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Regulatory T cells (Tregs) are immunosuppressive T cells that play an important role in 
immune homeostasis. Multiple markers have been associated with the characterization, 
as well as function of Tregs. Recently, glycoprotein A repetitions predominant (GARP), 
a transmembrane protein containing leucine-rich repeats, has been found to be highly 
expressed on the surface of activated Tregs. GARP maintains Tregs’ regulatory function 
and homeostasis through the activation and secretion of transforming growth factor β. 
In this study, we investigated the expression of GARP in Tregs from the peripheral blood 
(PB) and tumor tissues of lung cancer patients. The association between the proportion 
and expression level of GARP on Tregs and the clinicopathological factors of lung cancer 
patients was also analyzed. Results showed that in the tumor tissues of patients with 
lung cancer, GARP expression was increased in Tregs and was associated with lymph 
node metastasis, distant metastasis, and clinical stage. Furthermore, the infiltrating Tregs 
from early stage patients exhibited higher GARP expression than that from advanced 
cancer patients, which indicated that GARP might be an early prognostic biomarker. 
In vitro coculture studies demonstrated that human lung cancer cell lines might induce 
the expression of GARP in Tregs by certain mechanisms. Overall, this research demon-
strated the potential value of GARP in Tregs definition and cancer immunotherapy.
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inTrODUcTiOn

For years, accumulating evidence has indicated that tumor microenvironment plays an important 
role in tumor progression, invasion, and metastasis (1). The tumor microenvironment is a complex 
system consisting of cells, soluble factors, signaling molecules, extracellular matrix, and mechanical 
cues (2). Tumors possess infiltrating cells of both innate and acquired immunity, such as myeloid-
derived suppressor cells, macrophages, dendritic cells, mast cells, eosinophils, neutrophils, NK 
cells, and lymphocytes. These cells coordinately form a complex regulatory network, which fosters 
tumor growth by creating an environment that enables cancer to evade immune surveillance and 
destruction (3). Regulatory T cells (Tregs), as the primary immunosuppressive cells, can inhibit 
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the antitumor immune response and promote tumor progres-
sion. A number of studies have provided clear evidence that the 
number of tumor-infiltrating Tregs was increased in multiple 
tumors, such as renal carcinoma, gastrointestinal cancer, breast 
carcinoma, lung cancer, prostatic carcinoma, melanoma, and 
ovarian carcinoma (4–10).

The immunosuppressive activity of Tregs makes it one of the 
effective targets of immunotherapy, but its application is limited 
by the lack of specific markers. To date, the transcription factor, 
Foxp3, which is necessary for the development and function of 
Tregs, is the most specific marker for Tregs (11). The depletion 
or mutation of Foxp3 in Tregs leads to common autoimmune 
and inflammatory diseases such as IPEX, which is characterized 
by immune dysfunction, polyendocrinopathy enteropathy, and 
X-linked syndrome (12, 13). However, Foxp3 cannot be used to 
isolate functional Tregs for further study because it is located in 
the nucleus, and it can also be expressed in conventional T cells 
(14–16). Although a number of surface and intracellular mol-
ecules are highly expressed in Tregs, none of them is a reliable 
and suitable molecule for functional Tregs isolation, let  alone 
therapeutic applications (17, 18). Therefore, a novel marker that 
may identify a special subset of Tregs will provide a new method 
for the research of Tregs.

Glycoprotein A repetitions predominant (GARP), a trans-
membrane protein consisting of 662 amino acids, is highly 
expressed on the surface of a certain subset of Tregs and is 
activated through TCR stimulation (19). GARP increases the 
suppressive function of Tregs and promotes secretion and 
activation of transforming growth factor β (TGF-β), which 
participates in Tregs’ function and homeostasis (20–23). GARP 
can competitively bind latent TGF-β, a complex formed by 
mature TGF-β and latency-associated peptide (LAP), through its 
horseshoe-shaped solenoid ectodomain (21, 24, 25). As a result, 
GARP+ Tregs became the storage of TGF-β, and this T cell subset 
possesses strong immunosuppressive effect. However, the exact 
role of GARP+ Tregs in tumor microenvironment remains little 
understood.

In this study, we analyzed the expression of GARP on Tregs 
and Tconvs in peripheral blood (PB) and tumor tissue from lung 
cancer patients. Our data suggested that GARP expression was 
increased in the Tregs from tumor tissues of patients with lung 
cancer and the proportion of GARP-expressing Tregs was obvi-
ously higher in lung cancer patients without lymph node metas-
tasis or distant metastasis and in patients with early clinical stage. 
In addition, we demonstrated that lung cancer cell lines could 
induce GARP expression in Tregs in in vitro coculture assays. Our 
data indicated that GARP is a specific marker for identifying a 
subset of Tregs that is activated and highly immunosuppressive. 
Therefore, GARP+ Tregs may be a potential target for cancer 
immunotherapy.

