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Abstract

As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and
plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by
Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability
model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood
function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test
statistic is the extreme value of the likelihood function. Similar with Kulldorff’s methods, we adopt Monte Carlo test for the
test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province,
China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated
that the test statistic based on the Hypergeometric model outweighs Kulldorff’s statistics for clusters of high population
density or large size; otherwise Kulldorff’s statistics are superior.
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Introduction

In epidemiological studies, it is often important to evaluate

whether the occurrence of a disease is randomly distributed or

tends to occur as clusters over time and/or space after adjusting

for known confounding factors, which may provide clues to the

etiology of the disease [1]. In addition, outbreak detection

becomes possible thanks to growing geographically referenced

health-related data, such as data from sales of Over-the-Counter

(OTC) Healthcare Products.

Likelihood ratio based spatial scan statistic is a cluster detection

test. Because of its ability of both identifying localized clusters and

evaluating their significance, the spatial scan statistic becomes

more popular relative to other statistical methods for disease

clustering. In order to investigate excessive risk of disease after

adjusting for the unevenly distributed population, Kulldorff

proposed the spatial scan statistic for the binary outcome in his

seminal papers [2,3]. Those included the Bernoulli and the

Poisson models. The spatial scan statistic quickly has become a

popular research field and various new methods have been

developed, which could roughly be divided into two classes: those

extending the shape of the scanning window to detect irregularly

shaped clusters [4–11], and those modifying the test statistic to

exploit more information [12–17] or to accommodate more

complex data structures, such as multivariate data [18–20],

ordinal data [21], survival data [22,23], normally distributed data

[24,25] and multinomial data [26]. For all methods, the

significance of the test statistic is evaluated using the Monte Carlo

test [27].

While a great variety of methods have been developed for

diverse purposes, the two classic models for the binary outcome

play a central role in the spatial scan statistic due to their wide

application. The Bernoulli model is more appropriate for case-

control data, while the Poisson model is more appropriate for case-

population data. When the number of cases is small compared to

the target population, the two models approximate each other.

Both of them are based on the likelihood ratio test theory and use

the likelihood ratio (LR), a generalized measuring index of

clustering for each window, thereby making windows of different

size comparable. In a word, the larger the LR of a window is, the

more likely it is a true cluster. The window with the largest LR is

called the most likely cluster (MLC) and the test statistic is the

largest LR. In general, as summarized by Kulldorff [28], a test for

spatial randomness adjusted for an inhomogeneity comprises 7

steps, of which the 3rd step is to construct a measuring index for
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each defined area and the 5th step is to define a summary

quantification for all defined areas. The LR and the largest LR

correspond with the 3rd and 5th steps, repsectively. Neill [29]

presents a heuristic interpretation that the LR is a sort of distance

away from the null hypothesis of no clustering. To the best of our

knowledge, quite on the contrary, the LR is an index of measuring

the closeness to the alternative hypothesis of an existing window of

clustering. However, it is interesting to study whether there exists

an index of measuring the departure from the null hypothesis of no

clustering and, if so, how the new measuring index performs

compared with the existing methods.

In this paper, we apply the Hypergeometric probability model

to construct a likelihood function under the null hypothesis, which

sometimes is complementary to the alternative hypothesis. The

idea originates from the email exchange with Dr. Kulldorff and

another method from Dr.Wong et al for syndrome surveillance,

which is named WSARE [30]. By analogy with our situation,

WSARE employs the P value of testing heterogeneity of

proportions inside and outside each window as a measure of the

departure from the null hypothesis. That is, the window with the

minimum P value is the ‘most strange window’ (in Dr.Wong’s

words) and the minimum P value is the test statistic. The proposed

and existing methods are both applied to the real data of Japanese

Encephalitis (JE) in Sichuan province, China. A simulation

between the proposed test statistic and the Kulldorff’s statistics is

carried out using a set of independent benchmark data.

Materials and Methods

JE Data
In 2003, there was a outbreak of SARS in China, and this

exposed the underdevelopment of the public health system in

handling public health emergencies in China. The China Central

government requested to strengthen the construction of an

infectious disease and public health emergency system, with focus

on promoting the timeliness, sensitivity and accuracy of reporting.

The Chinese Center for Disease Control and Prevention (CCDC)

made the construction of a new operation model, Chinese

Information System for Infectious Diseases Control and Preven-

tion (CISIDCP). CISIDCP was established on the basis of

individual cases and public health emergencies. A Virtual Private

Network (VPN) has been constructed using the information safety

technology, and information of individual cases is directly reported

to the national database through the internet. This system will

report 39 notifiable infectious diseases to CCDC within 24 hours.

