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Computational discovery of binding 
mode of anti‑TRBC1 antibody 
and predicted key amino acids 
of TRBC1
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Peripheral T‑cell lymphoma (PTCL) is a type of non‑Hodgkin lymphoma that progresses aggressively 
with poor survival rate. CAR T cell targeting T‑cell receptor β‑chain constant domains 1 (TRBC1) of 
malignant T cells has been developed recently by using JOVI.1 monoclonal antibody as a template. 
However, the mode of JOVI.1 binding is still unknown. This study aimed to investigate the molecular 
interaction between JOVI.1 antibody and TRBC1 by using computational methods and molecular 
docking. Therefore, the TRBC protein crystal structures (TRBC1 and TRBC2) as well as the sequences 
of JOVI.1 CDR were chosen as the starting materials. TRBC1 and TRBC2 epitopes were predicted, and 
molecular dynamic (MD) simulation was used to visualize the protein dynamic behavior. The structure 
of JOVI.1 antibody was also generated before the binding mode was predicted using molecular 
docking with an antibody mode. Epitope prediction suggested that the N3K4 region of TRBC1 
may be a key to distinguish TRBC1 from TCBC2. MD simulation showed the major different surface 
conformation in this area between two TRBCs. The JOVI.1‑TRBC1 structures with three binding modes 
demonstrated JOVI.1 interacted TRBC1 at N3K4 residues, with the predicted dissociation constant 
 (Kd) ranging from 1.5 ×  108 to 1.1 ×  1010 M. The analysis demonstrated JOVI.1 needed D1 residues of 
TRBC1 for the interaction formation to N3K4 in all binding modes. In conclusion, we proposed the 
three binding modes of the JOVI.1 antibody to TRBC1 with the new key residue (D1) necessary for 
N3K4 interaction. This data was useful for JOVI.1 redesign to improve the PTCL‑targeting CAR T cell.

Peripheral T-cell lymphoma (PTCL) is a highly aggressive hematologic malignancy with reported of less than 32% 
five-year survival  rate1. Family background of hematologic malignancies, some skin conditions, celiac disease, 
smoking, and certain occupations are statistically often associated with PTCL  development2. The combination 
chemotherapy regimens; for example, CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) and 
CHOEP (etoposide, vincristine, doxorubicin, cyclophosphamide, and prednisone) are typically used as initial 
treatment for PTCL  patients3. However, most of the patients relapse after treatment with standard chemotherapy, 
resulting in a poor survival  outcome4. Therefore, the novel treatment modalities are needed to improve treatment 
responses and long-term survival outcomes.

Adoptive T-cell therapy has been investigated and currently applied to clinical practice, especially chimeric 
antigen receptor (CAR) T-cell therapy. Recently, the genetically modified-autologous CAR-T cells using single 
chain variable fragment (scFv) derived from monoclonal antibodies have been developed to specifically engage 
with target antigen on the tumor cell  surface5. T-cell receptor β-chain constant domains 1 and 2 (TRBC1 and 
TRBC2) serve as one of the specific antigens recognizing markers for PTCL. Normal T-cell consists of both 
TRBC1 and TRBC2; however, the malignant T-cell contains only one either TRBC1 or  TRBC26. This feature will 
facilitate CAR T-cells to categorize malignant T-cells from normal T-cells. Recently, JOVI.1 clone of anti-TRBC1 
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monoclonal antibody has been studied and confirmed the specificity for TRBC1  recognition6. Although TRBC1 
and TRBC2 shared somewhat similar protein sequences as well as three dimensional  structures7,8, the previous 
report proposed that the alteration of asparagine (Asn) and lysine (Lys) of TRBC1 and TRBC2 would be the 
key of JOVI.1 selective binding. Up to date, the 3D structure of the JOVI.1 bound TRBC protein has not yet 
been reported, and how amino acid alteration affected the selectivity remained unknown. A lack of information 
regarding JOVI.1 binding mode towards TRBC1 and TRBC2 therefore became of interest. The atomistic under-
standing for the mechanistic action of how JOVI.1 antibody selectively interacts with TRBC1 is useful and able 
to facilitate the design of other more efficient and selective JOVI.1 antibodies.