MaTerials anD MeThODs

healthy Donors and Patients
Blood samples were obtained peripherally from 50 first-time 
admitted lung cancer patients in Tianjin Medical University 

Cancer Institute and Hospital (Tianjin, China) and from 10 
healthy donors, after receiving written informed consent. Tumor 
tissues were obtained during the surgery from 39 first-time 
admitted lung cancer patients in Tianjin Medical University 
Cancer Institute and Hospital (Tianjin, China), after receiving 
written informed consent. The procedure used was approved by 
the Ethics Committee of the Tianjin Medical University Cancer 
Institute and Hospital. None of the patient received surgery, 
radiotherapy, chemotherapy, or other medical intervention 
before the blood collection or the surgery. The characteristics of 
the study subjects are summarized in Tables 1 and 2.

isolation of Mononuclear cells
Peripheral venous blood was drawn and collected into tubes con-
taining EDTA-K2. The blood was centrifuged with lymphoprep 
(Axis-shield, Oslo, Norway), and PBMCs were collected at the 
interface and washed with PBS. The tumor tissue was grinded 
into single-cell suspension and centrifuged with lymphoprep to 
remove cell debris, and mononuclear cells were collected at the 
interface and washed with PBS.

Flow cytometry and antibodies
After blocking FcR, cells were incubated with appropriately 
diluted antibodies and washed with PBS. For intracellular stain-
ing of Foxp3, cells were fixed and permeabilized using a Fix/
Permeabilization Kit (eBioscience, San Diego, CA, USA) and 
stained with antihuman Foxp3-APC mAb (BD Biosciences, San 
Diego, CA, USA, clone 259D/C7, cat num 560045). Acquisition 
was performed using FACSCanto II equipped with FACSDiva 
Version 6.1.3 (BD Biosciences). Data analysis was conducted 
using FlowJo Version 7.6.2 Software (Tree Star, Ashland, OR, 
USA). The antibodies used for surface staining in this study 
included antihuman CD4-PerCP/Cy5.5 (BD Bioscience, San 
Diego, CA, USA, clone RPA-T4, cat num 560650), antihuman 
GARP-PE (Miltenyi Biotec, Germany, cat num 130-103-889), and 
antihuman LAP (TGF-β)-APC (R&D, USA, cat num FAB2463A). 
The antibody used for intracellular staining included antihuman 
Foxp3-APC.

cell isolation and In Vitro cell culture
CD4+CD25+ Tregs were purified from freshly isolated human 
PBMCs using human CD4+CD25+ Treg isolation kit, LD and MS 
column (Miltenyi Biotec, Germany).

For in vitro coculture assays, CD4+CD25+ Tregs were cultured 
alone or cocultured for 72  h with lung cancer cell lines H460, 
LTEP-A-2, GLC-82, A549, and H520 at a ratio of 10:1 and seeded 
in a 24-well plate in RPMI 1640 medium containing 10% FBS 
as well as 300 U/ml IL-2. The negative controls were the Tregs 
cultured alone whereas the positive controls were the cells stimu-
lated with Dynabeads® Human T-Activator CD3/CD28 (Life 
Technologies AS). For in  vitro transwell coculture assays, lung 
cancer cell lines were added into a 24-well plate in the medium 
described above, then Tregs were seeded into 0.4-µm transwell 
inserts (Corning Life Sciences) in each well for 72 h culturing. For 
supernatant culture assays, cell supernatants of A549 and H520 
were collected after these two cancer cells were cultured alone 
for 72 h. Then Tregs were cultured in the conditioned medium, 
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TaBle 2 | correlation between clinicopathological characteristics and frequency of Tregs, glycoprotein a repetitions predominant (garP) expression 
on Tregs in peripheral bloods from lung cancer patients.

cases Foxp3+ Tregs/cD4+ T cells (%) P value garP+/Foxp3+ Tregs (%) P value garP mean fluorescence 
intensity

