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Abstract

DNA methylation at CpG islands (CGIs) is one of the most intensively studied epigenetic mechanisms. It is fundamental for
cellular differentiation and control of transcriptional potential. DNA methylation is involved also in several processes that are
central to evolutionary biology, including phenotypic plasticity and evolvability. In this study, we explored the relationship
between CpG islands methylation and signatures of selective pressure in Homo Sapiens, using a computational biology
approach. By analyzing methylation data of 25 cell lines from the Encyclopedia of DNA Elements (ENCODE) Consortium, we
compared the DNA methylation of CpG islands in genomic regions under selective pressure with the methylation of CpG
islands in the remaining part of the genome. To define genomic regions under selective pressure, we used three different
methods, each oriented to provide distinct information about selective events. Independently of the method and of the cell
type used, we found evidences of undermethylation of CGIs in human genomic regions under selective pressure.
Additionally, by analyzing SNP frequency in CpG islands, we demonstrated that CpG islands in regions under selective
pressure show lower genetic variation. Our findings suggest that the CpG islands in regions under selective pressure seem
to be somehow more ‘‘protected’’ from methylation when compared with other regions of the genome.
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Introduction

DNA methylation at CpG sites is one of the most intensively

studied epigenetic mechanisms [1] . CpG sites are DNA regions

where a cytosine nucleotide occurs next to a guanine nucleotide.

Cytosines in CpG dinucleotides can be methylated to form 5-

methylcytosine. Human genome contains about 30 million CpGs

that exist in a methylated or unmethylated state. A part of all CpG

sites present in the genome are clustered into CpG islands that are

defined as genomic regions with increased CpG density. These

CGIs are enriched at genes, about 60% of all genes in the human

genome containing a CpG island upstream [2]. The methylation

status of CGIs can influence gene expression [3] [1]. The

hypermethylation at promoter CGIs typically results in a

decreased transcription of downstream genes [4]. Further,

aberrant DNA methylation has been often reported to cause

various human diseases [5] [6] [7].

Three DNA methyltransferases, namely DNMT1, DNMT3a,

and DNMT3b [8] are involved in the maintenance of DNA

methylation during the cell cycle. When the two parental DNA

strands are separated in the S-phase of the mitosis, two

hemimethylated strands are produced. DNMT1 is a component

of a protein complex with high affinity with hemimethylated DNA,

subsequently restoring methylation on the daughter strands [9].

Also demethylation is an important biological mechanism, as

illustrated, for example, by the demethylation of the paternal and

maternal genomes in the zygote after fertilization [10] or by the

reprogramming of pluripotency cells to differentiated cells [11].

Nevertheless, the molecular mechanism of DNA demethylation in

mammals is disputed, one possibility being that cells demethylate

their genome by passive demethylation.

Several evidences suggest a dependence of DNA methylation on

local sequence content [12]. DNA methyltransferases within

eukaryotic cells are not free, but they are compartmentalized by

interaction with nuclear components [13]. Thus it is likely that

chromatin structure of a genomic region will have an important

impact on the maintenance of methylation of that region. It could

be hypothesized that there are genomic regions somehow

‘‘protected’’ in vivo from methylation but yet readily accessible

to exogenously added soluble DNA methylases [14].

Nonetheless, a complete understanding of the role of DNA

methylation and the mechanisms responsible for its establishment

and maintenance remain elusive [1].

Many studies focused on the interplay between epigenomic

regulation and evolution, because DNA methylation is involved

in several processes that are central to evolutionary biology,

including phenotypic plasticity and evolvability [15]. Changes in

the regulation of gene expression levels have long been

hypothesized to play an important role in evolution [16].

Nevertheless, studies specifically addressed to the relation
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between promoter methylation and selective pressure in Homo

Sapiens are still lacking.

Several tools are needed to study the relation between CGIs

methylation and selective pressure in a genomic perspective. First,

we need tools that recognize genomic signals of selective pressure.

Many methods have been developed to exploit signatures left by

natural selection, each signature providing distinct information

about selective events [17]. Since one of the main effects of

selection is to modify the levels of variability within and between

species, these methods could be roughly classified into two groups.

To the first group belong the methods that use a population

genetic approach, while to the second group belong methods that

use a comparative approach. While population genetic approaches

aim to detect recent selection events occurring in a population,

comparative approaches, involving data from multiple different

species, are suitable for detecting more ancient selections [17]. By

these methods, hundreds of such regions putatively under selective

pressure have been identified. They are typically as large as few

hundreds of kilobases to megabases, and may contain many genes.

The second requirement to study the relation between CGIs

methylation and evolution is the availability of methylation data at

genomic scale. Recent advances in high-throughput sequencing

technologies are enabling epigenetics to progress rapidly into an

‘omic’ science [18]. In particular, the Encyclopedia of DNA

Elements (ENCODE) Consortium [19,20] is providing masses of

methylation data that may be accessed and used by the entire

scientific community. The analysis of these relevant datasets by

computational methods could complement experimental ap-

proaches to further our understanding of DNA methylation [21]

[22].

In this study, we explored the relationship between CGIs

methylation and signatures of selective pressure in Homo Sapiens,

using a computational methodology.

We compared the CGIs methylation level in genomic regions

under selective pressure with CGIs localized in the remaining

genome. We evaluated DNA methylation levels both by direct

analysis of CpG methylation in cell lines and by an indirect

approach that uses the analysis of genetic variation inside CGIs.

To define genomic regions under selective pressure, we used

three different methods oriented to provide information about

selective events happened in different periods of human evolution.