To investigate the selective binding of JOVI.1 with the TRBC counterparts, the computational modeling 
approaches such as molecular docking and molecular dynamics simulation were introduced. These methods 
were proven to be successful in various molecular predictions such as drug-protein  complexes9–11 and antibody 
 design12,13. Molecular docking was generally used to generate the possible pose for the molecular binding between 
two entities based on docking score namely relative free binding energy or other ranking score  types14,15, mean-
while, molecular dynamics simulation can fulfill the simulated effects due to surroundings such as temperature, 
pressure, solution ionic  strength11,16,17, or even membrane  environment18,19. In this study, we have performed 
computational modeling of TRBC1 and TRBC2 under dynamics conditions to visualize the effect of alternated 
Asn-Lys on the protein structure. We also investigated the JOVI.1-TRBC complex to propose its binding mode 
and binding selectivity via homology modeling and molecular docking.

Results
Epitope uniqueness of TRBC1 and TRBC2. Due to the specificity of JOVI.1 antibody towards only 
TRBC1, but not TRBC2, we tried to identify which TRBC1 antigenic determinant can be the selective residues 
for the antibody. TRBC1 and TRBC2 sequences showed that four amino acids are found to be conserved for each 
TRBC, including N3, K4, E9 and F36 for TRBC1, and K3, N4, K9 and Y36 for TRBC2 (Fig. 1A). Among these 
amino acids, K (lysine) and E (glutamic acid) are charged amino acids while N (asparagine) and Y (tyrosine) are 
neutral polar amino acid. In contrast, F (phenylalanine) is a non-polar aromatic amino acid. To identify pos-
sible epitopes for B cell of TRBC proteins, SEPPA 3.0 was used to determine the conformational discontinuous 
B cell epitope with the membrane protein and mouse immunity parameters. The analysis results demonstrated 
that N3K4 and F36P37D38 of TRBC1 could be categorized as epitopes for mouse B cell. Meanwhile, at the same 
position, K3N4 and Y36P37D38 of TRBC2 were not grouped as a target for mouse antibody (Fig. 1B). These 

Figure 1.  Sequence alignment and antigenic prediction of TRBC proteins. (A) Sequence alignment of both 
TRBC proteins. TRBC1 and TRBC2 sequences were taken from Uniprot ID P01850 and A0A5B9, respectively. 
The red, pink and light blue highlighted negatively charged, positively charged and non-polar amino acids. The 
asterisk (*) denoted the identical amino acid residues between TRBC proteins. (B) Antigenic prediction of both 
TRBC proteins. TRBC1 and TRBC2 sequences were taken from the crystal structure PDB code 1fyt and 4udt, 
respectively. The capital and lowercase letters indicated surface and buried residues. The red letter indicated 
epitope residues. The highlighted and underlined letters indicate unique residues.
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results suggested that both two predicted epitopes may be selective regions for JOVI.1 antibody to distinguish 
TRBC1 from TRBC2.

MD simulations of TRBC1 and TRBC2. In addition to crystal structure analysis, we also employed 
molecular dynamic (MD) simulation to visualize the difference of conformation for predicted epitope candi-
dates. Both TRBC systems were stable throughout the simulation according to the root mean square distance 
(RMSD) plot (Figs. 2A and 3A). The flexibility of TRBC proteins was observed from root mean square fluc-
tuation (RMSF). The result showed that an N-K alternation between two proteins indicated the orientation of 
lysine and asparagine. The MD simulation showed the 190th–200th residues in TRBC1 were more flexible than 
in TRBC2. Other regions remained similar in terms of flexibility (Figs. 2B and 3B). Moreover, we performed 
hydrogen bond analysis and considered H-bonds with higher than 80% occupancy were the conventional hydro-
gen bonds. The result showed that 27 conventional hydrogen bonds were found in TRBC1 structure while 39 
conventional hydrogen bonds were discovered in TRBC2 (Supplementary information files 1 and 2). Up to this 
point, an N-K alternation could have an effect on structural flexibility of TRBC1 and TRBC2. Apart from the 
flexibility, N-K alternation of these TRBC proteins led to the conformation of lysine (K) sidechain. In TRBC1, 