P value

gender
Male 34 6.010 (4.695, 7.608) 0.5637 0.3175 (0.0, 0.6118) 0.2544 444.5 (0.0, 548.0) 0.5508
Female 16 5.655 (3.068, 6.828) 0.4920 (0.1908, 0.8838) 407.5 (312.3, 659.5)

age (year)
≤60 24 5.950 (5.030, 7.603) 0.2410 0.2085 (0.0, 0.7090) 0.2003 364.5 (0.0, 568.8) 0.3239
>60 26 5.545 (2.948, 6.948) 0.4590 (0.1948, 0.8440) 467.5 (295.0, 555.0)

smoke
No 20 5.100 (2.340, 7.043) 0.0631 0.5595 (0.01775, 1.205) 0.2129 446.0 (270.3, 554.3) 0.8861
Yes 30 6.150 (4.900, 7.790) 0.3175 (0.0855, 0.5407) 407.5 (0.0, 601.3)

histology
Adenocarcinoma 33 5.830 (4.510, 7.555) 0.8211 0.3670 (0.0925, 0.7395) 0.2484 435.0 (240.0, 565.5) 0.2484
Squamous cell 
carcinoma

15 5.020 (3.050, 7.580) 0.3310 (0.0, 1.060) 385.0 (0.0, 511.0)

Others 2 6.015 (5.950, 6.080) 1.094 (0.1670, 2.020) 570.0 (540.0, 600.0)

lymphatic invasion
Absent 24 5.240 (3.053, 6.925) 0.2566 0.2685 (0.0, 0.7615) 0.3793 407.5 (0.0, 535.5) 0.6802
Present 26 6.375 (4.790, 7.588) 0.4935 (0.1538, 0.7645) 448.0 (258.0, 579.0)

Distant metastasis
Absent 42 5.450 (4.343, 6.848) 0.0737 0.3175 (0.0, 0.7405) 0.3021 413.0 (0.0, 622.3) 0.8494
Present 8 7.995 (3.798, 9.090) 0.5265 (0.2580, 1.117) 421.5 (254.8, 489.0)

clinical stage
I + II 22 5.080 (4.080, 6.265) 0.1153 0.2245 (0.0, 0.7405) 0.2974 467.5 (0.0, 690.0) 0.5352
III + IV 28 6.825 (4.955, 7.670) 0.4935 (0.1340, 0.7955) 407.5 (222.0, 507.5)

TaBle 1 | correlation between clinicopathological characteristics and frequency of Tregs, glycoprotein a repetitions predominant (garP) expression 
on Tregs in tumor tissues from lung cancer patients.

cases Foxp3+ Tregs/cD4+ T cells (%) P value garP+/Foxp3+ Tregs (%) P value garP mean fluorescence 
intensity, median

P value

gender
Male 27 8.740 (5.040, 15.20) 0.0513 8.660 (3.130, 27.20) 0.3268 2,076 ± 1,083 0.2716
Female 12 5.185 (3.810, 6.398) 10.65 (5.940, 41.28) 2,503 ± 1,149

age (year)
≤60 16 7.220 (3.873, 13.28) 0.6737 8.875 (4.165, 29.83) 0.9833 2,253 ± 1,427 0.8345
>60 23 6.400 (5.040, 11.20) 9.270 (3.130, 27.20) 2,176 ± 852.3

smoke
No 15 5.170 (4.380, 8.620) 0.0902 15.00 (6.420, 35.70) 0.1380 2,658 ± 1,224 0.2408
Yes 24 9.005 (4.940, 14.73) 7.045 (3.123, 23.10) 2,176 ± 1,230

histology
Adenocarcinoma 26 7.510 (4.788, 13.23) 0.9986 8.875 (4.733, 35.88) 0.6470 2,261 ± 1,227 0.6692
Squamous cell carcinoma 9 6.430 (4.310, 15.90) 9.270 (2.640, 18.50) 2,266 ± 922.5
Others 4 6.075 (4.750, 21.14) 9.415 (1.738, 47.85) 1,728 ± 594.1

lymphatic invasion
Absent 24 6.350 (4.483, 13.78) 0.9999 12.90 (4.090, 52.13) 0.0465 2,524 ± 1,171 0.0221
Present 15 6.430 (4.780, 13.20) 7.470 (2.920, 10.10) 1,702 ± 793.4

Distant metastasis
Absent 34 6.280 (4.680, 11.70) 0.1074 10.30 (5.005, 35.88) 0.0001 2,398 ± 1,023 0.0038
Present 5 11.30 (6.815, 31.30) 2.250 (0.9070, 3.110) 916.2 ± 779.2

clinical stage
I + II 22 6.415 (4.688, 14.75) 0.7602 22.00 (8.423, 55.28) 0.0001 2,681 ± 1,094 0.0014
III + IV 17 5.650 (4.510, 12.25) 4.590 (2.325, 8.275) 1,595 ± 796.1
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which was composed by supernatant and normal medium at a 
ratio of 1:3 for 72 h. All the in vitro experiments were repeated 
for three times.