Independently of the methods used both to evaluate CGIs

methylation and to estimate selective pressure, we found evidences

of undermethylation of CGIs in human genomic regions that

undergone selection.

Results

DNA methylation in cell lines and signatures of selective
pressure

Based on datasets available in public repository we estimated

the CGIs methylation in 25 cell lines.

Genomic coordinates of 28,691 CGIs were obtained from

UCSC Genome Browser ‘‘CpG Islands’’ track. As known, USCS

CGIs file contains also data related to sequence for alternative

haplotypes (present mainly in chr6, for the inclusion of alternative

versions of the MHC region). Of course, in our analysis we filtered

the file excluding these duplicated data. Excluding CGIs

corresponding to sequences for alternative haplotypes, we

obtained 27.718 unique CGIs. Cell line methylation data were

obtained by downloading them from UCSC Genome Browser

‘‘HAIB Methyl RRBS’’ track. This track reports the percentage of

DNA molecules that show cytosine methylation at specific CpG

dinucleotides in several cell lines. The 25 cell lines that we used

could be roughly divided in three groups: cancer transformed cells

(n = 6), EBV transformed cells (n = 2) and normal untransformed

cells (n = 17). The complete list of the cell used, with their

characteristics are shown in Table S1. We extracted only the

methylation values of those CpGs that were localized inside CGIs

(order 105 per cell line).

To estimate the methylation of each CpG island we calculated

the mean of all CpGs methylation values into a CpG island. We

were able to estimate the methylation status of about 104 CGIs for

each cell line. Table S2 lists, for each cell type, the description of

the CpGs analyzed. As expected, the CGIs mean methylation

values were higher in Cancer Transformed (mean = 26.91,

SE = 2.84) and lower in Normal Untransformed cells

(mean = 14.34, SE = 0.57), EBV transformed cell showing inter-

mediate levels (mean = 18.93, SE = 1.46) (Figure S1).

To explore the possible relationship between CGIs methylation

and selective pressure we compared the methylation of the CGIs

inside genomic regions showing signature of selective pressure with

the methylation of the CGIs in the remaining genomic regions.

To obtain genomic regions with signatures of selective pressure,

we used three different approaches.

As first approach, we used the per-continent Integrated

Haplotype Score (iHS) [23]. This score belongs to the Extended

Haplotype Homozygosity (EHH) statistic ‘‘family’’, proposed by

Sabeti et al. [24]. The iHS measures the decay of identity, as a

function of distance, of haplotypes that carry a specified ‘‘core’’

allele at one end and it is considered a measure of recent positive

selection. The normalized iHS scores (see materials and methods)

were obtained from UCSC Genome Browser ‘‘HGDP iHS’’ track.

To define genomic regions putatively under selective pressure

by this method, we scanned normalized iHS scores across the

whole genome and selected the genomic intervals where iHS score

values $2. Once detected such compact regions, we extended

their boundaries to the nearest loci where iHS was exactly

vanishing. According to these criteria, 586 regions were identifies.

We denoted these regions as ‘‘High iHS regions’’ (HIR). Table S3

reports the HIRs that we identified and their boundaries.

Next we identified CGIs localized within HIRs. We found that

2,545 CGIs were localized inside HIRs whereas the remaining

26,146 were placed outside. We compared the methylation of

CGIs inside HIRs with the methylation of CGIs localized outside

these regions.

Figure 1 shows the results obtained. In all cell lines analyzed, the

CGIs inside HIR regions were less methylated than the CGIs in

the remaining part of the genome. The differences were highly

statistical significant (Bootstrap p-value#1024) in all cell lines

analyzed. Table S4 reports in detail the results of this analysis. The

Bootstrap procedure adopted to evaluate the difference between

means of distributions is described in Materials and Methods.

An additional method able to detect regions putatively under

selective pressure is represented by the Selective Sweep Scan (S)

score, which is based on the comparison of Homo Sapiens DNA

with Neanderthal DNA [25]. This score, when positive, indicates

more derived alleles in Neanderthal than expected, given the

frequency of derived alleles in human. On contrary, a negative

score indicates fewer derived alleles in Neanderthal, and may

suggest an episode of positive selection in early humans, after

divergence with Neanderthal and before human populations

divergence. We used the 212 regions with S scores in the lowest

5% of the distribution (5% Lowest S Regions, 5LSR) contained in

the UCSC Genome Browser (see materials and methods). Table

S5 reports the regions used with their relative boundaries.

We found that 348 CGIs were localized inside 5LSRs and the

remaining 28,343 outside them. Figure 2 shows the results

CpG Islands Methylation and Selective Pressure
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obtained by comparing the methylation of CGIs inside 5LSRs

with the methylation of CGIs localized in the other regions of the

genome.

Also for this different measure of selective pressure, in all cell

lines analyzed, CGIs inside regions under selective pressure were

less methylated than the remaining CGIs. The differences were

highly statistical significant (Bootstrap p-value,1023) in 17 cell

lines analyzed, but did not reach this significance in 8 cell lines

(p,0.05). Nevertheless, combining the results of all 25 cell lines by

means of the test statistic - 2 log (p1,p2 … p25), where p1, p2 … p25

are the p-values of the individual tests, we reached a combined

statistical significance much less than 1023. Table S6 reports in

detail the results of the analysis

To check if the results could be due to the same CGIs identified

by both methods, we searched for CGIs that are both within HIRs

and within 5LSRs. We found only 70 CGIs in common between

Figure 1. Methylation of HIR CGIs compared to methylation of CGIs in other genomic regions. For each cell line, the mean methylation
value of CGIs inside HIR regions (open bars) and of the CGIs in the remaining part of the genome (closed bars) are reported. Inset shows the same
data summarized by cell group (Cancer Transformed = CT, EBV transformed = EBV, Normal Untransformed = NU). Values are means +/2 Standard Error
(SE).
doi:10.1371/journal.pone.0023156.g001