Figure 2.  Simulated TRBC1 structure. (A) Root mean square distance (RMSD) of TRBC1. (B) Root mean 
square fluctuation (RMSF) of amino acid residues in TRBC1. (C) Positions of Asn313 (N3) and Lys314 (K4) in 
TRBC1. (D) The MD simulation suggested that the K4 sidechain was buried in the protein surface.
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lysine4 (K4) sidechain was found to be buried inside the protein surface (Fig. 2C,D), meanwhile in TRBC2, the 
equivalent lysine3 (K3) sidechain became a surface residue and solvent exposed (Fig. 3C,D). 

Predicted JOVI.1‑antibody structure. Although many protocols for antibody modeling have been 
developed and benchmarked in the Antibody Modeling Assessment (AMA)20, RosettaAntibody is the only pro-
tocol that includes extensive conformational refinement focused in antibody degrees of freedom to create a 
structure with minimum energy that is appropriate for docking or  design21. Therefore, this server was selected 
to predict the 3D structure of JOVI.1 scFv based on the sequence of six complementarity-determining regions. 
The framework sequence of variable region was used to identify the structure of known antibodies from Protein 
Data Bank with the structure of loops H1, H2, L1, L2, and L3. The CDR-H3 loop was modeled de novo to gener-
ate the ten models ranked by lowest energies. The structural alignment of the ribbon structures of ten JOVI.1 
single-chain variable fragment models were illustrated in Fig. 4A). All CDR except CDR-H3 displayed the same 
pattern of domains and loops. Structural alignment among all ten predicted proteins investigated the similarity 
of CDR-H3 loop conformation of each structure. Two major clusters were found according to the structural 
phylogenetic tree of ten models based on CDR-H3 shape (Fig. 4B). Structure 1, 3, 5, and 6 were grouped into 

Figure 3.  Simulated TRBC2 structure. (A) Root mean square distance (RMSD) of TRBC2. (B) Root mean 
square fluctuation (RMSF) of amino acid residues in TRBC2. (C) Positions of Asn313 (N3) and Lys314 (K4) in 
TRBC2. (D) The MD simulation suggested that the K4 sidechain came out from the protein surface and exposed 
to the aqueous environment.
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the same clusters with three levels of relationship while another one showed the separation of five layers of six 
models. The alignment also revealed the maximum pairwise residue distance of each residue of CDR-H3 more 
than (column with gaps) and within (no gaps) 4 angstroms (Fig. 4C).