statistical analysis
All statistical analysis was performed with SPSS Statistics 19 
(IBM Corporation, NY, USA). Numerical data were expressed as 
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FigUre 1 | level of glycoprotein a repetitions predominant (garP) expression on Tregs and Tconvs from lung cancer patients. Mononuclear cells from 
tumor tissues and peripheral bloods (PBs) from the indicated sources were stained for CD4, GARP, and intracellular Foxp3 and analyzed with FACS. (a,c) 
Proportion of GARP+ Tregs in tumor tissues and PBs from lung cancer patients or healthy donors, respectively. Typical flow plots are shown. (B) Proportion of 
GARP+ Tregs and mean fluorescence intensity (MFI) of GARP expression by Tregs and Tconvs in tumor tissues from lung cancer patients. Data shown are the 
summary from 39 lung cancer patients. (D) Proportion of GARP+ Tregs and MFI of GARP expression by Tregs and Tconvs in PBs both from lung cancer patients 
and healthy donors. Data shown are the summary from 50 lung cancer patients and 10 healthy donors. (e) Proportion of Foxp3+ Tregs from lung cancer patients. 
Data shown are the summary from 39 lung cancer patients’ tumor tissues and 50 lung cancer patients’ PBs. (F) Proportion of GARP+ Tregs and MFI of GARP 
expression from lung cancer patients. Data shown are the summary from 39 lung cancer patients’ tumor tissues and 50 lung cancer patients’ PBs. Results are 
expressed as median and interquartile range. P value shown is obtained from the comparison between the indicated groups by non-parametric t-test and 
Kruskal–Wallis test.
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the mean ± SD when the Kolmogorov–Smirnov test revealed a 
normal distribution of these data. Comparisons of numerical data 
were performed by two-sample t-test, independent sample t-test, 
or one-way ANOVA test. The non-parametric t-test and Kruskal–
Wallis test were used to determine the statistical significance 
when the distribution agreed with the non-normal distribution, 
and the data are shown as the median and interquartile range. 
P < 0.05 was considered statistically significant.

resUlTs

garP Was Mainly expressed  
in Tumor-infiltrating Foxp3+ Tregs  
in lung cancer Patients
We first assayed the expression of GARP in Foxp3+ Tregs and 
Foxp3− Tconvs from 39 tumor tissues in lung cancer patients 
by flowcytometry (Figure  1A). We found that, in tumor tis-
sues, the proportion of GARP+ cells in Foxp3+ Tregs [9.090% 

(3.830%, 27.20%)] was remarkably higher than that in Foxp3− 
Tconvs [0.2410% (0.1440%, 0.4610%), P < 0.0001] (Figure 1B). 
The level of GARP expression on per cell basis, e.g., the mean 
fluorescence intensity (MFI), was also examined. The MFI of 
GARP expression by Foxp3+ Tregs [2216 (1628, 2863)] was 
almost twofold greater than that by Foxp3− Tconvs [752.0 
(483.0, 1040), P  <  0.0001] from tumor tissues (Figure  1B). 
These data suggested that the expression of GARP in Foxp3+ 
Tregs was markedly higher than that in Foxp3− Tconvs from 
tumor tissues. In contrast, we detected GARP expression in 
Foxp3+ Tregs and Foxp3− Tconvs from 50 PBs in lung cancer 
patients and 10 PBs in healthy donors (Figure 1C). As a result, 
the proportion of GARP+ cell in Foxp3+ Tregs from lung cancer 
patients was almost similar with that from healthy donors 
[0.3390% (0.05325%, 0.7548%) vs. 0.4780% (0.2353%, 1.440%), 
P  =  0.2306], while both of them were a very little bit higher 
than that in Foxp3− Tconvs from lung cancer patients [0.2315% 
(0.1368%, 0.3825%), P = 0.0011] and healthy donors [0.1155% 
(0.06775%, 0.2648%), P = 0.0059]. The MFI of GARP in Foxp3+ 
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Tregs from lung cancer patients was also similar with that from 
the healthy controls [420.0 (153.0, 562.3) vs. 384.0 (332.8, 
461.8), P  =  0.6985], but compared with the proportion of 
GARP+ cell, the MFI of GARP in Foxp3+ Tregs was similar with 
that in Foxp3− Tconvs [420.0 (153.0, 562.3) vs. 463.0 (307.5, 
494.5), P = 0.3338; 384.0 (332.8, 461.8) vs. 404.0 (354.8, 429.8), 
P = 0.9219] (Figure 1D). These indicated that GARP expression 
remained in a low level in Foxp3+ Tregs both from lung cancer 
patients and healthy donors.