However, the management is classified into national, provincial,

prefecture and county levels. CISIDCP makes feedback with

health authority departments at every level. In 2005, CISIDCP

had covered at least 93.3% of medical units at the county and

above.

JE is among the 39 notifiable infectious diseases and, therefore

JE case will be reported routinely by CISIDCP. JE is a vector-

borne viral disease with a high mortality rate and a high

percentage of neuropsychiatric sequelae. The JE virus is spread

by marsh birds and intensified by pigs, mainly transmitted via the

bite of infected Culex mosquito. Humans are dead-end hosts [31].

Many of the ecological, environmental, climatic and human

behavioral factors are involved in the spread of the JE virus [32].

Contextual determinants of JE include irrigated rice farming, pig

rearing and the rural population. Sichuan is a province in

Southwest China. It is one one of the major agricultural

production bases of China, including rice and pork production.

Hence, Sichuan province is a high-incidence region for JE with the

incidence of JE ranked the 5th in 2009 among 31 provinces in

Mainland China. As a subordinate unit of CCDC, Sichuan Center

for Disease Control and Prevention (SCDC) has the permission to

access the data of Sichuan from CISIDCP. It is interesting for

SCDC to investigate the geographic distribution pattern of JE.

This analysis may help further learn the disease cluster areas and

influencing factors of JE, finally assisting health officials in

allocating the health resources.

Notation and Kulldorff’s Test Statistics for the Binary
Outcome

N G: the whole study region divided into many counties

N Z: a circular window in the study region

N V: all overlapped windows formed by circles of arbitrary radius

r centered in each one of counties, V~fZg
N nZ : the number of population within window Z

N cZ : the observed number of cases within window Z

N nG : the total population in the study region

N cG : total number of cases in the study region

N z�: one cluster such that all individuals within z� have

probability pin be a case and pout is the same probability for

individuals outside z�

When scanning for the high rates only, such as identifying areas

with high rate of leukemia [33] or Breast cancer [34], Kulldorff’s

statement on the hypotheses is as following: H0 : pin~pout,
H1 : pinwpout for z�. Under the null hypothesis, the expected

number of cases within Z, eZ, is calculated as follows:

eZ~
n�Z

nG
cG ð1Þ

In the framework of likelihood ratio ratio test, the final test

statistic for the Poisson model is the likelihood ratio maximized

over Z:

l~max
Z[Z

nZ

eZ

� �nZ nG{nZ

eG{eZ

� �nG{nZ

ð2Þ

where

Z~ ZDnZƒ
nG

2
,

cZ

nZ
w

cG{cZ

nG{nZ

� �
ð3Þ

The search space for the candidate cluster is ristricted by equation

3, where the first inequality specifies the maximum spatial cluster

size, and the second inequality determines the aim of scanning for

high risk area. Mathematical details have been provided by

Kulldorff [3]. Sometimes it is interesting to identify areas with low

rates only, such as detecting low clusters of sex ratio [35]. We just

need to change the direction of the second inequality. The window

Z� attaining the maximum is defined as the Most Likely Cluster

(MLC). The MLC is least likely to be a chance occurrence under

the null hypothesis. And the test statistic is the l in equation 2. The

significance of the test statistic is evaluated by Monte Carlo test.

A Test Statistic based on the Hypergeometric Probability
Model
As with the Poisson- and Bernoulli-based statistics, the

Hypergeometric-based statistic has two aims: detecting the

Scan Statistic Based on H Model
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potential clusters; and evaluating the significance of the detected

clusters.

Detecting. The null hypothesis signifies complete spatial

randomness with each individual in the study region, implying

that each person in the study region are equally likely to become

the case. There are nG individuals of which cG are cases in total.

Under null hypothesis, we can think of that all nG individuals are

equally likely to be ‘labeled’. For a window Z with nZ people, the

probability of cZ ‘labeled’ individuals has probability as:

Pr(cZ)~

nZ

cZ

� �
n{nZ

c{cZ

� �

n

c

� � ð4Þ

This is the classic application of Hypergeometric distribution,

sampling from a finite population without replacement. The

window Z with the minimum probability is least likely occur under

the null hypothesis. This can be written:

l�~min
Z[Z

nZ

cZ

� �
n{nZ

c{cZ

� �

nG

cG

� � ð5Þ

Where the Z is the same as Kulldorff’s method, which is defined

by equation 3. The window Z�� attaining the minimum

probability is least likely occur under the null hypothesis. We

may call this window the most strange window, as it have the

minimum probability of satisfying the null hypothesis that

pin~pout.
Test of significance. The test statistic is the l� in equation 5.