Molecular docking of predicted JOVI.1 single‑chain variable fragments and TRBC1 pro‑
tein. Ten models of JOVI.1 scFv were analyzed for TRBC1 interaction. Although all of these structures were 
ranked by the lowest energies of the CDR-H3 loop, we investigated the interaction of all structures by molecular 
docking based on the previous result described N4K5 (N3K4 in this work) of TRBC1 are the target for JOVI.1 
 antibody6. In addition to this report, the antigenic determinant prediction of TRBC1 mentioned earlier also 
demonstrated these two residues could be the selective region for antibodies to distinguish TRBC1 from TRBC2. 
After using antibody mode of Cluspro docking server, the results showed ten candidate clusters for each dock-
ing pair resulting in one hundred candidate clusters for ten models. We decided to develop the criteria to select 
the possible models that have the mode of interaction according to JOVI.1 antibody: (1) the candidate clusters 
must be the top three ranked by Cluspro weighted score, (2) the candidate clusters must have any interaction 
with N3K4 residues of TRBC1, (3) the three candidates will be selected according to predicted binding affinity 
(ΔG) provided by PRODIGY analysis, 4) the N3K4 interacting candidate clusters that have the members lower 
than 80% of the  1st cluster ranked by Cluspro weighted score will be excluded. With these criteria, we found 
that structure 6 cluster 0, structure 4 cluster 1, and structure 4 cluster 0 were the top three candidate models of 
JOVI.1 scFv. Binding analysis by PRODIGY showed that structure 6 has the lowest binding affinity with the dG 
of -14.1 kcal/mol while structure 4 cluster 1 and 0 were the second and third lowest binding scores with -11.5 
and -11.1 kcal/mol (Table 1). Structure 6 cluster 0 also showed the lowest predicted dissociation constant  (Kd) 
value (1.10 ×  10–10 M at 37 °C) meanwhile structure 4 cluster 1 and 0 have  Kd about 8.40 ×  10–9 and 1.50 ×  10–8 M 
at 37 °C (Table 1). The structure 6 and 4 were aligned (Fig. 5A) to investigate structural similarity. Ramachan-
dran plot analysis by  MolProbity22 showed that both JOVI.1 scFv models contained more than 98% and 95% of 
flavored rotamers and Ramachandran flavored protein geometry, respectively (Fig. 5B). No outlier was found 
from the structure. This suggested that angles of amino acids of both structures could be used for interaction 
study since it demonstrated the flavored empirical distribution.

Predicted JOVI.1 single‑chain variable fragments with TRBC1. To investigate the molecular insight 
of all three docking model candidates, MD simulation was then performed to mimic the dynamic behavior of 
the binding. We used five snapshots of MD simulation of each docking candidate at equilibrium state for analy-
sis. By using PRODIGY, the interacting residues between JOVI.1 and TRBC1 of each snapshot were revealed. 
Table  2 showed the interacting residues that were found in 4/5 snapshots of the docked model. Structure 6 
showed the highest frequency of chemical bonding of CDR with 31 interactions to 16 residues of TRBC1. The 
major difference of this structure is the bond between CDR-H2/H1 and R112 which is found only in structure 
6 docking. The main interaction was observed in CDR-H2 forming 9 interactions while the second frequency 
was found in CDR-H3 with 8 bonding. Interestingly, the interaction of structure 4 of both clusters were found 

Figure 4.  Predicted JOVI.1 antibody structure. (A) illustrated the structural alignment of ten proteins. The 
CDR regions from all ten conformers were identified. (B) showed phylogenetic tree of JOVI.1 predicted 
structures. (C) shower sequence alignment of all predicted structures, categorized into core structure, and VH 
CDR3 region.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:1760  | https://doi.org/10.1038/s41598-022-05742-6

www.nature.com/scientificreports/

in CDR-H3 that formed 9 bonds and 6 bonds for cluster 0 and cluster 1 of structure 4, respectively. However, 
cluster 0 showed the higher number of TRBC1 residues to be formed the chemical bonds with 26 interactions 
while 10 interactions were observed in cluster 1 of structure 4. Moreover, the highest number of unique interac-
tions was noticeable in cluster 0 model with seven residues while two specific interactions were found in cluster 
1 of structure 4 (Table 2). Surprisingly, all docked models not only interacted with unique residues of TRBC1, 
K4 (Lys314), but also formed the chemical bonding to D1 (Fig. 6). This suggested that these residues of TRBC1 
are important for JOVI.1 interaction.