We compared the GARP expression in Foxp3+ Tregs between 
tumor tissues and PBs in lung cancer patients. The proportion 
of GARP+ cells in Foxp3+ Tregs from tumor tissues [9.090% 
(3.830%, 27.20%)] was markedly higher than that from PBs 
[0.3390% (0.05325%, 0.7548%), P  <  0.0001], and the MFI of 
GARP expression by Foxp3+ Tregs from tumor tissues was more 
than five times that from PBs [2216 (1628, 2863) vs. 420.0 (153.0, 
562.3), P < 0.0001] whereas the proportion of Foxp3+ Tregs in 
CD4+ T cells from tumor tissues [6.400% (4.780%, 13.20%)] 
was also higher than that from PBs [5.890% (4.343%, 7.520%), 
P = 0.0439] (Figures 1E,F). Thus, GARP was mainly expressed in 
tumor-infiltrating Foxp3+ Tregs instead of that from lung cancer 
patients PBs.

garP expression on Tregs is highly 
associated with the clinicopathological 
characteristics of lung cancer Patients
As a result of their superior suppressive function, GARP expres-
sion on Tregs may identify disease-relevant Tregs in lung cancer 
and may be closely related to cancer malignancy, metastasis, and 
clinical outcomes. To test this possibility, we analyzed the percent-
age of GARP+ cells within the Foxp3+ Tregs from 39 tumor tissues 
and 50 PBs in lung cancer patients. As shown in Figure 1 and in 
Tables 1 and 2, although the proportion of total Tregs, as defined 
by Foxp3 expression, in the CD4 cells of tumor tissues [6.400% 
(4.780%, 13.20%)] was higher than that in PBs [5.890% (4.343%, 
7.520%), P = 0.0439], no correlation was observed between the 
proportion of total Foxp3+ Tregs and the clinicopathological 
characteristics, such as gender (P = 0.0513 and P = 0.3657), age 
(P = 0.6737 and P = 0.2410), smoke (P = 0.0902 and P = 0.0631), 
histology (P  =  0.9986 and P  =  0.8211), lymphatic invasion 
(P > 0.9999 and P = 0.2566), distant metastasis (P = 0.1074 and 
P = 0.0737), and clinical stage (P = 0.7602 and P = 0.1153) in both 
tumor tissues and PBs.

However, the proportion of GARP+ subset in Tregs from lung 
cancer patients’ tumor tissues was highly correlated to lymphatic 
invasion (P = 0.0465), distant metastasis (P = 0.0001), and clini-
cal stage (stage I + II vs. stage III + IV, P < 0.0001), whereas the 
proportion of GARP+ cells in Tregs was not correlated to gender 
(P = 0.3268), age (P = 0.9833), smoke (P = 0.1380), and histol-
ogy (P = 0.6407) (Figure 2; Tables 1 and 2). Further, the MFI 
of GARP expression by Tregs was also highly correlated to lym-
phatic invasion (P = 0.0221), distant metastasis (P = 0.0038), and 
clinical stage (stage I + II vs. stage III + IV, P = 0.0014) (Figure 2; 
Tables 1 and 2). No association of the proportion of GARP+ cells 
and the MFI of GARP expression in Tregs from PBs with any 
clinicopathological characteristics of lung cancer patients was 

observed. Our data suggested that the proportion of GARP+ cells 
in Tregs from lung cancer patients without lymphatic invasion was 
higher than that from patients with lymphatic invasion [12.90% 
(4.090%, 52.13%) vs. 7.470% (2.920%, 10.10%)] while the MFI of 
GARP expression in Tregs was in accordance with GARP+ cell 
proportion (2,510 ± 1,176 vs. 1,724 ± 803.4) (Figure 2A). Tregs 
from lung cancer patients without distant metastasis exhibited 
more GARP expression than that from patients with distant 
metastasis [10.30% (5.005%, 35.88%) vs. 2.250% (0.9070%, 
3.110%)] (2,398 ± 1,023 vs. 916.2 ± 779.2) (Figure 2C). In addi-
tion, Tregs from the patients in stages I and II expressed more 
GARP than that from patients in stages III and IV (Figure 2B). 
Therefore, these data indicate that the expression levels of GARP 
by Tregs were highly associated with clinical pathology, and thus 
may prove to be useful as a prognostic biomarker at the early stage 
of lung cancer.

effect of cancer cells on the  
garP expression in Tregs
As we know, GARP can bind latent TGF-β formed by mature 
TGF-β and LAP to mediate the suppressive function of Tregs. 
In this study, we detected the GARP and LAP expression after 
TCR stimulation using CD3/CD28 dynabeads by flow cytometry. 
Tregs were isolated from lung cancer patient PBs and cultured 
with CD3/CD28 dynabeads for 48  h. According to results, the 
proportion of GARP+ cells in Foxp3+ Tregs was notably increased 
after TCR stimulation (66.33  ±  4.067% vs. 1.333  ±  0.4333%, 
P  =  0.0013) (Figures  3A,B). The LAP expression in Foxp3+ 
Tregs after TCR stimulation was also higher than that in the 
negative control (38.07 ± 4.267% vs. 1.1 ± 0.2001%, P = 0.0042) 
(Figures 3A,B). In conclusion, TCR stimulation in Tregs induces 
the GARP expression, which further leads to LAP expression and 
mediation of TGF-β secretion.

