to look at all the Mid-Atlantic region gives enough

power to take a look at subset of admission diagnosis (COPD,

IHD, Stroke) and not just the large admissions groups (CVD, All

respiratory), which was one of the primary aims of this research.

Moreover, we found some indication of differences in the

association in those areas. Specifically, the increase in CVD

admissions associated with PM2.5 was larger in the less densely

populated areas, which were not previously included in most

analyses. This is of great importance to risk assessment studies

since it may provide some evidence about the differential toxicity

of fine particles between ‘urban’ and ‘rural’ Mid-Atlantic elderly

populations. In less urban areas secondary particles, for example

sulfate, represent a larger fraction of fine particle mass compared

to those in urban areas. Acidic sulfate compounds such as

ammonium bisulfate and sulfuric acid which are present in fine

particles measured in the Mid-Atlantic region [28] have been

shown to increase the levels of soluble transition metals in particles,

which generate reactive oxygen species (ROS) [29]. The harmful

effects of ROS on the cell are most often damage of DNA,

oxidations of polyunsaturated fatty acids in lipids (lipid peroxida-

tion), oxidations of amino acids in proteins and oxidatively

inactivate specific enzymes by oxidation of co-factors [30] which

may lead to inter alia tumor promotion [31]. Alternatively, these

differences in effect estimates may be related to differences in

exposure factors (e.g., individuals living in the less urban areas

spend more time outdoors) or differences in health factors (e.g.,

lifestyles and access to close by health care- in rural areas health

care centers may be far away from the place of residence and this

can influence the number of admissions, and the timing of the

admission from the onset of symptoms). This represents an

important extension of previous Medicare analyses, since we now

have estimates for suburban, small town, and rural populations.

To the best of our knowledge, this is the first time that all the

population in the Mid-Atlantic area, and not just those close to

monitors, have been included in an analysis of the association

between PM2.5 exposures and hospital admissions. The use of our

spatiotemporal model reduces exposure misclassification that may

exists in, for example, time series studies that use a single exposure

metric for daily exposure in an entire metropolitan area. Such

error is a mixture of classical exposure error, which likely biases

the effect estimates downward, and Berkson error, which increases

the confidence interval [20]. Our results show much tighter

confidence intervals compared to the classic time series analysis,

indicating that our method could potentially reduce measurement

error. For example for CVD, the width of our 95% confidence

intervals of 0.5–1.0 is much smaller than the comparable intervals

reported by Zanobetti et al. [6], who reported 95% confidence

intervals of 1.3–2.4. All respiratory causes show the same pattern

(95% CI: 1.9 to 2.6, compared to 95% CI: 1.2 to 2.9).

There are a few limitations in the presented study. The spatial

resolution (zip codes for the Medicare data) are not individual

Table 1. Descriptive statistics for hospital admissions by type of admission across the Mid-Atlantic for the years 2000–2006.

Characteristic All Respiratory CVD Stroke COPD IHD

No. (%) No. (%) No. (%) No. (%) No. (%)

Sex

Male 744,761 (43.20) 1,382,379 (45.64) 294,113 (41.40) 176,314 (42.30) 618,518 (51.62)

Female 979,135 (56.80) 1,646,478 (54.36) 416,228 (58.60) 240,464 (57.70) 579,681 (48.38)

Race

White 1,492,579 (86.58) 2,615,049 (86.34) 603,419 (84.95) 367,836 (88.26) 1,058,448 (88.34)

Black 178,822 (10.37) 321,631 (10.62) 85,524 (12.04) 38,505 (9.24) 100,385 (8.38)

other 52,495 (3.05) 92,177 (3.04) 21,398 (3.01) 10,437 (2.50) 39,366 (3.29)

Age (years) 79.56 78.61 79.43 77.49 77.21

doi:10.1371/journal.pone.0088578.t001

Table 2. Descriptive statistics for short-term PM 2.5 exposure and temperature in the Mid-Atlantic for 2000–2006.

Covariate Mean Min Max Median SD Range IQR Q1 Q3
Days of data
available

Lag01 PM 2.5

(mg/m3)
11.92 0.01 95.85 10.78 5.68 96.56 6.73 7.92 14.65 2557

Lag01 PM 2.5

(mg/m3) - Rural
11.53 0.01 95.17 10.45 5.51 95.88 6.53 7.65 14.18 2557

Lag01 PM 2.5

(mg/m3)- Urban
12.81 0.01 95.85 11.58 5.97 96.07 7.09 8.60 16.68 2557

Temperature

(6F)

49.08 215.10 87.90 50.20 18.40 103.00 28.95 35.90 64.85 2557

Note: Q1 and Q3 are quartiles.
doi:10.1371/journal.pone.0088578.t002
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addresses, but those are not available because of privacy concerns.

In addition, the use of 10610 km for the satellite data could be

improved as well. However, as satellite remote sensing evolves and

progresses, higher spatial resolution data (such as 161 km) should

become available soon and will further reduce exposure error [32].

Such finer resolution should enable us to assess more precise

estimated daily individual exposure as they relate to different

location such as residence and work place for datasets where

individual addresses are available.

Conclusion

In conclusion, our findings indicate that hospital admissions for

all respiratory, CVD, IHD, COPD and stroke were associated

with PM2.5 exposures. In addition, we have demonstrated that our

AOD-based exposure models can be successfully applied to

epidemiologic studies investigating the health effects of short-term

exposures to PM2.5. This is because these models make it possible

to estimate spatially-resolved PM2.5 exposures for specific zip

codes. In addition, they can be used to assess exposures for large

regions which allows for the inclusion of both urban and rural

populations. This provides more generalizable results for risk

assessment.
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