To evaluate whether the identified cluster is statistically significant

or just can be explained by random noise, the P value is obtained

through Monte Carlo test, by comparing the rank of the test

statistic from the real data set with those from the random

replications. The test statistic is calculated for each random

replication as well as for the real data set, and if the latter is among

the 5 percent lowest, then the test is significant at the 0.05 level.

Figure 1. Choropleth map of empirical Bayes estimates of relative risk of Japanese encephalitis in Sichuan province in 2009.
doi:10.1371/journal.pone.0065419.g001
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When there are multiple clusters in the data set, many methods

can deal with this problem [3,36,37].

Results

Detection of Clusters of JE in Sichuan Province
We applied both the proposed and existing methods to analyze

data on JE from 2009 in Sichuan province, China. Our analysis

used both methods to investigate whether the high JE incidence is

evenly spread over Sichuan province. This would examine

whether any observed clusters of JE cases could be explained by

chance alone, or whether there were clusters of statistical

significance.

In 2009, Sichuan province had a population of 81,379,919 and

consisted of 181 counties. It had a total number of 598 cases, in

which 2 cases lost the geographical information. The JE cases data

in Sichuan province came from CISIDCP and this data was not

publicly available. The population data came from the Nation

Bureau of Statistics of China (http://www.stats.gov.cn/tjsj/ndsj/).

To eliminate the random noise in the incidence map, we utilized a

method of empirical Bayes estimate to visualize the spatial

distribution of JE in Sichuan (Figure 1). It seems that there is a

high risk in the east borderline region, especially in the northeast

and southeast areas.

Because of the case-population data structure, we used the

Poisson model representing Kulldorff’s method. The 9,999

random data were generated under the null hypothesis to evaluate

the significance of the detected clusters. On a significance level of

0.05, the two methods obtained almost the same results (Figure 2).

They detected two significant clusters, the most likely cluster in the

southeast with 18 counties and one secondary cluster in the

northeast with 12 counties. Both clusters had a P value of 0.0001.

In addtion, the two methods detected identical areas as a third

likely cluster, but with different P values: 0.0909 for the existing

method and 0.1334 for the new method. This area is not colored

in the figure. Overall, the detected clusters account for 53.2%

(317/596) of the JE cases in Sichuan province. Cao [38] had

analyzed the influencing factors of JE in the southwest of China on

the Prefecture-city level, an administrative division below a

province and above a county in China’s administrative structure,

but found no statistically significant factors. As Cao presented, this

is probably due to the little spatial variation of the influencing

factors in the southwest of China. On the other hand, the financial

support may, on a large extent, determine the spatial variation of

JE in Sichuan. We ranked the counties by GDP per capita in a

descending order. It turned out that 86.7% (26/30) of the counties

in the significant clusters ranked in the last two thirds of the 181

counties, and 33.3% (10/30) ranked in the last one third parts. As

pointed by Zhen [39], the less-developed region of Sichuan

province was often short of funds for JE control, especially the

remote rural areas. These constitute the high risk areas in Sichuan,

which indicates that more financial and policy support is required

to control JE in these areas.

Simulation Study
Benchmark data. To carry out the comparison study

between the two kinds of methods, we use public domain

benchmark data sets. The benchmark data sets are based on the

1990 female population in the 245 counties and county

equivalents in the Northeastern United States, consisting of the

states of Maine, New Hampshire, Vermont, Massachusetts, Rhode

Island, Connecticut, New York, New Jersey, Pennsylvania,

Delaware, Maryland and the District of Columbia. Each county

is represented by a centroid coordinate. The benchmark data was

created by Kulldorff, M., T. Tango and P.J. Park (2003) to

investigate the performance of different statistical methods for

clustering. They have been used in many research studies [40–43].

It is available at ‘http://www.satscan.org/datasets.html’. The

benchmark data and how it was generated has been described in

detail elsewhere [40]. We provide a brief summary here.

Under the null hypothesis of no clustering, 99,999 random data

sets were generated by randomly allocating 600 cases to the

various counties, with probabilities proportional to the county

population. The null data is used to estimate the critical values,

which is the cut-off point for the significance. Hot-spot clusters

were generated by setting the relative risk in some counties to be

larger than 1. Different real hot-spot clusters corresponds to

different combinations of population density, number of counties.