Figure 2. Methylation of 5LSRs CGIs compared to methylation of CGIs in other genomic regions. For each cell line, the mean methylation
value of CGIs inside 5LSRs regions (open bars) and of the CGIs in the remaining part of the genome (closed bars) are reported. Inset shows the same
data summarized by cell group (Cancer Transformed = CT, EBV transformed = EBV, Normal Untransformed = NU). Values are means +/2 SE.
doi:10.1371/journal.pone.0023156.g002
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PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23156



these two groups, indicating that the results obtained by the two

methods are driven by different sets of CGIs. In addition, excluding

these 70 CGIs from the analysis, the result continued to be highly

significant both for HIRs and 5LSRs (data not shown). It is intriguing

to note that these 70 CGIs were less methylated when compared both

to the remaining HIR CGIs and 5SLR CGIs, but the differences

were not statistical significant (data not shown).

To further define regions under selective pressure, we decided

to use a third and last approach that looks for sequences that are

conserved across species [26]. By this approach, conserved regions

are defined as genomic regions with a reduced rate of evolution

compared to what is expected under neutral drift. Several methods

for detecting conserved regions in multiple alignments have been

described. We used data downloaded from UCSC Genome

Browser Conservation (cons46way) Track, which lists 725,627

Conserved Elements (CEs) that were predicted to be conserved

among primates [27].

We Identified 26,936 CEs located inside 14,391 CGIs, by

filtering all genomic CEs by CGIs. Excluding CGIs corresponding

to sequences for alternative haplotypes, we obtained 13.288

unique CGIs containing 25.362 CEs. We named ‘‘CE CpG islands

(CE CGIs)’’ those CGIs that contain at least one conserved

element. For each cell line, we compared the methylation of CE

CGIs with the methylation level of the remaining CGIs not

containing conserved elements.

In all the cell lines analyzed, CE CGIs were less methylated

than CGIs that do not contain conserved elements (Figure 3). The

differences were highly statistical significant (Bootstrap p-val-

ue,1024) in all cell lines analyzed. Table S7 reports in detail the

results of this analysis.

Since the number of CE CGIs is higher than that of HIR CGIS

and 5SLR CGIs, it could be possible that all HIR CGIs and 5SLR

CGIs are contained in the CE CGI group. In this case the results

we found with HIR and 5SLR could be due to CE only.

To check this possibility, we estimated the overlaps between the

CGIs lists obtained by the different methods (Figure 4). We found

that 1,385 CGIs were in common between CE and HIR

(HIR+CE CGIs) and 205 were in common between CE and

5SLR (5SLR+CE CGIs). If the phenomena underlying the three

signatures (CE, HIR and 5SLR) contributed independently to

lower the CGIs methylation, we expected that CGIs in regions

with two signatures of selective pressure showed lower methylation

when compared to CGIs in regions with one signature only. We

found that, in all cell lines analyzed, HIR+CE CGIs were less

methylated than the remaining CE CGIs. The differences were

highly statistical significant (Bootstrap p-value,1023) in 14 cell

lines analyzed, but did not reach this significance in 11. In these

eleven cell lines the differences were significant only at p,0.05

(Figure S2, Table S8). Also 5SLR+CE CGIs were less methylated

when compared to the remaining CE CGIs, in all cell lines

analyzed. The differences were highly statistical significant

(Bootstrap p-value,1023) in 17 cell lines, but did not reach this

significance in 8. In these eight cell lines the differences were

significant only at p,0.05 (Figure S3, Table S9). Also in these two

cases the joint analysis of all cell lines yielded a combined statistical

significance much less than 1023.

In the genome, CGIs are located in 59,39 or in other gene

regions, as well as in intergenic regions. We decided to estimate the

methylation of CGIs located in these different locations to assess if

the CGIs undermethylation that we found in regions under

selective pressure is restricted to CGIs with a specific localization.

We used the 4 classes of CpG islands described by Medvedeva

et al. [28] : 59 CGIs (in 59-flank region, 59 UTR-exon , 59UTR-

intron , initial coding exon and initial intron), intragenic CGIs (in

internal exons and internal introns), 39 CGIs (in final exons, final

introns, 39 UTR exons and 39 UTR introns) and intergenic CGIs

(located at least 3 kb from any known gene upstream and

downstream). In particular, 59 CGIs are located in regions that,

starting 3 kb upstream Transcription Start Site, extend till the first

intron. Considering all cell lines, 59 CGIs showed the lowest

methylation level (weighted mean = 9.01) , intragenic and 39 CGIs

showed the highest values (respectively, weighted mean = 55.21

Figure 3. Methylation of CE CGIs compared to methylation of CGIs that do not contain conserved elements. For each cell line, the
mean methylation value of CE CGIs (open bars) and of the CGIs that do not contain conserved elements (closed bars) are reported. Inset shows the
same data summarized by cell group (Cancer Transformed = CT, EBV transformed = EBV, Normal Untransformed = NU). Values are means +/2 SE.
doi:10.1371/journal.pone.0023156.g003
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and 42.59) and intergenic CGIs showed intermediate methylation

values (weighted mean = 21.31). For each cell line, the differences

among CGIs methylation of different genomic regions were high

statistical significant (Kruskal-Wallis Test, p-value#2.2 10216)

(Table S10).