Moreover, we calculated the relative binding energy of each docking structure after MD simulation. The result 
demonstrated that Structure 4 cluster 1 showed the lowest binding energy compared to other models (Table 3). 
This pair of JOVI.1 scFv and TRBC1 gave the ∆G value of -50.88 ± 0.43 and -32.25 ± 0.32 kcal/mol for MM/PBSA 
and MM/GBSA, respectively. Structure 6 cluster 0 displayed the second in rank of lowest binding energy with 
the values of -35.71 ± 0.84 and -30.92 ± 0.43 kcal/mol for MM/PBSA and MM/GBSA while structure 4 cluster 0 
showed the highest value of ∆G (Table 3). Interestingly, the relative binding energy derived from MD simulation 
demonstrated the obvious different value when compared to ∆G calculated by PRODIGY server.

Discussion
PTCL is a type of non-Hodgkin’s lymphoma accounting for 6–10% of all cases. This type of cancer originates 
from mature T cells or NK cells, and carries a poor  prognosis23. As no gold standard for PTCL treatment was 
established, the combination of chemotherapeutic drugs, such as CHOP, is generally chosen for PTCL  patients24. 
Unfortunately, patients showed unsatisfactory responses even when the new drugs have been  administered25. 
Moreover, relapse is usually found although the autologous stem cell transplant may improve progression-free 
survival (PFS)26. New additional strategy apart from chemotherapeutic drugs is thus useful to improve the 
response rate of PTCL patients. Recently, CAR T cells for cancer treatment have been successfully translated to 
T cell  malignancies6. The TRBC1 specific antibody (JOVI.1) was applied to generate a selective CAR T cell, bind-
ing only TRBC1 expressing malignant T cells, but not TRBC2-containing normal cells. The antibody clone has 

Table 1.  Binding analysis of predict JOVI.1 antibody with TRBC1.

Cluster Member NK interaction
Predicted dissociation constant  (Kd) 
(M)

Relative binding energy (∆G) (kcal/
mol)

Structure 1

0 132 No

1 77 No

2 54 No

Structure 2

0 97 No

1 83 No

2 71 Yes 1.50 ×  10–6  − 8.3

Structure 3

0 109 No

1 70 No

2 66 No

Structure 4

0 65 Yes 1.50 ×  10–8  − 11.1

1 54 Yes 8.40 ×  10–9  − 11.5

2 51 No

Structure 5

0 107 Yes 3.10 ×  10–7  − 9.3

1 54 No

2 44 No

Structure 6

0 77 Yes 1.10 ×  10–10  − 14.1

1 76 No

2 63 No

Structure 7

0 91 Yes 4.70 ×  10–7  − 9.0

1 87 No

2 50 Yes 3.50 ×  10–9  − 12.0

Structure 8

0 90 No

1 70 No

2 57 No

Structure 9

0 78 No

1 56 No

2 49 Yes 5.90 ×  10–8  − 10.3

Structure 10

0 153 No

1 61 No

2 57 No
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already been characterized and the sequence of CDR has well been documented. However, the basic interaction 
and specificity of the clone to TRBC1 are unknown.

Our study provided the first computational modeling to predict the binding mode of an anti-TRBC1 antibody 
clone (JOVI.1) toward the TRBC1. We used modeled scFv as a binding part of JOVI.1 antibody since many stud-
ies demonstrated this fragment was used as a representative structure for antibody-antigen interaction study. 
For example, Zhang et al. used scFv of monoclonal antibody against pefloxacin for interaction  investigation27. 
Another study also used scFv for interaction discovery of antibody-antigen complexes for their anti-FGF2 3F12E7 
monoclonal antibody both in vitro and in vivo28. Recently, a docking study was also applied to scFv to mimic the 
specific binding of the IgG1 format to membrane-bound CoV-2 spike  protein29. Moreover, scFv format of the 
JOVI.1 antibody has been applied to the CAR T cell receptor successfully targeting the TRBC1 expressing cancer 
 cell6. Despite only the algorithmic possible interaction demonstrated, the selection criteria of the candidate model 
were based on the previous experimental  data6,30. First of all the antigenic determinant regions of both TRBC1 
and TRBC2 were predicted to identify and confirm what region can be a target for mouse B cell which resulted 
in the generation of TRBC specific antibody. Interestingly, N3K4 region, previously reported as selective amino 
acids of TRBC1 for JOVI.1, was found to be an immunogenic sequence for mouse B cell receptor repertoire while 
K3N4 of TRBC2 was not immunogenic for mouse immunity. This emphasized the possibility of the N3K4 region 
in TRBC1 for the generation of the JOVI.1 clone since the antibody was from immunized  mice31.