For each kind of hot-spot clusters, 10,000 random data sets were

generated using a multinomial probability distribution with the

relative risks such that if the exact location of the real cluster was

known in advance, the power to detect it should be 0.999. In order

to clearly examine the performance of these methods when

applied in high and low population density, we focused on the

relatively extreme combinations. urban area, rural area, rural &

mixed area and urban & mixed area.

Evaluation criteria. The sensitivity (SEN) and the positive

predictive value (PPV) were estimated to examine the performance

of different methods. The SEN and PPV of the spatial scan statistic

were introduced by Huang et al [22], and can be defined in terms

of either the number of regions or the population. First, we define

the SEN as the probability of detecting the regions that actually

constitute the cluster, i.e, proportion of the number of regions

correctly detected from the true clusters.

SEN~
1

S

XS
i~1

|
#fdetected counties in the true cluster in ith simulationg

#fcounties in the true cluster in ith simulationg

ð6Þ

Where S is the total number of simulations. The PPV is defined

in a similar manner as the proportion of the number of true

regions in the detected clusters.

PPV~
1

S

XS
i~1

|
#fdetected counties in the true cluster in ith simulationg

#fdetected counties in ith simulationg

ð7Þ

We can also weight each region with its population, and hence

obtain population based SEN and PPV.

SEN~
1

S

XS
i~1

|

#findividuals in detected counties in the true cluster in

ith simulationg
#findividuals in the true cluster in ith simulationg

ð8Þ
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PPV~
1

S

XS
i~1

|

#findividuals in detected counties in the true cluster in

ith simulationg
#findividuals in detected counties in ith simulationg

ð9Þ

For the SEN and PPV, the larger the better they are, with 100%

being the optimal. Here, the detected clusters are defined as

follows: a critical value corresponding to a 0.05 significance level

was computed by identifying the 5000th highest maximum index

from among the 99,999 random data sets generated under the null

model. For each kind of hot spot cluster, all windows with index

exceeding the critical value are candidate clusters. The window

with the maximum index is reported as the most likely cluster.

Then, we eliminate the remaining candidate clusters that overlap

with most likely cluster, and report the one having the largest

index as the second cluster. We then repeated this procedure for

the third and the fourth clusters and so on. All reported clusters

are detected clusters.

Simulation results. We obtain the estimate of SEN and PPV

for the test statistics based on the Bernoulli, the Poisson and the

Hypergeometric models, respectively, and find that the results of

the two test statistics proposed by Kulldorff are exactly the same

except that a few values differ slightly. Thus, we take the Poisson

model as an example for Kulldorff’s methods (Table 1). There are

several common features between Hypergeometric and Poisson

models: 1) In general, the two test statistics perform very similarly;

2) The SEN decreases as the number/size of hot spot clusters

increases; 3) The PPV does not show the 2nd feature and always

maintains a high level; 4) In general, the SEN based on population

is greater than that based on counties, likewise for the PPV.

The SEN and PPV represent two sides of a test statistic for

cluster detection. If the SEN and PPV based on one probability

model both are greater than the corresponding values based on the

other model, the test statistic based on the former model outweighs

the latter under that scenario. From Table 1 it appears that: 1) the

Hypergeometric model outweighs the Poisson model when the

hot-spot cluster is in urban area, whereas the Poisson model

Figure 2. Detected clusters of Japanese encephalitis in Sichuan province in 2009. On a significance level of 0.05, the test statistics based on
Poisson and Hypergeometric models obtained almost the same results. They detected two significant clusters, the most likely cluster in the southeast
with 18 counties and one secondary cluster in the northeast with 12 counties, both with P value of 0.0001. They differs slightly on statistically
insignificant clusters.
doi:10.1371/journal.pone.0065419.g002
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outweighs the Hypergeometric model when the hot spot cluster is

in the rural area. In other words, with the densely populated hot-

spot cluster, the Hypergeometric model performs better, otherwise

the Poisson model performs better; 2) the Hypergeometric model

outweighs the Poisson model when the size of hot-spot cluster is

large, and otherwise the Poisson model performs better. In

summary, with densely populated or largely sized hot-spot clusters,

the Hypergeometric model performs better, otherwise the Poisson

model performs better.