Next we divided CGIs with signature of selective pressure

according the above described classes. Unfortunately, for intra-

genic and 39 classes, we did not obtain a number of HIR CGIs and

5LSR CGIs sufficient to perform a consistent statistical analysis. In

particular, in these classes we found about 80 HIR CGIs and less

than 10 5LSR CGIs.

We were able to perform statistical analysis only by using CE as

signature of selective pressure. In all cell lines but 2 (which were

both cancer cell lines), 59 CGIs in CE regions were under-

methylated when compared to 59 CGIs located outside CE regions

(Bootstrap p-value,1024). Intragenic and 39 CGIs located in CE

regions showed no differences in methylation when compared to

intragenic and 39 CGIs outside CE regions. In all cell lines,

intergenic CGIs in CE regions were severely undermethylated

when compared to intergenic CGIs located outside CE regions

(Bootstrap p-value p,1024) (Table S11).

This first set of experiments suggested that, in different cell lines,

the GCIs localized in genomic regions under selective pressure are

undermethylated. CGIs in regions with two signatures of selective

pressure (in which CE is involved) showed lower methylation when

compared to CGIs in regions with one signature only. Further-

more, at least for CE, the CGIs undermethylation that we found in

genomic regions under selective pressure is specifically due by

CGIs located at the 59 and in the intergenic regions.

Genetic variation inside CpG islands and signatures of
selective pressure

We decided to estimate the CGIs methylation by a different,

indirect approach. It is well settled that 5-methylcytosine is the

initial molecule in the deamination reaction that generates

thymine; thus, methylation may be required for increased

mutation rates at CpG sequences. We predicted that CGIs

localized in regions under selective pressure, being less methylated,

would be less likely to mutate. Under this hypothesis, these CGIs

should show a lower degree of genetic variation among

individuals.

To evaluate the degree of genetic variation in CGIs, we

calculated the frequency of SNPs present in each CGI. Among the

26,033,053 SNPs from dbSNP (build 131), we selected the 199,514

SNPs that were located inside CGIs. To obtain a normalized value

of SNP frequency for each CGI, we divided the number of SNPs

present in each CGI by its size. By this method we were able to

calculate the SNP frequencies for 25,558 CGIs.

We found that, on average, each CGI contained 1.04 SNP/

100 bp (range 0.04–63.28).

Then we compared the SNP frequency of CGIs inside the

regions under selective pressure with the SNP frequency of CGIs

localized in the other regions of the genome.

Figure 5 reports the results obtained. The 2,345 CGIs localized

in HIRs showed a mean of 0.89 SNP/100 bp in comparison with

1.05 of the other 23,213 CGIs (Bootstrap p-value,1024). The 309

CGIs localized in 5LSRs showed a mean of 0.67 SNP/100 bp in

comparison with 1.04 of the other 25,249 CGIs (Bootstrap p-

value,1024). The 13,286 CE CGIs showed a mean of 0.76 SNP/

100 bp in comparison with 1.34 of the other 12,272 CGIs

(Bootstrap p-value,1024).

Also for this approach we checked if CGIs in regions with two

signatures of selective pressure (HIR+CE or 5SLS+CE) showed

differences compared to CGIs in regions showing only a signature

(CE). We found that the 205 5SLR+CE CGIs contained less SNPs

than the remaining 13,081 CE CGIs (mean = 0.61 SNP/100 bp

vs. 0.76 SNP/100 bp, Bootstrap p-value,1024). On contrary, the

1,386 HIR-CE CGIs did not show any difference in SNP content

Figure 4. Venn diagram showing the overlaps among CGIs localized in the regions under selective pressure detected by the three
methods used.
doi:10.1371/journal.pone.0023156.g004
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in comparison with the remaining 11,900 CE CGIs (mean = 0.74

vs. 0.76, Bootstrap p-value = 0.36).

In summary, we demonstrated that the CGIs localized in

regions showing signatures of selective pressures contain less SNPs

than CGIs in other regions of the genome. When compared to

CGIs in regions with one signature only, CGIs in regions with two

signatures of selective pressure showed differences in the case of

5SLR but not for HIR.

Discussion

One of the most studied epigenetic modifications is the DNA

methylation, which is evolutionarily ancient and associated with

regulation of gene transcription [29]. DNA methylation could be

central both to the ability of a population of organisms to change

its phenotype in response to changes in the environment and to its

ability to generate genetic diversity and evolve through natural

selection [15]. The evolutionary conservation and divergence of

epigenetic mechanisms in eukaryotes have started to be revealed

by genetic and genomic studies of various organisms [29]. A

general scenario that seems to emerge is that the epigenetic marks

and the mechanisms that establish these marks are basically

ancient and conserved, but the precise details of how these marks

function within genomes is far to be completely clarified. An

intriguing question is how evolutionary forces have adapted

epigenetic mechanisms to the needs of the specific organism and,

within a species, to the needs of a specific population.

In this study we searched for possible differences in DNA

methylation between genomic regions under selective pressure and

the remaining genome. We focused on CpGs inside CpG islands

and on the species Homo Sapiens. We chose a genome-wide

approach using computational biology methods.

One of the difficulties in this kind of study concerns the methods

to be used to detect signatures left by natural selection. Despite the

many methods that have been developed, up to now no method

could be considered the ‘‘best one’’. Each method apparently

provides distinct information about selective events [17]. To

overcome this limit we decided to use three different approaches.

The first one, the iHS score [23], is a population genetic approach.