Glycoprotein A repetitions predominant may be a biomarker 
at the early stage of lung cancer and may also mediate the 
suppressive function of Tregs. Thus, further studies are need 
to determine whether cancer cells have influence on GARP 
expression in Tregs and trigger the suppressive function of 
Tregs mediated by GARP, leading to immunosuppression and 
tumor escape. We designed the coculture assays using the Tregs 
isolated from lung cancer patients PBs with lung cancer cell 
lines (H460, LTEP-A-2, GLC-82, A549, and H520) for 72  h. 
Flow cytometry results indicated that the proportions of GARP+ 
cells in Foxp3+ Tregs were 7.960 ± 0.3940%, 5.427 ± 0.3060%, 
and 5.640 ±  0.3911% when cocultured with H460, LTEP-A-2, 
and GLC-82, respectively, which were slightly higher than that 
in the negative control (2.090  ±  0.1735%) (Figures  3C,D). In 
sharp contrast, A549 and H520 can effectively induce GARP 
expression in Tregs. The proportion of GARP+ cells reached 
65.80 ± 4.149% and 34.73 ± 2.578%, which were far higher than 
that in other lung cancer cell lines coculture assays, whereas 
that in the positive control was 83.60 ± 5.453% (Figures 3C,D). 
According to these data, some certain lung cancer cell lines can 
promote Tregs to express GARP. Although the abilities of lung 
cancer cell lines to induce GARP expression were different from 
each other, some lung cancer cell lines, such as A549 and H520, 
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FigUre 2 | relationship between glycoprotein a repetitions predominant (garP) expression in tumor tissues and clinicopathological characteristics 
of lung cancer patients. (a) Proportion of GARP+ Tregs, mean fluorescence intensity (MFI) of GARP expression, and proportion of Foxp3+ Tregs in tumor tissues 
derived from patients without lymphatic invasion (N0, N = 24) and patients with lymphatic invasion (N1N2N3, N = 15). (B) Proportion of GARP+ Tregs, MFI of GARP 
expression, and proportion of Foxp3+ Tregs in tumor tissues from stage I (N = 10), stage II (N = 12), stage III (N = 12), and stage IV lung cancer patients (N = 5). 
(c) Proportion of GARP+ Tregs, MFI of GARP expression, and proportion of Foxp3+ Tregs in tumor tissues from lung cancer patients without distant metastasis (M0, 
N = 34) and lung cancer patients with distant metastasis (M1, N = 5). Results are expressed as mean ± SEM or median and interquartile range. P value shown is 
obtained from the comparison between the indicated groups by independent sample t-test and Kruskal–Wallis test.
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could enhance the suppressive function of Tregs through high 
expression of GARP.

lung cancer cell lines induced garP 
expression in Tregs
To seek the possible mechanism of lung cancer cell lines induc-
ing GARP expression in Tregs, we used A549 and H520, which 
could effectively promote Tregs to express high levels of GARP 
to do the transwell coculture assays. After 72 h of coculturing, 
the proportions of GARP+ subsets in Foxp3+ Tregs from A549 
transwell and contact coculture groups were nearly the same 
(53.53 ± 6.417% vs. 61.57 ± 5.525%, P = 0.3638) whereas that 
of the negative control was 1.777  ±  0.2314% and that of the 
positive control was 74.50 ± 5.368% (Figure 4). Similar to A549 
groups, the proportions of GARP+ cells from H520 transwell and 