Secondly, we also performed the molecular dynamic (MD) simulation of TRBC1 and TRBC2 by using crystal 
structure as a template to visualize the natural behavior of the protein in aqueous  environment32. A possible 
key factor for JOVI.1 selection would be the specific lysine-arginine (N-K) region. The surrounding site of N-K 
residues in TRBC1/2 was also speculated to be a factor of difference in lysine (K) orientation. In addition, the 
difference of the lysine sidechain orientation was observed from the crystal structure. From our study, the MD 
simulations showed the different conformation between N3K4 (TRBC1) and K3N4 (TRBC2). The observed lysine 
sidechain pose gave a hint that this lysine would play a key for TRBC1/2 antibody binding specificity. In addition, 
the evidence from epitope prediction and structural study of TRBC1 and TRBC2, together with the previously 
reported data, pointed out the possible role of these amino acids as a distinctive region for JOVI.1 binding.

Nowadays, because of the increasing computing power together with the expanded database of protein 
sequence and structure, the computational methods have been intensively used to predict structure of the protein 
with more  accuracy33. In this study, we used RosettaAntibody3 for JOVI.1 structure prediction with known CDR 
sequence to generate template-based structure of several antibodies, subjected to interaction analysis and protein 
 redesign34,35. Although most steps of algorithmic calculation were performed by homology modeling from known 

Figure 5.  Structure analysis of selected JOVI.1-antibody structure. (A) Structural alignment of JOVI.1 
structure 4 and structure 6, along with CDR region comparison. (B) Ramachandran plot of both structures. The 
plot indicated no outlier residue was found.
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canonical structure of antibody, the challenge of this work is the prediction of CDR-H3 loop which showed a 
variety in length, sequence and structure due to V(D)J recombination and somatic hyper-mutation36,37. Fortu-
nately, the TRBC1 specific target residues to JOVI.1 were revealed without the overall binding  mode6. Moreover, 

Table 2.  Predicted interacting residue of JOVI.1 with TRBC1. H Complementarity-determining regions heavy 
chain, L Complementarity-determining regions light chain.

Residues Structure 4 cluster 0 Structure 4 cluster 1 Structure 6 cluster 0

ASP1 H1, H2, H3 H2 H1, H3

LEU2 H3 H3

ASN3 H2 H1, H2, H3

LYS4 H2, H3 H2 H1, H2, H3

PHE6 H3, L1, H2,

PRO7 L1

GLU9 L1

THR33 L1,

GLY34 L1,

PHE36 H2 H2

GLU64 H3, L1 H2,

GLN65 L3

LEU68 H2, H3

ASN69 H2

ASP70 H2, H3 H1, H2,

SER71 H2,

ARG72 H3, L1, L3 H2

ASN105 H3

ASP106 H3

GLU107 H3, L1 H3, L1, L2

TRP108 H3, H3, L1

THR109 H3 H3, L1, L2, L3

GLN110 H3, H3, L1

ASP111 H3, L2 L1, L3

ARG112 H2, L1

Figure 6.  Predicted JOVI.1-TRBC1 complex structure. The three predicted complexes between JOVI.1 and 
TRBC1 were shown in (A), (B) and (C). TRBC1 structure was in magenta color.

Table 3.  Predicted ∆G of each interaction pair between predicted JOVI.1 structure and TRBC1.