The general idea of this method is to search for haplotypes longer

than expected, the so-called ‘‘long-range haplotype’’. An allele

under selection increases in frequency so rapidly that long-range

associations with neighboring polymorphisms are not disrupted by

recombination. Generally this approach is thought to provide

evidence for recent positive pressure [23], ‘‘recent’’ meaning after

the human population separation. The second method defines as

‘‘under selective pressure’’ the regions of the human genome with

a strong signal for depletion of Neanderthal-derived alleles. The

presence of these signals may mark an episode of positive selection

in early humans, after the separation from Neanderthal [25]. The

third and last method belongs to the comparative approaches,

involving data from multiple different species. Methods for

detecting signatures of selection from rates and patterns of

substitution have a long history in the field of molecular evolution

[6]. The method that we used [26] is aimed to identify conserved

elements in primates allowing to test hypotheses about selective

pressures on this particular evolutionary lineage. We decided to

use these three methods because they provide information about

selective events happened in different evolutionary times.

Independently of the method that we used, CGIs localized

inside regions under selective pressure were less methylated than

CGIs in other genomic regions. In addition, we found that CGIs in

regions with two signatures of selective pressure (in which CE is

involved) showed lower methylation when compared to CGIs in

regions with one signature only. This finding suggests that each

signature is providing distinct information about selective events.

We observed CGIs undermethylation in all cell lines analyzed,

including different types of normal cultured cells (fibroblasts,

epithelial cells, myocytes etc.). It is well known that, in a

multicellular organism, different cell types acquire various

functional capabilities by distinct epigenetic modifications. Ac-

quired during early development, the cell type-specific epigen-

otype is maintained by cellular memory mechanisms. It is quite

surprising that different cells showed similar methylation differ-

ences. This finding may suggest that the regions under selective

pressure are somehow more ‘‘protected’’ from methylation,

independently of the cell type-specific epigenotype. This interpre-

tation could be further supported by the analysis of EBV

transformed and cancer derived cells. Epigenetics of cancer has

been deeply studied, and the loss of DNA methylation at CpG

dinucleotides was the first epigenetic abnormality to be identified

in cancer cells [30]. The role of hypomethylation in activating

oncogenes, as well as hypermethylation affects tumor-suppressor

genes has been well established [30]. We found that genomic

regions under selective pressure are relatively less methylated in

cancer cells too. This difference persists even in a scenario of

Figure 5. SNP content of CGIs in genomic regions under selective pressure compared with CGIs localized in other genomic regions.
The mean SNP frequencies (SNPs/100 bp) of CGIs in genomic regions under selective pressure (open bars) and of CGIs localized in other genomic
regions (closed bars) are reported. The regions are: A = HIR, B = 5SLR and C = CE). Values are means +/2 SE.
doi:10.1371/journal.pone.0023156.g005

CpG Islands Methylation and Selective Pressure
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global hypermethylation that characterizes cancer cells in our

experiments.

To confirm the results obtained in cell lines, we checked the

possible existence of undermethylation in regions under selective

pressure by a different approach. It is well established in scientific

literature that the 5methylcytosine present in some CpG sites is

subject to mutational pressure by spontaneous deamination to

thymine [31]. A fraction of CpG sites in the genome are clustered

into CpG islands that are thought to be mainly unmethylated [32].

Since 5-Methylcytosine is the initial molecule in the deamination

reaction that generates thymine, CpG sequences within CpG

islands, which are not methylated, would be less likely to mutate.

Tomso et al. found a general underrepresentation of polymor-

phisms in CpG islands, strongly supporting the idea that decreased

methylation in CpG islands leads to decreased variation at island

CpGs [33]. Using the same way of reasoning, we predicted that, if

CGIs in regions under selective pressure were undermethylated,

they would show less polymorphisms than the CGIs in the

remaining genome.

Independently of the method used to define the regions under

selective pressure, we found that CGIs inside regions under

selective pressure contain less SNPs than the CGIs in the

remaining genome. When we compared CGIs in regions with

two signatures of selective pressure to CGIs in regions with one

signature only, we found that CGIs showing both 5SLR and CE

signatures contained less SNPs than CGIs showing CE signature

only. On the contrary, when we compared CGIs showing both

HIR and CE signatures to CGIs showing CE signature only, we

found no differences in SNP content. A possible explanation is that

the selective pressure that acted on HIRs was very recent. Its effect

could be evident in cell CGIs methylation but not (or not yet) in

genetic variation.

CGIs can be located inside the genes or outside them. CGIs

located inside genes can be divided, according their position, in

CGIs in 59 region, CGIs in the 39 regions and CGIs in internal

exons or introns. CGIs located near 59 region of genes are known

to influence gene expression but also CGIs located outside these

regions can be involved in important biological processes [3] [34]

[35]. We decided to analyze the methylation of CGIs, categorized

by their position, to assess if the CGIs undermethylation that we

have found in regions under selective pressure was a general

phenomenon or it was restricted to CGIs with a specific

localization. We were able to analyze only CE CGIs because,

after classification, the number of HIR CGIs and 5LSR CGIs in

intragenic and 39 regions was too low to perform a reliable

statistical analysis. We found that, at least for CE, the CGIs

undermethylation in regions under selective pressure specifically

involved CGIs located at the 59 and in the intergenic regions. For

the 59 regions, the finding was quite expected because of their well

established role in gene regulation. The functional role of

intergenic CGIs is less clear. There is a growing evidence of the

role of CGIs methylation in the regulation of microRNAs [36]. In

particular, it has been demonstrated that 80% of the promoters of

‘‘intergenic’’ microRNAs contain CGIs. In addition, these

regulatory regions show signals of evolutionary conservation

[37]. We also cannot exclude that some CGIs categorized as

intergenic, may be related to yet unidentified genes.