contact coculture groups were also the same (32.40 ± 6.710% vs. 
37.57 ± 3.171%, P = 0.1271) (Figure 4). These demonstrated that 
cell contact was not the mode of interaction between Tregs and 
lung cancer cell lines. Therefore, we speculated that cancer cells 
can secrete some cytokines to induce GARP expression in Tregs. 
To test this hypothesis, we collected the cell supernatant of cancer 
cells A549 and H520. Then we used these supernatant to culture 
Tregs isolated from lung cancer patients PBs for 72 h. The propor-
tions of GARP+ cells in Foxp3+ Tregs from A549 supernatant and 
contact culture groups were 48.53 ± 7.681% and 54.03 ± 4.038%, 
respectively, whereas that from the H520 supernatant and contact 
culture groups were 33.430 ± 4.485% and 34.60 ± 3.252%, respec-
tively (Figure 5). Our data suggested that cancer cells induced 
GARP expression in Tregs through other ways instead of cell 
contact, such as secreted cytokines. Further studies are needed to 
confirm this hypothesis.
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FigUre 4 | level of glycoprotein a repetitions predominant (garP) expression on Tregs by transwell coculture assays. Transwell coculture assays were 
performed between lung cancer cell lines (A549 and H520) and CD4+CD25+ Tregs, which were isolated from peripheral bloods of lung cancer patients for 72 h. 
Tregs were stained for CD4, GARP, and intracellular Foxp3 and analyzed with FACS. (a) Typical FACS plots. Black histogram: Ab staining; gray-filled histogram: 
isotype control. Numbers in the plots indicate the proportion of positive cells. (B) Summary of the proportion of GARP+ Tregs in Transwell and contact cocultured 
groups with A549 and H520, respectively. Results are expressed as mean ± SEM (n = 3). P value shown is obtained from the comparison between the indicated 
groups by two-sample t-test.

Different lung cancer cell lines induced glycoprotein a repetitions predominant (garP) expression on Tregs from peripheral bloods (PBs) of lung 
cancer patients. CD4+CD25+ Tregs were isolated from the PBs of lung cancer patients. After 72 h of TCR stimulation, these subsets were stained with CD4, 
GARP, latency-associated peptide (LAP), and intracellular Foxp3 and analyzed with FACS. (a) Typical FACS plots. Black histogram: Ab staining after TCR 
stimulation; gray-filled histogram: negative control (before TCR stimulation). Numbers in the plots indicate the proportion of positive cells after TCR stimulation. 
(B) Summary of proportion of GARP+ and LAP+ Tregs before and after TCR stimulation. Coculture assays were performed between lung cancer cell lines and 
CD4+CD25+ Tregs, which were isolated from the PBs of lung cancer patients for 72 h. Tregs were stained for CD4, GARP, and intracellular Foxp3 and analyzed with 
FACS. (c) Typical FACS plots. Black histogram: Ab staining; gray-filled histogram: isotype control. Numbers in the plots indicate the proportion of positive cells. 
(D) Summary of the proportion of GARP+ Tregs cocultured with different lung cancer cell lines. Results are expressed as mean ± SEM (n = 3). P value shown is 
obtained from the comparison between the indicated groups by two-sample t-test.
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FigUre 5 | cancer cell line supernatant induced glycoprotein a repetitions predominant (garP) expression on Tregs. The supernatant of cancer cell 
lines (A549 and H520) was collected to culture CD4+CD25+ Tregs, which were isolated from the peripheral bloods of lung cancer patients for 72 h. Tregs were 
stained with CD4, GARP, and intracellular Foxp3 and analyzed with FACS. (a) Typical FACS plots. Black histogram: Ab staining; gray-filled histogram: isotype 
control. Numbers in the plots indicate the proportion of positive cells. (B) Summary of the proportion of GARP+ Tregs in supernatant cultured and contact cocultured 
groups with A549 and H520, respectively. Results are expressed as mean ± SEM (n = 3). P value shown is obtained from the comparison between the indicated 
groups by two-sample t-test.
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DiscUssiOn

Tregs as the main immunosuppressive cells play an important 
role in immunity regulation, which is also associated with tumor 
progression. Many molecules contribute to the immunosuppres-
sive function of Tregs, such as cytotoxic T lymphocyte-associated 
antigen 4 (CTLA-4), tumor necrosis factor receptor 2, lymphocyte 
activation gene 3, T cell membrane protein 3, and GARP (26–29). 
The exact mechanism of Treg immunosuppressive function is 

unclear, and the definite roles of these molecules in the regulatory 
effect are also unknown. One sure thing was that GARP+ Tregs 
possessed high immune suppression, and GARP–TGF-β pathway 
is the major way of suppressive function in this subset.