Discussion

First, we would like to review the motivation of this study. Our

initial test statistic was the P value, but it failed in the simulation

study. There is a lot of literature relating to the role of the P value

and its origin, in which a great part are concerned with what is

evidence in statistics and the debate over Fisher’s test of

significance and Neyman-Pearson’s hypothesis testing. That is

beyond the scope of this paper, and plenty of literature has

interestingly discussed those questions [44–50].

The key assumption to the two kinds of test statistics is that there

is no positive spatial autocorrelation, which implies that pairs of

observations taken nearby are more similar than those taken far

apart. As summarized by Tango [1], the positive spatial

autocorrelation will be a key issue in statistical modeling of spatial

epidemiology. For instance, when spatial regression is performed

to determine what covariates contribute to a higher risk for a

disease under study, it is critical to adjust for the spatial

autocorrelation in the data. Otherwise, the risk will be overesti-

mated, with biased p-values that are too small, providing

‘‘statistically significant’’ results when none exist. However, for

detecting disease clustering or disease clusters, we should not

adjust for the spatial autocorrelation since we are interested in

detecting clusters due to such autocorrelation and, if they are

adjusted away, important clusters might go undetected. The test

statistic based on the Hypergeometric model is more similar with

the one based on Poisson model in terms of the data structure,

both for case-population data.

As the simulation study shows, with the identical assumption,

the two kinds of methods perform similarly. The SEN and PPV

based on population usually are greater than that based on

counties, indicating that the cluster detection methods often

‘‘capture’’ the hot spot areas of high population, which would

benefit more overall. Furthermore, the test statistic based on the

Hypergeometric model performs better when used with densely

populated or largely sized hot spot clusters; otherwise Kulldorff’s

test statistics perform better. Although it appears relatively small,

given the scarce resources available to most local health

departments, a greater improvement would reduce the cost to

investigate potential disease outbreaks. In the application of JE in

Sichuan province, the two kinds of methods identified the same

cluster, which may greatly help the health department allocate

relevant resources to these areas for JE prevention.

Further refinements of the new test statistic may include clusters

that are not circular, but instead irregularly shaped ones. Space-

time clusters extensions to the proposed method are also

straightforward.
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Table 1. SEN and PPV of test statistics based on the Poisson
and the Hypergeometric models.

county population

SEN (%)PPV (%)SEN (%)PPV (%)

rural e 1 H 99.19 97.30 99.19 97.08

P 99.81 97.73 99.81 97.37

e 2 H 87.37 96.11 95.98 95.93

P 87.58 96.58 96.36 96.37

e 4 H 93.38 82.36 93.86 87.00

P 93.49 83.23 93.97 87.87

8 H 86.71 83.84 88.87 85.88

P 86.70 85.12 88.94 87.18

16 H 82.74 88.02 84.80 86.17

P 82.20 88.89 84.35 87.17

urban e 1 H 90.22 80.96 90.22 83.19

P 91.97 83.85 91.97 86.11

2 H 86.70 81.36 88.09 81.94

P 86.20 82.53 87.79 83.23

* 4 H 86.09 76.66 86.21 79.83

P 84.00 76.39 84.08 79.30

* 8 H 83.47 73.48 86.40 81.26

P 81.07 72.69 84.00 80.03

* 16 H 82.71 73.49 85.78 84.53

P 80.48 72.47 83.55 83.02

rural and mixed e 1 H 94.10 74.24 89.32 87.54

P 94.70 75.46 89.77 88.32

e 2 H 84.22 77.69 88.43 89.61

P 84.23 78.88 88.47 90.44

4 H 84.27 71.79 84.50 87.53

P 84.22 72.93 84.08 88.29

8 H 78.31 77.39 82.21 89.10

P 77.87 78.57 81.57 89.94

16 H 74.12 84.43 80.22 90.21

P 73.27 85.29 79.20 90.88

mixed and urban e 1 H 84.63 71.37 84.54 88.29

P 84.94 73.37 84.86 89.56

2 H 78.43 75.57 81.70 89.37

P 78.32 77.04 81.64 90.50

4 H 70.80 73.12 72.37 88.02

P 68.80 73.97 69.80 88.34

8 H 62.29 75.54 67.72 87.88

P 59.69 75.66 64.14 87.67

* 16 H 53.75 78.60 58.20 88.52

P 50.83 78.32 54.21 87.69

P: Denote the test statistic based on the Poisson probability model.
H: Denote the test statistic based on the Hypergeometric probability model.
e: Denote that the test statistic based on the Poisson model performs better.
*: Denote that the test statistic based on the Hypergeometric model performs
better.
doi:10.1371/journal.pone.0065419.t001
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