Bock et al. developed a computational epigenetics approach to

discriminate between CpG islands that are prone to methylation

from those that remain unmethylated on the basis of a set of

1,184 DNA attributes [12] . One of these attributes was the

evolutionary conservation that the authors found to be uncorre-

lated with CpG island methylation. It should be noted that in this

study (published in 2006) only CGIs on chromosome 21 were

analyzed. Further, the methods to evaluate evolutionary conser-

vation and for the statistical analysis are not the same that we

used.

Our study has some limit. The most important one is the

estimation of CGIs methylation. For each CGI we have data only

on a limited number of CpGs, and from their methylation values

we estimated the total CGI methylation. It should be noted that

the dataset that we used is the largest genome-wide dataset

available and that, in any case, this could be considered a

systematic error that could cause a general noise only.

Another limit is that we analyzed the DNA methylation only.

Epigenetic control of transcription involves a complex network of

signals, including transcription factors, noncoding RNAs, DNA

methylation, and histone modifications [38]. In this study we

looked only to a part of these mechanisms. Further studies are

needed to analyze the other component of this machinery.

Another possible limit concerns the method used to define

regions under selective pressure. Other methods have been

described and our choice could not be exhaustive. A final caveat

concerns possible cell-culture induced DNA methylation. It is well

established that in vitro culture can cause changes in epigenetic

marking of the genome [39] [40], probably due to the adaptation

of the cells to the in vitro conditions. Therefore it should be

underlined that, concerning DNA methylation, cell lines could be

not representative of their relative primary tissues.

In conclusion, in this paper we demonstrated, in several cell

lines, that CpG islands in regions showing signatures of selective

pressure are undermethylated in comparison with the other

regions of the genome. Additionally, by analyzing SNP frequency

in CpG islands, we demonstrated that CpG islands in regions

under selective pressure show lower genetic variation among

individuals.

Materials and Methods

Data and evolutionary scores
All the data and the scores that we used were downloaded from

annotation tracks in the UCSC Genome Browser [41] . A brief

description is provided below. Further and more detailed

information about the dataset used can be found at http://

genome.ucsc.edu/.

CpG island coordinates. CGIs genomic coordinates were

obtained from the UCSC GB CpgIslandExt track. In this track

CpG islands were predicted by searching the sequence one base at

a time, scoring each dinucleotide (+17 for CG and 21 for others)

and identifying maximally scoring segments. In this dataset, to

define a CpG island the following criteria were used: i) to have a

GC content of 50% or greater, ii) to have a length greater than

200 bp, and iii) to show a ratio greater than 0.6 of observed

number of CG dinucleotides to the expected number, calculated

on the basis of the number of Gs and Cs in the segment under

analysis.

DNA methylation data. Methylation profiles from each cell

sample were downloaded from the UCSC GB HAIB Methyl

RRBS Track. These tables report the percentage of DNA

molecules that show cytosine methylation at specific CpG

dinucleotides in several cell lines. To obtain these data,

researchers belonging the ENCODE Consortium assayed DNA

methylation at CpG sites with a modified version of Reduced

Representation Bisulfite Sequencing [20]. We used data from 25

cell lines, which were the first ones to come out from the

moratorium period (expiration of moratorium period = 2011-04-

13). The data set contains, for each cell line at least two replicas

each containing, on average, about 1.5 million of CpG
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methylation values. To exclude unreliable data, only methylation

signals identified by a number of reads $10 were used for further

analyses. After this filtering, we computed, for each CpG the mean

value between two replicas, obtaining methylation values of

genomic CpGs per cell line in the range (5–8) 105 . We next

selected methylation values of CpG dinucleotides in CGIs, filtering

them by the CpG Islands track of UCSC-GB. The final CGI

methylation value was obtained by calculating the mean

methylation of all CpGs contained in the CGI.

Integrated haplotype score (iHS). The normalized iHS

scores were obtained from UCSC Genome Browser ‘‘HGDP iHS’’

track. The per-continent integrated haplotype score (iHS) [23] is a

measure of recent positive selection. The scores present in the

UCSC Genome Browser were calculated using SNPs genotyped in

53 populations worldwide by the Human Genome Diversity

Project in collaboration with the Centre d’Etude du Polymor-

phisme Humain (HGDP-CEPH).

Samples from 1,043 individuals from different geographical

regions were genotyped for 657,000 SNPs at Stanford. The 53

populations were divided into seven continental groups: Africa

(Bantu populations only), Middle East, Europe, South Asia, East

Asia, Oceania and the Americas.

iHS was calculated for each population group and then

normalizing the resulting unstandardized iHS scores in derived

allele frequency bins as described in [23]. Per-SNP iHS scores

were smoothed in windows of 31 SNPs, centered on each SNP.

The final score is 2log10 of the proportion of smoothed scores

higher than each SNP’s smoothed score.

We converted genome coordinates from assembly NCBI36/

hg18 to assembly GRCh37/hg19 by using Batch Coordinate

Conversion (liftOver) utility (UCSC Genome Browser). We

scanned normalized iHS scores across the whole genome and

selected the genomic intervals where iHS values $2. Once

detected such compact regions, we extended their boundaries to

the nearest loci where iHS was exactly vanishing.

Selective Sweep Scan: 5% Smallest S scores. Green et al.