Calculation methods
∆G of structure 4 
cluster 0 (kcal/mol)

∆G of structure 4 
cluster 1 (kcal/mol)

∆G of structure 6 
cluster 0 (kcal/mol)

PRODIGY prediction  − 11.1  − 11.5  − 14.1

MM/PBSA prediction  − 32.77 ± 0.99  − 50.88 ± 0.43  − 35.71 ± 0.84

MM/GBSA prediction  − 22.59 ± 0.76  − 32.25 ± 0.32  − 30.92 ± 0.43
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the structural analysis of TRBC1 and TRBC2 also revealed the difference in flexibility and N3K4 surface region 
among both structures. The variation of flexibility may be due to the different numbers of conventional hydrogen 
found in both structures (SI.1). Therefore, we applied these reported data for structure selection after molecular 
docking, and also included the number of members in each cluster and predicted dissociation constant  (Kd) as the 
criteria. The higher number of members and  Kd predicted the higher binding possibility and binding  affinity14,38,39. 
As a result of the prediction, three candidates from two structures were acquired with  Kd values ranging from 
1.5 ×  10–8 to 1.1 ×  10–10 M. Interestingly, this range of  Kd is close to the  Kd from in vitro study (4.2 ×  10–10 M)6. 
However, MD simulation of all three candidates showed the major different binding energy compared to values 
obtained from PRODIGY. This may be due to the presence of water molecules in the modeling system which 
may affect the binding force between JOVI.1 and TRBC1. In addition to  Kd and binding energy calculation, 
Ramachandran plot indicated the acceptable phi and psi torsion angles of amino acids in modeled structures.

Finally, another key amino acid of JOVI.1 used for its specific interaction in all three binding modes of TRBC1 
was revealed, D1. The obtained information could be applied for the JOVI.1 modification both as a target for 
antibody redesign or a residue that cannot be touched. In summary, we presented proposed molecular insight 
for JOVI.1-TRBC1 binding mode. Our modeling method was based on the experimental data as the concept for 
the structure selection. This may fulfill the gap of knowledge of this antibody that has been used as a prototype 
for CAR T cell development against PTCL, which threatens the lives of patients.

Methods
Sequence analysis and epitope prediction. The amino acid sequences of TRBC1 and TRBC2 were 
retrieved from The Universal Protein Resource (UniProt)40 and aligned together using the Clustal Omega 
 program41. TRBC1(PDB: 1FYT) and TRBC2 (PDB: 4UDT) were retrieved from Protein Data  Bank42. FoldX was 
chosen to perform structural mutation to prepare the structures of TRBC1 and TRBC2 from original  sequence43. 
Epitope residue prediction of TRBC1 and TRBC2 proteins with its antibody from crystal structure was carried 
out using Spatial Epitope Prediction of Protein Antigens (SEPPA) 3.044, relied on three parameters: propensity 
index avgr, relative ASA Aprefr and ratio of glycosylation  triangles44. Subcellular localization of antigen was 
defined as membrane, and mouse was chosen as the species of the immune host.

Structure preparation of JOVI.1 antibody. The predicted JOVI.1 antibody Fv region was generated 
using RosettaAntibody3 program in The Rosetta Online Server That Includes Everyone (ROSIE)45. Briefly, 
amino acid sequences of heavy chain (VH) and light chain (VL) variable domains of JOVI.1 antibody were 
uploaded onto RosettaAntibody application, which used a three-steps protocol to model the Fv region of the 
 antibody46. Firstly, the amino acid sequence of VH and VH of JOVI.1 was subjected to the BLAST protocol to 
select the template from the crystal structure of antibody in Protein Data  Bank42. The selected template of five 
complementarity-determining regions (CDRs; L1, L2, L3, H1 and H2) and the frameworks (FRL and FRH) were 
searched independently. In the second stage, all selected CDRs and framework regions were then grafted and 
optimized by minimizations, random torsional sampling and cyclic coordinate descent (CCD)47 resulting in the 
crude assembled antibody structure. Finally, the CDR-H3 loop was modeled de novo with the next-generation 
kinematic loop closure (KIC) algorithm in a low-resolution  step48. VL/VH orientations, side chain and loop 
backbone were then optimized using a Rosetta protocol. The ten lowest scoring homology models of antibody 
were used for molecular docking.