Previous studies have reported that higher population of Tregs 
was present in lung cancer patients than that in healthy donors 
(30, 31). Our previous work (28) has demonstrated that and this 
studies further reveal that the numbers of Tregs from tumor tis-
sues were also higher than that from PBs in lung cancer patients 
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(Figure 1E). However, we did not find the correlation between 
the levels of total Foxp3+ Tregs, neither from tumor tissues or 
PBs with clinicopathological characteristics of the patients, which 
was in agreement with our previous the studies and other previ-
ous reports (28, 32, 33). GARP expression level was significantly 
increased on tumor-infiltrating Tregs compared with that on PBs 
(Figure 1F). Interestingly, our data indicated that Tregs from the 
tumor tissues of lung cancer patients without lymphatic invasion 
or distant metastasis expressed more GARP than those from lung 
cancer patients with lymphatic invasion or distant metastasis, and 
Tregs from patients in stages I and II also had more GARP expres-
sion than those from patients in stages III and IV. No correlation 
was observed between the GARP expression level on Tregs from 
PBs with the clinicopathological characteristics of the patients 
(Tables 1 and 2). Therefore, GARP might be an early prognostic 
biomarker because it is specifically expressed on the surface of 
tumor-infiltrating Tregs, and lung cancer patients with early 
stage had more GARP+ Tregs than advanced cancer patients. As 
a result of the complex and unclear regulatory network of the 
molecules, which contributed to the Tregs immunosuppressive 
function, different molecules may play an important role at 
different stages of cancer. According to our study, GARP, which 
endowed Tregs immunosuppression by GARP–TGF-β pathway, 
may possess a key role in the early stage of cancer. Another reason 
to support our hypothesis is that TGF-β could play a critical role 
for the function of Tregs, which may inhibit Teffs proliferation 
and cytokines production as well as promote the differentiation 
of Teffs into Tregs (34, 35).

Further, we designed in  vitro coculture assays using lung 
cancer cell lines and Tregs from patients’ PBs to verify that cancer 
cells can induce Tregs GARP expression, which may confer and 
launch the Treg immunosuppression at the early stage of cancer. 
Our study demonstrated that lung cancer cells could induce 
GARP expression on Tregs by secreting some certain cytokines, 
which need to be identified. The ability of different cell lines to 
stimulate the GARP expression were not identical, for example, 
A549 and H520 could induce high GARP expression on Tregs 
whereas H460, LTEP-A-2, and GLC-82 can only cause rather few 
GARP expression. These assays supported our hypothesis that 
GARP might be an early prognostic biomarker. In the tumor 
microenvironment, tumor cells induced tumor-infiltrating 
Tregs to express GARP. On the one hand, GARP endowed Treg 
immune suppression to inhibit effector T cell. On the other hand, 
GARP played an important role in TGF-β enrichment and release 
on Treg surfaces, which was negative regulatory factor and could 
promote Teffs differentiation into Tregs. Therefore, tumor cells 
could escape from the immune system by inducing GARP expres-
sion on Tregs to suppress Teffs in tumor microenvironment and 
lead to cancer progression.

The discovery of GARP on Tregs sets a new stage in elucidat-
ing functions and mechanism of Tregs. Although some studies 
indicated that GARP was not absolutely required for the suppres-
sive function of Tregs (36), our study indicated that GARP was 
critical in initiating Treg activation, and it might participate in 
Treg suppressive function. The GARP–TGF-β pathway provides 

a regulatory network between Tregs and their targets, including 
Tregs themselves. We also should notice that the regulatory 
function mediated by GARP in Tregs is not the whole but just a 
part. Many other molecules, such as CTLA-4, are also reported 
to mediate Treg suppressive function. Until now, our under-
standing of GARP and the relationships of these molecules are 
limited and are unclear. Clear elucidation is a difficult challenge 
in the future. Further studies may confirm that GARP is a crucial 
molecule for Tregs not only for identification but also for tumor 
immunotherapy.
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FigUre s1 | relationship between glycoprotein a repetitions 
predominant (garP) expression in peripheral bloods (PBs) and 
clinicopathological characteristics of lung cancer patients. (a) Proportion 
of GARP+ Tregs, MFI of GARP expression, and proportion of Foxp3+ Tregs in 
PBs derived from patients without lymphatic invasion (N0, N = 24) and patients 
with lymphatic invasion (N1N2N3, N = 26). (B) Proportion of GARP+ Tregs, mean 
fluorescence intensity (MFI) of GARP expression, and proportion of Foxp3+ Tregs 
in PBs from stage I (N = 15), stage II (N = 7), stage III (N = 20), and stage IV lung 
cancer patients (N = 8). (c) Proportion of GARP+ Tregs, MFI of GARP 
expression, and proportion of Foxp3+ Tregs in PBs from lung cancer patients 
without distant metastasis (M0, N = 42) and lung cancer patients with distant 
metastasis (M1, N = 8). Results are expressed as mean ± SEM or median and 
interquartile range. P value shown is obtained from the comparison between the 
indicated groups by Kruskal–Wallis test.
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