[25] identified polymorphic sites among five modern human

genomes and determined ancestral or derived state of each single

SNP. The human allele states were used to estimate an expected

number of derived alleles in Neanderthal in the 100,000-base

window around each SNP. The measure called S score compare

the observed number of Neanderthal alleles in each window to the

expected number. An S score significantly less than zero indicates

an increase of human-derived alleles not found in Neanderthal,

suggesting positive selection in the human lineage since divergence

from Neanderthals.

Regions with S scores in the lowest 5% (strongest negative

scores, ‘‘5% Lowest S’’ track of UCSC Genome Browser) were

used in our analyses.

Conserved Elements. Conserved elements were down-

loaded from the UCSC GB Conservation (cons46way) Track. In

this track conserved elements were predicted using the methods

phastCons and phyloP. Both phastCons and phyloP are

phylogenetic methods that rely on a tree model containing the

tree topology, branch lengths representing evolutionary distance at

neutrally evolving sites, the background distribution of nucleotides,

and a substitution rate matrix. Pairwise alignments with the

human genome were generated for each species using blastz from

repeat-masked genomic sequence. The conserved elements were

predicted using 10 primate species. Primate species used are

:Homo Sapiens (reference species), Pan troglodytes, Gorilla gorilla

gorilla, Pongo pygmaeus abelii, Macaca mulatta, Papio

hamadryas, Callithrix jacchus, Tarsier syrichta, Microcebus

murinus, Otolemur garnettii.

Statistical analysis
In order to test the null hypothesis that two distributions have

the same means we use a ‘‘bootstrapping approach’’. In particular

we take the mean of the smaller sample, hereafter denoted by m,

and compare this value with the probability distribution of mean,

p(m), obtained from a large number (104) of randomly sampled

cohorts of the same size taken from the larger sample. Type I error

to reject the null hypothesis even if it is true, denoted as ‘‘Bootstrap

p-value’’ of the test, by definition is the sum of p(m) for m$m.

Since we have 104 cohorts of the larger sample the precision of our

‘‘Bootstrap p-value’’ is 1024, which is however small enough since

we have fixed the threshold of statistical significance at 1023. All

statistical analyses were carried out with R ver. 2.10.1 [42]

Supporting Information

Figure S1 Histogram of CGIs mean methylation values (y-axis)

and their Standard Errors for each cell line group: Cancer

Transformed (CT), EBV transformed (EBV), and Normal

Untransformed (NU).

(TIF)

Figure S2 Histogram of the percentages of methylation of

HIR+CE CGIs (open bars) compared to CE CGIs (closed bars) for

each cell line. Error bars represent standard errors.

(TIF)

Figure S3 Histogram of the percentages of methylation of

5SLR+CE CGIs (open bars) compared to CE CGIs (closed bars)

for each cell line. Error bars represent standard errors.

(TIF)

Table S1 Complete list of the cell used in this study, with their

characteristics.

(DOC)

Table S2 Lists, for each cell type, the number of CpG analyzed,

the number of CpGs inside CGIs, the number of CGIs for which

we were able to estimate methylation, the number of CpG

analyzed per CGI and the mean value of CGI methylation.

(DOC)

Table S3 Lists, for each HIR identified, the chromosome, the

start position, the end position, the total length and the human

population in which it has been detected. Genomic coordinates

refer to assembly GRCh37/hg19.

(DOC)

Table S4 Lists, for each cell type, the mean methylation of CGIs

inside HIRs (with its standard error), the mean methylation of

CGIs localized outside these regions (with its standard error), the

number of CGIs inside HIRs, the number of CGIs localized

outside HIRs and the Bootstrap p-values.

(DOC)

Table S5 Lists, for each 5SLR identified, the chromosome, the

start position, the end position and the total length. Genomic

coordinates refer to assembly GRCh37/hg19.

(DOC)

Table S6 Lists, for each cell type, the mean methylation of CGIs

inside 5SLRs (with its standard error), the mean methylation of

CGIs localized outside these regions (with its standard error), the

number of CGIs inside 5SLRs s, the number of CGIs localized

outside 5SLRs and the Bootstrap p-values.

(DOC)

Table S7 Lists, for each cell type, the mean methylation of CGIs

containing CEs (with its standard error), the mean methylation of
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CGIs that not contain CEs (with its standard error), the number of

CE CGIs, the number of non-CE CGIs and the Bootstrap p-

values.

(DOC)

Table S8 Lists, for each cell type, the mean methylation of

HIR+CE CGIs (with its standard error), the mean methylation of

CE CGIs (with its standard error), the number of HIR+CE CGIs,

the number of CE CGIs and the Bootstrap p-values.

(DOC)

Table S9 Lists, for each cell type, the mean methylation of

5SLR+CE CGIs (with its standard error), the mean methylation of

CE CGIs (with its standard error), the number of 5SLR+CE CGIs,

the number of CE CGIs and the Bootstrap p-values.

(DOC)

Table S10 Lists, for each cell type, the number, the mean

methylation and the standard error of 59 CGIs, intragenic CGIs,

39 CGIs and intergenic CGIs.

(DOC)

Table S11 Lists, for each cell type and for each CGIs class (59

CGIs, intragenic CGIs, 39 CGIs and intergenic CGIs) the number

and the mean methylation of CGIs containing CEs (with its

standard error), the number and the mean methylation of CGIs

that do not contain CEs (with its standard error), and the

Bootstrap p-values.

(DOC)

Author Contributions

Conceived and designed the experiments: SC AM GM. Analyzed the data:

MMA AM SC. Wrote the paper: GM AM SC.