Molecular docking. A ClusPro web server with Antibody mode was used to screen the interaction between 
10 JOVI.1 scFv region modeled structures, and TRBC1 or TRBC2. The interaction energy from billions of sam-
pling conformations is calculated and the structures of the 1000 lowest energies will be grouped according to 
root-mean-square deviation (RMSD) to generate the clusters. The largest clusters are selected as the most likely 
models of the complex, which will be refined using energy  minimization14. In the Antibody mode, ClusPro con-
siders the asymmetric interaction between Phe-Leu residues in both antigen and  antibody39 and also allows for 
the masking of the surface of the antibody except for the CDR  residues14. The docking was performed by using 
10 predicted structures of JOVI.1 antibody and the structure of TRBC1 and TRBC2 retrieved from Protein Data 
 Bank42 including chain D and E of TRBC1 (PDB: 1FYT)7 and chain A and B of TRBC2 (PDB: 4UDT)8. All clus-
ters were analyzed by PRODIGY (PROtein binDIng enerGY prediction)49 for dissociation constant (Kd), value 
of the binding affinity (ΔG) and interaction residues.

Molecular dynamics simulation. The protonation state of TRBC1 or TRBC2 was considered based on 
the aforementioned crystal structure using PDB2PQR  webserver50. Each ionizable amino acid in the complex 
structure was assigned at pH 7.0 based on AMBER20 force  field51. Finally, all histidine was assigned as a singly 
protonated histidine (neutral charge) at epsilon-nitrogen position (HIE). Other ionizable amino acids were set as 
a default state at pH 7.0: aspartate (ASP) and glutamate (GLU) were -1e charged, while lysine (LYS) and arginine 
(ARG) were + 1e charged. The protein was solvated by TIP3P water from a distance of 14 Å. The complex was 
neutralized using 8 sodium ions, and 38 sodium chloride pairs were added to generate 0.10 M NaCl solution. The 
TRBC system consisted of approximately 21,000 waters, 46 sodium ions, and 38 chloride ions. The system was 
energetically minimized using 2,000 steepest descent steps and 1000 conjugated gradient steps, with a cutoff of 
16 Å under a periodic boundary condition using the pmemd.cuda module. The minimized structure was taken 
for the canonical (NVT) equilibration at 310 K. The atomic position of the protein was restraint. The harmonic 
force constants were sequentially reduced as follows: 200, 100, 50, 20, and 10 kcal  mol-1 Å-2. All nonbonded and 
electrostatic interactions were computed using a cutoff of 16 Å. All H–X bonds were constrained using SHAKE 
 algorithm52. An NVT simulation with each respective force constant lasted 200 ps using a 1-fs time step. Finally, 
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the NVT simulation yielded 1.0 ns. The temperature of 310 K was controlled using Langevin  dynamics53. The last 
snapshot of the NVT ensemble was changed into the isobaric-isothermal (NPT) ensemble of 1.0 atm (1.013 Bar) 
and 310 K. Both temperature and pressure were regulated using Berendsen  algorithm54. The 100 ns MD simula-
tion was obtained using a time step of 2 fs for 50,000,000 steps. The 1000 equidistant snapshots were obtained 
from 100 ns MD trajectory. The first 500 MD snapshots were then discarded and the last 500 MD snapshots were 
acquired for structural analysis.

MD trajectory analysis. The root mean square displacement (RMSD) was plotted from 1000 MD snap-
shots with respect to the starting coordinate. The RMSD computation was performed using Visual Molecular 
Dynamics (VMD)  package55. The root mean square fluctuation (RMSF) of alpha carbon at the protein backbone 
was calculated from the last 500 MD snapshots. The visualization of the protein structure and protein–protein 
interaction was performed using VMD.
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