References

1. Pelizzola M, Ecker JR (2010) The DNA methylome. FEBS Lett.
2. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev

16: 6–21.

3. Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583:
1713–1720.

4. Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine
phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl

Acad Sci U S A 79: 3418–3422.

5. Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and
CVD. Proc Nutr Soc 70: 47–56.

6. Petronis A (2010) Epigenetics as a unifying principle in the aetiology of complex
traits and diseases. Nature 465: 721–727.

7. Handel AE, Ebers GC, Ramagopalan SV (2010) Epigenetics: molecular
mechanisms and implications for disease. Trends Mol Med 16: 7–16.

8. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are

maintained. Nat Rev Genet 10: 805–811.
9. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, et al. (2007) The SRA

protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to
methylated DNA. Nature 450: 908–912.

10. Haaf T (2006) Methylation dynamics in the early mammalian embryo:

implications of genome reprogramming defects for development. Curr Top
Microbiol Immunol 310: 13–22.

11. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, et al. (2008) Dissecting
direct reprogramming through integrative genomic analysis. Nature 454: 49–55.

12. Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T, et al. (2006) CpG island
methylation in human lymphocytes is highly correlated with DNA sequence,

repeats, and predicted DNA structure. PLoS Genet 2: e26.

13. Jeong S, Liang G, Sharma S, Lin JC, Choi SH, et al. (2009) Selective anchoring
of DNA methyltransferases 3A and 3B to nucleosomes containing methylated

DNA. Mol Cell Biol 29: 5366–5376.
14. Lin JC, Jeong S, Liang G, Takai D, Fatemi M, et al. (2007) Role of nucleosomal

occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12:

432–444.
15. Johnson LJ, Tricker PJ (2010) Epigenomic plasticity within populations: its

evolutionary significance and potential. Heredity 105: 113–121.
16. Britten RJ, Davidson EH (1969) Gene regulation for higher cells: a theory.

Science 165: 349–357.
17. Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:

197–218.

18. Fouse SD, Nagarajan RP, Costello JF (2010) Genome-scale DNA methylation
analysis. Epigenomics 2: 105–117.

19. Celniker SE, Dillon LA, Gerstein MB, Gunsalus KC, Henikoff S, et al. (2009)
Unlocking the secrets of the genome. Nature 459: 927–930.

20. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, et al. (2008) Genome-

scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:
766–770.

21. Yi SV, Goodisman MA (2009) Computational approaches for understanding the
evolution of DNA methylation in animals. Epigenetics 4: 551–556.

22. Bock C, Lengauer T (2008) Computational epigenetics. Bioinformatics 24: 1–10.

23. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive
selection in the human genome. PLoS Biol 4: e72.

24. Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, et al. (2002)

Detecting recent positive selection in the human genome from haplotype

structure. Nature 419: 832–837.

25. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, et al. (2010) A draft

sequence of the Neandertal genome. Science 328: 710–722.

26. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010) Detection of

nonneutral substitution rates on mammalian phylogenies. Genome Res 20:

110–121.

27. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast

genomes. Genome Res 15: 1034–1050.

28. Medvedeva YA, Fridman MV, Oparina NJ, Malko DB, Ermakova EO, et al.

(2010) Intergenic, gene terminal, and intragenic CpG islands in the human

genome. BMC Genomics 11: 48.

29. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA

methylation patterns in plants and animals. Nat Rev Genet 11: 204–220.

30. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer

4: 143–153.

31. Holliday R, Grigg GW (1993) DNA methylation and mutation. Mutat Res 285:

61–67.

32. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature

321: 209–213.

33. Tomso DJ, Bell DA (2003) Sequence context at human single nucleotide

polymorphisms: overrepresentation of CpG dinucleotide at polymorphic sites

and suppression of variation in CpG islands. J Mol Biol 327: 303–308.

34. Ramser J, Ahearn ME, Lenski C, Yariz KO, Hellebrand H, et al. (2008) Rare

missense and synonymous variants in UBE1 are associated with X-linked

infantile spinal muscular atrophy. Am J Hum Genet 82: 188–193.

35. Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, et al. (1999) A

maternally methylated CpG island in KvLQT1 is associated with an antisense

paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome.

Proc Natl Acad Sci U S A 96: 8064–8069.

36. Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation

regulates MicroRNA expression. Cancer Biol Ther 6: 1284–1288.

37. Wang G, Wang Y, Shen C, Huang YW, Huang K, et al. (2010) RNA

polymerase II binding patterns reveal genomic regions involved in microRNA

gene regulation. PLoS One 5: e13798.

38. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states.

Science 330: 612–616.

39. Saferali A, Grundberg E, Berlivet S, Beauchemin H, Morcos L, et al. (2010) Cell

culture-induced aberrant methylation of the imprinted IG DMR in human

lymphoblastoid cell lines. Epigenetics 5: 50–60.

40. Bork S, Pfister S, Witt H, Horn P, Korn B, et al. (2010) DNA methylation

pattern changes upon long-term culture and aging of human mesenchymal

stromal cells. Aging Cell 9: 54–63.

41. Sanborn JZ, Benz SC, Craft B, Szeto C, Kober KM, et al. (2011) The UCSC

Cancer Genomics Browser: update 2011. Nucleic Acids Res 39: D951–959.

42. R_Development_Core_Team, (2009) R: A Language and Environment for

Statistical Computing. Vienna Austria.

CpG Islands Methylation and Selective Pressure

PLoS ONE | www.plosone.org 9 August 2011 | Volume 6 | Issue 8 | e23156


